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A better title to this course could be

An introduction to inverse spectral geometry

(M, g) a compact Riemannian manifold  ∆ : C∞(M)→ C∞(M)
the Laplace operator (also known as the Laplace-Beltrami
operator).

∆(f ) = − div(grad(f )) = d∗d
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√
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∑
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∂
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(
√
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)
.

I ∆ is self-adjoint (with respect to 〈f , g〉 =
∫
M f (x)g(x)dx .)

I It commutes with isometries (i.e. ∆(ϕ ◦ f ) = ϕ ◦ (∆f ) for
every ϕ isometry of M).

I It is positive definite (i.e. 〈∆f , f 〉 ≥ 0).
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We consider the eigenvalue problem

∆(f ) = λf .

If ∂M 6= ∅, we impose f = 0 on ∂M (Dirichlet boundary
condition.)

The spectrum of ∆, denoted by Spec(M, g), is the multiset of
eigenvalues λ repeated according its multiplicity
(= dim{f ∈ C∞(M) : ∆f = λf }).

It has the form

0 = λ0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · → +∞.

It is discrete, and each eigenvalue λ has finite multiplicity.
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Inverse spectral geometry studies to what extent does the
spectrum encode the geometry of (M, g).

Spectral information Geometric information=⇒
?

Spec(M, g) dimension, volume, curvature,

is Kähler?, is Einstein?, . . .

Known spectral invariants: dimension, volume, heat invariants
(Prof. Gilkey is an expert on this matter).
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=⇒ M1 and M2 are isometric.

Definition: M1 and M2 are called isospectral if
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Carolyn Gordon, David Webb and Scott Wolpert (in 1992) found
the first example of non-congruent isospectral plane domains:
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In general, Spec(M, g) is very difficult to compute.

There are methods to construct isospectral manifolds, without
knowing the spectrum explicitly. (Sunada method generalized by
DeTurk-Gordon, torus method, among others).

The main goal on this course is to compute the spectrum in very
simple cases.

Contents:

§1 Introduction (which is finishing now!).

§2 Flat tori.

§3 Lens spaces.
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§2 Flat tori
In Rn, ∆ = −

(
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

)
.

v ∈ Rn  fv : Rn → C,

fv (x) = e2πi〈x ,v〉 = e2πi(x1v1+···+xnvn).

(∆fv )(x) = −
∑
j

∂2

∂x2
j

fv (x)

= −
∑
j

∂

∂xj
((2πi)vj fv (x))

= −
∑
j

(2πi)2v2
j fv (x)

= 4π2(
∑
j

v2
j )fv (x) = 4π2‖v‖2fv (x).

But Rn is not compact!
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Let Λ be a lattice in Rn

(i.e. Λ =
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αjZ for some basis {αj}j of

Rn).
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v + Λ = w + Λ ⇐⇒ v − w ∈ Λ.

MΛ is a flat torus.

It is homeomorphic to , but it is flat.



Let Λ be a lattice in Rn (i.e. Λ =
∑
αjZ for some basis {αj}j of

Rn).

MΛ := Rn/Λ.

v + Λ = w + Λ ⇐⇒ v − w ∈ Λ.

MΛ is a flat torus.

It is homeomorphic to , but it is flat.



Let Λ be a lattice in Rn (i.e. Λ =
∑
αjZ for some basis {αj}j of

Rn).

MΛ := Rn/Λ.

v + Λ = w + Λ ⇐⇒ v − w ∈ Λ.

MΛ is a flat torus.

It is homeomorphic to , but it is flat.



Let Λ be a lattice in Rn (i.e. Λ =
∑
αjZ for some basis {αj}j of

Rn).

MΛ := Rn/Λ.

v + Λ = w + Λ ⇐⇒ v − w ∈ Λ.

MΛ is a flat torus.

It is homeomorphic to , but it is flat.



Let Λ be a lattice in Rn (i.e. Λ =
∑
αjZ for some basis {αj}j of

Rn).

MΛ := Rn/Λ.

v + Λ = w + Λ ⇐⇒ v − w ∈ Λ.

MΛ is a flat torus.

It is homeomorphic to , but it is flat.



Let Λ be a lattice in Rn (i.e. Λ =
∑
αjZ for some basis {αj}j of

Rn).

MΛ := Rn/Λ.

v + Λ = w + Λ ⇐⇒ v − w ∈ Λ.

MΛ is a flat torus.

It is homeomorphic to , but it is flat.



Let Λ be a lattice in Rn (i.e. Λ =
∑
αjZ for some basis {αj}j of

Rn).

MΛ := Rn/Λ.

v + Λ = w + Λ ⇐⇒ v − w ∈ Λ.

MΛ is a flat torus.

It is homeomorphic to , but it is flat.



Given a lattice Λ of Rn, we associate the dual lattice

Λ∗ := {w ∈ Rn : 〈v ,w〉 ∈ Z for all v ∈ Λ}.

v ∈ Λ∗  fv : MΛ → C since, for x ∈ Rn and w ∈ Λ,

fv (x + w) = e2πi〈x+w ,v〉 = e2πi〈x ,v〉e2πi〈w ,v〉 = fv (x).

Hence fv ∈ C∞(MΛ) ⊆ L2(MΛ), a Hilbert space with

〈f , g〉 =
1

vol(MΛ)

∫
MΛ

f (x)g(x)dx .

For v ,w ∈ Λ∗,

〈fv , fw 〉 =
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∫
MΛ

e2πi〈x ,v−w〉dx =

{
1 if v = w ,

0 if v 6= w .
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We have proven that {fv}v∈Λ∗ is an orthonormal set in L2(MΛ).

For v ∈ Λ and f ∈ C∞(MΛ), the Fourier transform:

f̂ (v) =

∫
MΛ
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The Fourier series satisfies∑
v∈Λ

f̂ (v) e2πi〈x ,v〉 = f (x).

Hence, {fv}v∈Λ∗ is an orthonormal basis of L2(MΛ) (since
C∞(MΛ) is dense in L2(MΛ)).
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Furthermore, {fv}v∈Λ∗ are eigenfunctions of ∆,

thus

Spec(MΛ) = {{4π2‖v‖2 : v ∈ Λ∗}}.

In other words, if µ ∈ R≥0, then

mult(4π2µ) = #{v ∈ Λ∗ : ‖v‖2 = µ}.
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Example: Λ = Zn

= Λ∗. For µ ∈ N0,

mult(4π2µ) = #{v ∈ Zn : ‖v‖2 = µ}
= #{(a1, . . . , an) ∈ Zn : a2

1 + · · ·+ a2
n = µ} =: rn(µ).

Compute rn(µ) is a classical problem in number theory.

r4(µ) = 8
∑
d|µ
46|d

d (Jacobi),

r2(µ) = 4
(
d1(µ)− d3(µ)

)
,

where dj(µ) = #{d : d | µ, d ≡ j (mod 4)}.
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In general (Λ∗, ‖ · ‖2) is a quadratic form.

Theorem (Milnor, 1962)

The flat tori Rn/Λ1 and Rn/Λ2 are isospectral if and only if the
quadratic forms (Λ∗1, ‖ · ‖2) and (Λ∗2, ‖ · ‖2) represent the same
numbers (with multiplicities), that is, for each µ ∈ R≥0,

#{v ∈ Λ∗1 : ‖v‖2 = µ} = #{v ∈ Λ∗2 : ‖v‖2 = µ},

if and only if ∑
v∈Λ∗1

q‖v‖
2

=: ϑΛ∗1
(q) = ϑΛ∗2

(q).

Witt in 1942 proved that the quadratic forms associated to
Λ1 = E8 ⊕ E8, Λ2 = D+

16 satisfy the above condition.
Witt used modular forms. For a simple proof, see [Conway, The
sensual quadratic form].
There were more examples, going down the dimension until 4.
It is also known that such example does not exist in dimension 3.
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§3 Lens spaces
3.1 Spectrum of Sn

Sn = {x ∈ Rn+1 :
∑n

i=0 x
2
i = 1}.

∆ = −

(
n∑

i=0

∂

∂x2
i

)
Laplacian on Rn+1.

∆S := Laplacian on Sn.

f ∈ C∞(Sn) f̂ : Rn+1 r {0} → C, x 7→ f ( x
|x |).

∆S f = (∆f̂ )|Sn (it requires a proof).

Theorem
If f is a harmonic (∆f = 0) homogeneous polynomial of degree k,
then

∆S f = k(k + n − 1)f .
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Pk := C[x0, . . . , xn](k),

Hk := {f ∈ Pk : ∆f = 0},

Theorem
∆ : Pk → Pk−2 is surjective. Moreover, Pk = Hk ⊕ r2Pk−2.

Hence

Pk = Hk ⊕ r2Pk−2 = Hk ⊕ r2(Hk−2 ⊕ r2Pk−4)

= Hk ⊕ r2Hk−2 ⊕ r4Hk−4 ⊕ · · · ⊕

{
rkH0 if n is even,

rk−1H1 if n is odd.

Thus, every polynomial restricted to Sn (r = 1) is sum of harmonic
polynomials. By Weierstrass approximation theorem, one shows
that

L2(Sn) =
⊕
k≥0

Hk (Hilbert sum).
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polynomials.

By Weierstrass approximation theorem, one shows
that

L2(Sn) =
⊕
k≥0

Hk (Hilbert sum).
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We conclude that the spectrum of Sn is:

λk := k(k + n − 1) ∈ Spec(Sn) ∀ k ≥ 0.

mult(λk) = dimHk = dimPk − dimPk−2

since Pk = Hk ⊕ r2Pk−2 ' Hk ⊕ Pk−2.

Hence

mult(λk) =

(
k + n

n

)
−
(
k − 2 + n

n

)
.
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