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» A is self-adjoint (with respect to (f, g) fM

for
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» |t commutes with isometries (i.e. A(pof) = (
every ¢ isometry of M).

» It is positive definite (i.e. (Af,f) > 0).
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We consider the eigenvalue problem
A(f) = Af.

If OM # (), we impose f = 0 on M (Dirichlet boundary
condition.)

The spectrum of A, denoted by Spec(M, g), is the multiset of
eigenvalues \ repeated according its multiplicity

(=dim{f € C®(M) : Af = \f}).
It has the form
0= X< A< < A3< - = 40o0.

It is discrete, and each eigenvalue A has finite multiplicity.
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Inverse spectral geometry studies to what extent does the
spectrum encode the geometry of (M, g).

Spectral information | = | Geometric information

Spec(M, g) .dlm(?nsmn, ?/olu.me, Furvature,
is Kahler?, is Einstein?, ...

Known spectral invariants: dimension, volume, heat invariants
(Prof. Gilkey is an expert on this matter).
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A funnier title to this course:
Can one hear the shape of a drum?
Bounded plane domain = a drum.
The frequencies of the domain are encoded by the spectrum of the
Laplace operator.
The eigenvalues are the fundamental tones.
The question must be interpreted as:

Spec(M;) = Spec(M) = M; and M, are isometric.

Definition: My and M> are called isospectral if
Spec(M;) = Spec(M>).
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There are methods to construct isospectral manifolds, without
knowing the spectrum explicitly. (Sunada method generalized by
DeTurk-Gordon, torus method, among others).

The main goal on this course is to compute the spectrum in very
simple cases.
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§1 Introduction (which is finishing now!).
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§2 Flat tori
|nR",A:—(8%+.--+8%).
veR" ~ f,:R"— C,

fV(X) — e27ri<x,v) — e271'i(x1v1+---+x,,vn).

82
(BRYX) = = 55h(x)
j J

But R” is not compact!
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Let A be a lattice in R" (i.e. A =) o;Z for some basis {a;}; of
R").

My :=R"/A.

v+FA=w+AN <— v—-—weA

My is a flat torus.

=

It is homeomorphic to 7 but it is flat.
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Given a lattice A of R”, we associate the dual lattice

Ni={weR": (v,w)eZ forall veA}

velN* ~ f,: My, — Csince, for x € R" and w € A,

fV(X + W) _ e27ri(x—|—w,v> _ e2ﬂ'i<x,v)e27ri(w,v) _ fV(X).

Hence f, € C>°(My) C L?(My), a Hilbert space with

1

(7.8) = iy ], F0E0I

For v,w € A*,

<fv, fW> — 1 / e27ri<x,v—W>dX _ 1 ifv= w,
VOI(M/\) Mp 0 if v # w.
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We have proven that {f,},ea+ is an orthonormal set in L2(Mp).

For v € A and f € C°°(M,), the Fourier transform:

~

f(v) = / f(x)e*2”i<x"’>dx = (f,f,).
M
The Fourier series satisfies

> F(v) e = f(x).

veN

Hence, {f,} en~ is an orthonormal basis of L2(Mp) (since
C>®(Mp) is dense in L2(My)).
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Example: A =2Z" = N*. For u € Np,

mult(4rn) = #{veZ":|v|* = u}
= #{(a1,..-,an) €Z": a3 + -+ a2 = p} = ra(p).

Compute rp(p) is a classical problem in number theory.

ra(p) = SZd (Jacobi),

n(n) = 4(ci(n) - ds(n)).

where dj(p) = #{d :d | pn, d =j (mod 4)}.
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In general (A*,]| - ||?) is a quadratic form.

Theorem (Milnor, 1962)

The flat tori R" /A1 and R" /N, are isospectral if and only if the
quadratic forms (A%, || - |?) and (NS, || - ||?) represent the same
numbers (with multiplicities), that is, for each p € R>o,

#{v e A lv? =} = #{v e Ay VI[P = ),

if and only if
2
> M = 9a:(q) = Vs (q).

veA]

Witt in 1942 proved that the quadratic forms associated to

N = Eg @ Eg, Ny = Dy satisfy the above condition.

Witt used modular forms. For a simple proof, see [Conway, The
sensual quadratic form|.

There were more examples, going down the dimension until 4.

It is also known that such example does not exist in dimension 3.
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Ags := Laplacian on §".

f e C®(8M) ~ f R {0} = C, x s F().
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Asf = (Af)|sn (it requires a proof).

Theorem
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Pr :=Clxo, ..., %)), He := {f € P, : Af =0},

Theorem

A : Py — Pi_o is surjective. Moreover, P = Hic ® r*Py_».
Hence

Pr = Hi®r*Pe_o = Hi ® r*(Hk—2 ® r’Pr_s)
rkHy if nis even
= He®rPHe 2 ®r*He a® - & '
, k=2 k=4 rk=1H; if nis odd.

Thus, every polynomial restricted to S” (r = 1) is sum of harmonic

polynomials. By Weierstrass approximation theorem, one shows
that

1*(S")y=EPHc  (Hilbert sum).
k>0
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