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Main Ideas

We are interested in the inverse spectral question for an orbit space
M/G where M is a compact Riemannian manifold and G a closed
subgroup of its isometry group.

The spectrum we consider on M/G is the G -invariant spectrum of
the Laplacian on M.

We generalize the Sunada-Pesce-Sutton technique to the G -invariant
setting to produce isospectral non-isometric orbit spaces.

We show that constant sectional curvature and the presence of
non-orbifold singularities are inaudible properties of the G -invariant
spectrum.
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G-invariant Sunada-Pesce-Sutton technique

Theorem (G-invariant Sunada-Pesce-Sutton technique)

Let M be a compact Riemannian manifold and G ≤ Isom(M) a compact
Lie group. Suppose H1,H2 ≤ G are closed, representation equivalent
subgroups. Then the orbit spaces M/H1 and M/H2 are isospectral in the
sense that the Hi -invariant spectra of the Laplacian on M are equivalent.

As per the Sutton generalization, the subgroups Hi ≤ G are required
to be closed, as opposed to finite or discrete.

Sutton requires the actions of the Hi on M to be free, yielding
isospectral manifolds M/Hi . The requirement that the actions be free
is not necessary in the proof and the G-invariant version follows
directly.
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Representation equivalent subgroups

Theorem (An-Yu-Yu, 2013)

Let n ≥ 3 be an odd integer and m = (n − 1)/2. Set H1 = U(n) and
H2 = Sp(m)× SO(2n − 2m). Then H1 and H2 are representation
equivalent as subgroups of SU(2n).

Note: An-Yu-Yu let these representation equivalent subgroups Hi act on
SU(2n) to produce pairs of isospectral homogeneous manifolds. They then
show via the long homotopy exact sequence that these pairs have distinct
second homotopy groups.
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Isospectral orbit spaces

We note that Hi ≤ SU(2n) ≤ Isom(S4n−1) and consider the action of the
Hi on S4n−1.

Theorem (A.-Sandoval)

For each odd integer n ≥ 3 the orbit spaces O1 = S4n−1/H1 and
O2 = S4n−1/H2 are isospectral yet non-isometric.
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Reduction of the orbit spaces

Principal isotropy reduction yields the following smooth SRF isometries
which preserve the G-invariant spectra:

O1 = S4n−1/U(n) = S7/U(2)

O2 = S4n−1/Sp(m)× SO(2n − 2m) = S7/Sp(1)× O(2)
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First Lemma

Lemma 1

The space O1 = S7/U(2) is isometric (and hence isospectral) to an
orbifold with constant sectional curvature.

Proof sketch: In [Gorodski-Lytchak, 2015] it is shown that this space is
isometric to the 3-hemisphere of constant sectional curvature 4. To show
isospectrality we prove more generally that:

Theorem (A.-Sandoval)

If M/G is isometric as a metric space to a Riemannian orbifold O then
theses spaces are isospectral, i.e. the G-invariant spectrum on M is
equivalent to the orbifold spectrum on O.

Ian Adelstein (Trinity) G-invariant spectrum 7 / 13



First Lemma

Lemma 1

The space O1 = S7/U(2) is isometric (and hence isospectral) to an
orbifold with constant sectional curvature.

Proof sketch: In [Gorodski-Lytchak, 2015] it is shown that this space is
isometric to the 3-hemisphere of constant sectional curvature 4. To show
isospectrality we prove more generally that:

Theorem (A.-Sandoval)

If M/G is isometric as a metric space to a Riemannian orbifold O then
theses spaces are isospectral, i.e. the G-invariant spectrum on M is
equivalent to the orbifold spectrum on O.

Ian Adelstein (Trinity) G-invariant spectrum 7 / 13



Properties of the orbit spaces Oi = S7/Hi

Table 1: O1 = S7/U(2)

Isotropy qcodim Points

Id 0 v1 6= z · v2
U(1) 1 v1 = z · v2

Note: v = (v1, v2) ∈ S7 ⊂ C2 ⊕ C2 and z ∈ C

Table 2: O2 = S7/Sp(1)× O(2)

Isotropy qcodim Points

Id × Id 0 v1 6= 0, v2 6= λ · v3
Id × O(1) 1 v1 6= 0, v2 = λ · v3
Sp(1)× Id 1 v1 = 0, v2 6= λ · v3
Id × O(2) 3 v1 6= 0, v2 = v3 = 0
Sp(1)× O(1) 2 v1 = 0, v2 = λ · v3

Note: v = (v1, v2, v3) ∈ S7 ⊂ C2 ⊕ C⊕ C and λ ∈ R
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Inverse spectral geometry

Theorem (A.-Sandoval)

The following properties are not determined by the G-invariant spectrum.

isotropy type

maximal isotropy dimension

quotient codimension
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Second Lemma

Lemma 2

The space O2 = S7/Sp(1)× O(2) admits a non-orbifold point and
therefore has unbounded sectional curvature.

Proof sketch: Let x ∈ S7 be a point with isotropy Id × O(2) and
y = π(x) ∈ O2. We show that the slice representation of the action at x is
non-polar. It follows from [Lytchak-Thorbergsson, 2010] that y is a
non-orbifold point and that sectional curvature is unbounded in any
neighborhood of y .
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Inverse spectral geometry

Theorem (A.-Sandoval)

The following properties are not determined by the G-invariant spectrum.

isotropy type

maximal isotropy dimension

quotient codimension

constant sectional curvature

presence of non-orbifold singularities
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Non-metric parameterization of O2 = S7/Sp(1)× O(2)
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The End
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Properties of the orbit space O2 = S7/Sp(1)× O(2)

Table 2: O2 = S7/Sp(1)× O(2)

Row Isotropy qcodim Points

A Id × Id 0 v1 6= 0, v2 6= λ · v3
B1 Id × O(1) 1 v1 6= 0, v2 = λ · v3
B2 Id × O(1) 2 v1 6= 0, v2 6= 0, v3 = 0
B3 Id × O(1) 2 v1 6= 0, v2 = 0, v3 6= 0
C Sp(1)× Id 1 v1 = 0, v2 6= λ · v3
D Id × O(2) 3 v1 6= 0, v2 = v3 = 0
E1 Sp(1)× O(1) 2 v1 = 0, v2 = λ · v3
E2 Sp(1)× O(1) 3 v1 = 0, v2 6= 0, v3 = 0
E3 Sp(1)× O(1) 3 v1 = 0, v2 = 0, v3 6= 0

Note: v = (v1, v2, v3) ∈ S7 ⊂ C2 ⊕ C⊕ C and λ ∈ R∗
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