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The Prescribed Ricci Curvature Problem

Let M be a smooth manifold.

Given a symmetric (0, 2) tensor
field T on M , can we find a Riemannian metric g on M such
that

Ric(g) = T ?

Contributors include Adriano, J. Cao, Delanoe, Delay,
DeTurck, Eberlein, Goldschmidt, Hamilton, Herzlich, Koiso,
Pieterzack, Pina, Pulemotov, Rubinstein, Tenenblat, Wallach,
Warner and Xu.
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Prescribing Ricci Curvature Locally

Let M be a smooth manifold and p ∈ M .

Given a symmetric
(0, 2) tensor field T on M , can we find a Riemannian metric g
on M such that Ric(g) = T around p?

Theorem (DeTurck 1981)
If T is non-degenerate at p ∈ M, then there exists a
Riemannian metric g such that Ric(g) = T in a
neighbourhood of p.
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Prescribing Ricci Curvature Globally

Given a symmetric (0, 2) tensor field T , can we find a
Riemannian metric g such that Ric(g) = T globally?

Theorem (DeTurck-Koiso 1984)
If T is positive-definite on a closed manifold M, then there
exists a constant c0 > 0 such that for any constant c > c0 and
any Riemannian metric g , Ric(g) 6= cT on all of M.

Theorem (DeTurck 1985)
Let T be positive-definite on a closed manifold M. If there is
an Einstein metric g0 such that the kernel of the Lichnerowicz
Laplacian is 1-dimensional, then there exists a function
λ : M → R such that Ric(g) = λT .
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Left-Invariant Riemannian Metrics

• Let G be a Lie group.

• Inner products on g = TeG generate left-invariant
Riemannian metrics via the group action.

• Ricci curvature is also left-invariant.
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Prescribing Left-Invariant Ricci Curvature

Let G be a Lie group. Given a left-invariant candidate T , can
we find a left-invariant g such that Ric(g) = T on G ?

• Milnor (1976), Ha and Lee (2009): Only certain
signatures of T are allowed in three dimensions.

• Hamilton (1984): On SO(3), if T is positive-definite,
there exists a constant c and a left-invariant Riemannian
metric g such that Ric(g) = cT . The constant c is
unique and g is unique up to scaling.

• Kremlev and Nikonorov (2008): Only certain signatures
of T are allowed in four dimensions.
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Prescribing Invariant Ricci Curvature

Let M = G/H be a homogeneous space. Given a G -invariant
candidate T , can we find a G -invariant g such that
Ric(g) = T on G/H?

Theorem (Pulemotov 2016)
If T is positive-semidefinite on a compact homogeneous space
M = G/H, with H maximal connected, we can solve
Ric(g) = cT for c and g.

If the isotropy representation of M has two inequivalent
irreducible summands, then c is unique, and g is unique up to
scaling.
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On Three-Dimensional Unimodular Lie Groups

Let G be a three-dimensional unimodular Lie group, so

G ∈ {SO(3), SL(2),E (2),E (1, 1),The Heisenberg Group, R3}.

• For every left-invariant g on G , there is a basis
{V1,V2,V3} of g in which g is diagonal and

[V2,V3] = λ1V1, [V3,V1] = λ2V2, [V1,V2] = λ3V3.

• We can impose λk ∈ {−2, 0, 2}, and the possible
signatures characterise all three-dimensional unimodular
Lie groups.
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On Three-Dimensional Unimodular Lie Groups

Theorem (TB’16)
Given a left-invariant T on G , there exists a
left-invariant g and a constant c > 0 such that
Ric(g) = cT if and only if T is diagonalisable in a
basis {V1,V2,V3} satisfying

[V2,V3] = λ1V1, [V3,V1] = λ2V2, [V1,V2] = λ3V3,

and



On Three-Dimensional Unimodular Lie Groups

Lie Group
(λ1, λ2, λ3)

Signature
of
(T1,T2,T3)

Necessary and sufficient
conditions on (T1,T2,T3)
for existence of a pair
(g , c) solving
Ric(g) = cT

Is c unique?
Is g unique
up to
scaling?

SO (3) (+,+,+) - Yes Yes
(2, 2, 2)

SL(2) (+,−,−) T3 + T1 > 0 Yes Yes
(2, 2,−2) (−,−,+) max {−T1,−T2} < T3 Yes Yes

min {−T1,−T2} < T3 Yes Yes
T3 = −T1 = −T2 Yes No

(−, 0, 0) - Yes No
E (2) (0, 0, 0) - No No
(2, 2, 0) (+,−,−) T1 + T2 > 0 Yes Yes
E (1, 1) (0, 0,−) - Yes No
(2,−2, 0) (+,−,−) T1 + T2 > 0 Yes Yes
Heisenberg
Group
(2, 0, 0)

(+,−,−) - Yes Yes

R3 (0, 0, 0) - No No
(0, 0, 0)
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exists at most one c such

that Ric(g) = cT for
some g
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