The Prescribed Ricci Curvature Problem On Three-Dimensional Unimodular Lie Groups

Timothy Buttsworth The University of Queensland

August 4, 2016

• History of the prescribed Ricci curvature problem

- History of the prescribed Ricci curvature problem
- Results on manifolds with symmetry

- History of the prescribed Ricci curvature problem
- Results on manifolds with symmetry
- On three-dimensional unimodular Lie groups

The Prescribed Ricci Curvature Problem

Let M be a smooth manifold.

The Prescribed Ricci Curvature Problem

Let M be a smooth manifold. Given a symmetric (0, 2) tensor field T on M, can we find a Riemannian metric g on M such that

$$Ric(g) = T?$$

The Prescribed Ricci Curvature Problem

Let M be a smooth manifold. Given a symmetric (0, 2) tensor field T on M, can we find a Riemannian metric g on M such that

$$Ric(g) = T?$$

Contributors include Adriano, J. Cao, Delanoe, Delay, DeTurck, Eberlein, Goldschmidt, Hamilton, Herzlich, Koiso, Pieterzack, Pina, Pulemotov, Rubinstein, Tenenblat, Wallach, Warner and Xu.

Prescribing Ricci Curvature Locally

Let M be a smooth manifold and $p \in M$.

Prescribing Ricci Curvature Locally

Let *M* be a smooth manifold and $p \in M$. Given a symmetric (0, 2) tensor field *T* on *M*, can we find a Riemannian metric *g* on *M* such that Ric(g) = T around *p*?

Prescribing Ricci Curvature Locally

Let *M* be a smooth manifold and $p \in M$. Given a symmetric (0, 2) tensor field *T* on *M*, can we find a Riemannian metric *g* on *M* such that Ric(g) = T around *p*?

Theorem (DeTurck 1981)

If T is non-degenerate at $p \in M$, then there exists a Riemannian metric g such that Ric(g) = T in a neighbourhood of p.

Prescribing Ricci Curvature Globally

Given a symmetric (0, 2) tensor field T, can we find a Riemannian metric g such that Ric(g) = T globally?

Prescribing Ricci Curvature Globally

Given a symmetric (0, 2) tensor field T, can we find a Riemannian metric g such that Ric(g) = T globally?

Theorem (DeTurck-Koiso 1984)

If T is positive-definite on a closed manifold M, then there exists a constant $c_0 > 0$ such that for any constant $c > c_0$ and any Riemannian metric g, $Ric(g) \neq cT$ on all of M.

Prescribing Ricci Curvature Globally

Given a symmetric (0, 2) tensor field T, can we find a Riemannian metric g such that Ric(g) = T globally?

Theorem (DeTurck-Koiso 1984)

If T is positive-definite on a closed manifold M, then there exists a constant $c_0 > 0$ such that for any constant $c > c_0$ and any Riemannian metric g, $Ric(g) \neq cT$ on all of M.

Theorem (DeTurck 1985)

Let T be positive-definite on a closed manifold M. If there is an Einstein metric g_0 such that the kernel of the Lichnerowicz Laplacian is 1-dimensional, then there exists a function $\lambda : M \to \mathbb{R}$ such that $Ric(g) = \lambda T$.

Left-Invariant Riemannian Metrics

• Let G be a Lie group.

Left-Invariant Riemannian Metrics

- Let G be a Lie group.
- Inner products on $\mathfrak{g} = T_e G$ generate left-invariant Riemannian metrics via the group action.

Left-Invariant Riemannian Metrics

- Let G be a Lie group.
- Inner products on $\mathfrak{g} = T_e G$ generate left-invariant Riemannian metrics via the group action.
- Ricci curvature is also left-invariant.

Let G be a Lie group. Given a left-invariant candidate T, can we find a left-invariant g such that Ric(g) = T on G?

Let G be a Lie group. Given a left-invariant candidate T, can we find a left-invariant g such that Ric(g) = T on G?

• Milnor (1976), Ha and Lee (2009): Only certain signatures of T are allowed in three dimensions.

Let G be a Lie group. Given a left-invariant candidate T, can we find a left-invariant g such that Ric(g) = T on G?

- Milnor (1976), Ha and Lee (2009): Only certain signatures of T are allowed in three dimensions.
- Hamilton (1984): On SO(3), if T is positive-definite, there exists a constant c and a left-invariant Riemannian metric g such that Ric(g) = cT. The constant c is unique and g is unique up to scaling.

Let G be a Lie group. Given a left-invariant candidate T, can we find a left-invariant g such that Ric(g) = T on G?

- Milnor (1976), Ha and Lee (2009): Only certain signatures of *T* are allowed in three dimensions.
- Hamilton (1984): On SO(3), if T is positive-definite, there exists a constant c and a left-invariant Riemannian metric g such that Ric(g) = cT. The constant c is unique and g is unique up to scaling.
- Kremlev and Nikonorov (2008): Only certain signatures of T are allowed in four dimensions.

Let M = G/H be a homogeneous space. Given a G-invariant candidate T, can we find a G-invariant g such that Ric(g) = T on G/H?

Let M = G/H be a homogeneous space. Given a *G*-invariant candidate *T*, can we find a *G*-invariant *g* such that Ric(g) = T on G/H?

Theorem (Pulemotov 2016)

If T is positive-semidefinite on a compact homogeneous space M = G/H, with H maximal connected, we can solve Ric(g) = cT for c and g.

Let M = G/H be a homogeneous space. Given a *G*-invariant candidate *T*, can we find a *G*-invariant *g* such that Ric(g) = T on G/H?

Theorem (Pulemotov 2016)

If T is positive-semidefinite on a compact homogeneous space M = G/H, with H maximal connected, we can solve Ric(g) = cT for c and g.

If the isotropy representation of M has two inequivalent irreducible summands, then c is unique, and g is unique up to scaling.

Let G be a three-dimensional unimodular Lie group, so

 $G \in \{SO(3), SL(2), E(2), E(1, 1), \text{The Heisenberg Group}, \mathbb{R}^3\}.$

Let G be a three-dimensional unimodular Lie group, so

 $G \in \{SO(3), SL(2), E(2), E(1, 1), \text{The Heisenberg Group}, \mathbb{R}^3\}.$

• For every left-invariant g on G, there is a basis $\{V_1, V_2, V_3\}$ of \mathfrak{g} in which g is diagonal and

 $[V_2, V_3] = \lambda_1 V_1, \qquad [V_3, V_1] = \lambda_2 V_2, \qquad [V_1, V_2] = \lambda_3 V_3.$

Let G be a three-dimensional unimodular Lie group, so

 $G \in \{SO(3), SL(2), E(2), E(1, 1), \text{The Heisenberg Group}, \mathbb{R}^3\}.$

• For every left-invariant g on G, there is a basis $\{V_1, V_2, V_3\}$ of \mathfrak{g} in which g is diagonal and

 $[V_2, V_3] = \lambda_1 V_1, \qquad [V_3, V_1] = \lambda_2 V_2, \qquad [V_1, V_2] = \lambda_3 V_3.$

 We can impose λ_k ∈ {-2,0,2}, and the possible signatures characterise all three-dimensional unimodular Lie groups.

Theorem (TB'16)

Given a left-invariant T on G, there exists a left-invariant g and a constant c > 0 such that Ric(g) = cT if and only if T is diagonalisable in a basis $\{V_1, V_2, V_3\}$ satisfying

$$[V_2, V_3] = \lambda_1 V_1, \qquad [V_3, V_1] = \lambda_2 V_2, \qquad [V_1, V_2] = \lambda_3 V_3,$$

and

Lie Group $(\lambda_1,\lambda_2,\lambda_3)$	Signature of (T_1, T_2, T_3)	Necessary and sufficient conditions on (T_1, T_2, T_3) for existence of a pair (g, c) solving Ric(g) = cT	ls c unique?	ls g unique up to scaling?
<i>SO</i> (3)	(+, +, +)	-	Yes	Yes
(2, 2, 2)				

\mathbb{R}^3	(0, 0, 0)	-	No	No
(0,0,0)				

Lie Group $(\lambda_1,\lambda_2,\lambda_3)$	Signature of (T ₁ , T ₂ , T ₃)	Necessary and sufficient conditions on (T_1, T_2, T_3) for existence of a pair (g, c) solving Ric(g) = cT	ls c unique?	ls g unique up to scaling?
<i>SO</i> (3)	(+, +, +)	-	Yes	Yes
(2, 2, 2)	(+, 0, 0)	-	Yes	No
	(+, -, -)	Technical	No	Yes
SL(2)	(+, -, -)	$T_3 + T_1 > 0$	Yes	Yes
(2, 2, -2)	(-, -, +)	$\max\{-T_1, -T_2\} < T_3$	Yes	Yes
		$\min\{-T_1, -T_2\} > T_3$	Yes	Yes
		$T_3 = -T_1 = -T_2$	Yes	No
	(-, 0, 0)	-	Yes	No
E (2)	(0,0,0)	-	No	No
(2, 2, 0)	(+, -, -)	$T_1 + T_2 > 0$	Yes	Yes
E(1,1)	(0, 0, -)	-	Yes	No
(2, -2, 0)	(+, -, -)	$T_1 + T_2 > 0$	Yes	Yes
Heisenberg				
Group	(+, -, -)	-	Yes	Yes
(2,0,0)				
\mathbb{R}^3	(0,0,0)	-	No	No
(0, 0, 0)				

Lie Group $(\lambda_1,\lambda_2,\lambda_3)$		ls c unique?	ls g unique up to scaling?
<i>SO</i> (3)		Yes	Yes
(2, 2, 2)		Yes	No
	In almost all assas there	No	Yes
<i>SL</i> (2)	In almost all cases, there	Yes	Yes
(2, 2, -2)	exists at most one <i>c</i> such	Yes	Yes
	that $Pic(x) = cT$ for	Yes	Yes
	that $Ric(g) = cT$ for	Yes	No
	some g	Yes	No
E (2)	8	No	No
(2, 2, 0)		Yes	Yes
E(1,1)		Yes	No
(2, -2, 0)		Yes	Yes
Heisenberg			
Group		Yes	Yes
(2, 0, 0)			
\mathbb{R}^3		No	No
(0,0,0)			