Spinorial equations for special geometries

SIMON G. CHIOSSI

Universidade Federal Fluminense

http://calvino.polito.it/~chiossi/seminars.html

3/8/16 @ EGEO2016

based on *I.Agricola, SGC, T.Friedrich, J.Höll,* JGP 2015 & work with *S.Salamon*

(para Sergio)

traditional framework

 (M^n, g) Riemannian manifold

• $\phi \in \Lambda^*M$ with open orbit and stabiliser $G \subseteq SO(n)$

• $\nabla \phi \in T^*M \otimes \frac{\mathfrak{so}(n)}{\mathfrak{g}} = W_1 \oplus \ldots \oplus W_N$ is often determined

by the deRham complex ($d\phi$ and the like)

Example:
$$\begin{array}{c|c} n & \phi & G & N \\ \hline 2m & \omega \in \Lambda^2, \xi \in \Lambda^{3,0} & SU(m) & 7 \end{array}$$

Gives rise to classes of almost Hermitian geometry, eg

$ abla \phi \in W_3 \oplus W_4 \oplus W_5$	\iff	Hermitian
$ abla \phi \in W_2 \oplus W_5$	\iff	almost Kähler
$ abla \phi \in W_1 \oplus W_2 \oplus W_3$	\iff	1/2 flat
$ abla \phi \in W_1$	\iff	nearly Kähler

This also applies to G = U(m), Sp(k), G_2 , Spin(7), Sp(k)Sp(1) etc...

taking sides

As 'spin geometry' is usually relegated to doctoral courses, if offered at all, I ask:

Should spinors

REMAIN members of Riem Geometry or LEAVE Riem Geometry?

remain camp

- Weyl, Atiyah
- Milnor, Connes
- Dirac, Schrödinger, Witten

leave camp - Cartan - ...

• • • • • • •

The outcome is not straightforward, given recent in/out decisions:

I advocate decisively for 'remain' (and conquer)

a tasting

- [Atiyah-Singer] index theorem & al.
- [Witten] positive mass thm (cf. Yamabe solution)
- in low dimensions strong relationship to special metrics, for

 $\begin{array}{ll} Spin(3)/\mathbb{Z}_2 = SO(3) & \text{chirality} \\ Spin(4) = SU(2)^2 & \text{self-duality} \\ Spin(5) = Sp(2) & & \\ Spin(6) = SU(4) & (\text{the focus of this talk}) \\ Spin(7) & \text{much related to } G_2, Sp(2)Sp(1) \\ Spin(8) & & \\ \end{array}$

- [Seiberg-Witten, Donaldson] invariants in dimension 4
- if there is a parallel spinor, the metric is Ricci-flat (holonomy principle)
- [Friedrich, Grunewald, Hijazi, Kath] $\nabla_X \phi = \lambda X \cdot \phi \iff$

n	3,4	5	6	7	8
M ⁿ	S^n	Sasaki-Einstein	nearly Kähler	weak G_2	S^8

dim 6

- (Half-)spin representation $Spin(6) \longrightarrow SU(\Sigma), \quad \Sigma = \mathbb{C}^4$
- *Spin*(6)-invariant complex structure $\phi = e_1 \cdot \ldots \cdot e_6 \cdot \phi$
- Spin bundle $\mathbb{S} = P \times_{Spin(6)} (\Sigma \oplus \overline{\Sigma}), \qquad P/\mathbb{Z}_2 = ON \text{ frames}$

Spinors $\phi \in \Sigma$ rise from *quadratic relations*:

$$\Sigma = span\{\phi^0, \phi^1, \phi^2, \phi^3\}$$
 $\dim_{\mathbb{C}} \Lambda^2 \Sigma = 6$

so

$$e^{1} + ie^{2} = \phi^{0} \wedge \phi^{1} \qquad e^{3} + ie^{4} = \phi^{0} \wedge \phi^{2} \qquad e^{5} + ie^{6} = \phi^{0} \wedge \phi^{3} \\ e^{1} - ie^{2} = \phi^{2} \wedge \phi^{3} \qquad e^{3} - ie^{4} = \phi^{3} \wedge \phi^{1} \qquad e^{5} - ie^{6} = \phi^{1} \wedge \phi^{2}$$

is a basis of 1-forms: $(T^*M)^{\mathbb{C}} \cong \Lambda^2 \Sigma$

•
$$(\Sigma \oplus \overline{\Sigma})^{\otimes 2} = \underbrace{\mathbb{C}}_{g(e_i, e_j) = e^i \land e^j \phi^{0123}} \oplus T^*_{\mathbb{C}} \oplus \Lambda^2 T^*_{\mathbb{C}} \oplus \underbrace{\Lambda^3 T^*_{\mathbb{C}}}_{S^2 \Sigma \oplus S^2 \overline{\Sigma}} \oplus \dots$$

parameter spaces

New definition: an *SU*(3) manifold is a spin (M^6 , g, ϕ) with $||\phi|| = 1$

• real spinors $\mathbb{R}\phi \iff SU(3)$ structures (J, ξ) $\mathbb{RP}^7 \cong \frac{SO(6)}{SU(3)}$

given by

$$\begin{cases} J(X) \cdot \phi := \overline{X \cdot \phi} \\ \xi(X, Y, Z) := -\langle X \cdot Y \cdot Z \cdot \phi, \phi \rangle \end{cases}$$

• complex spinors $\mathbb{C}\phi = \ell \iff \text{almost complex structures } J$ $\mathbb{CP}^3 \cong \frac{SU(4)}{S(U(3) \times U(1))} = \frac{SO(6)}{U(3)}$

given by

$$\left\{ \begin{array}{ll} \Lambda^{1,0} \ := \ \ell \wedge \ell^{\perp} & (\alpha \text{-planes in Klein quadric } \mathbb{CP}^5) \\ \Lambda^{0,1} \ := \ \Lambda^2 \ell^{\perp} & (\beta \text{-planes}) \end{array} \right.$$

square roots

Fibration (determinant) governing everything:

 $\begin{array}{rcl} \mathbb{RP}^7 & \stackrel{S^1}{\longrightarrow} & \mathbb{CP}^3 \\ \mathbb{R}\phi & \longmapsto & \mathbb{C}\phi = \mathbb{R}\phi \oplus \mathbb{R}\overline{\phi} \end{array}$

 $\Lambda^{3,0} = \ell^2$ means that a complex spinor $\ell = \mathbb{C}\phi$ is the square root of a holomorphic 3-form, a fact used by Hitchin to show that a Kähler M^6 is spin iff K_M has a square root

As always, physicists knew already about $\sqrt{}$:

$$\begin{split} i\,\hbar\,\frac{\partial}{\partial t} &= \sqrt{c^2\,\hbar^2\,\Delta + m^2 c^4} \quad \rightsquigarrow \qquad D &= \sqrt{\Delta + s/4} \\ & \text{[Dirac]} \qquad \qquad \text{[Schrödinger-Lichnerowicz]} \end{split}$$

where $D: \Sigma \xrightarrow{\nabla} T \otimes \Sigma = \Lambda^2 \Sigma \otimes \Sigma \xrightarrow{\wedge} \Lambda^3 \Sigma \cong \overline{\Sigma}$ is the Dirac operator

simpler & more uniform

$$\Sigma \cong \mathbb{R}^8 = \mathbb{R}\phi \oplus \mathbb{R}\overline{\phi} \oplus \mathit{TM}^6 \!\cdot\! \phi$$

Lemma: $\nabla \phi = \eta \otimes \overline{\phi} + A \otimes \phi$, with $\eta \in \Lambda^1$, $A \in End(TM)$

Theorem: the geometry of the *SU*(3) mfd (M^6, g, ϕ) is determined by the tensor $A \,\lrcorner\, \xi - \frac{2}{3} \,\eta \otimes \omega$

 \rightarrow all almost Hermitian types described by spinorial eqn's (2⁷)

Examples:

half-flatness:

 $d(\operatorname{Re} \xi) = 0$ $d(\omega^2) = 0$ 2 eqns, 2 unknowns

nearly Kähler:

$$d(\operatorname{Re} \xi) = \omega^2$$
 $d\omega = \operatorname{Im} \xi$
2 eqns, 3 unknowns

 $abla_X \phi = A(X) \cdot \phi \quad \forall X$ 1 eqn, 1 unknown

$$\nabla_X \phi = \lambda X \cdot \phi \quad \forall X$$
1 eqn, 1 unknown
$$\langle \Box \rangle \cdot \langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Box \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box$$

8/13

spin Hodge

Harmonic spinors $\mathcal{H}(\mathbb{S}) = \mathsf{Ker}(D: \Sigma \to \overline{\Sigma})$

depend on the choice of metric (yet, how?) and little control on dim $\mathcal{H}(\mathbb{S})$

Theorem:

•
$$\mathbf{D} \phi = \mathbf{0} \iff \star d(\star \omega) + 2\eta = \mathbf{0}$$
 $(\eta \neq \mathbf{0}, \ \mathbf{A} \neq \mathbf{c} \mathbf{J})$

• 'complementary' components W_1 , $W_{\overline{1}}$ of $\nabla \phi$ determined by

$$\langle \mathbf{D} \phi, \overline{\phi} \rangle = -tr(JA), \quad \langle \mathbf{D} \phi, \phi \rangle = -tr(A)$$

Example: $M^6 = SL(2, \mathbb{C}) = \frac{SL(2, \mathbb{C}) \times SU(2)}{SU(2)_{\text{diag}}} = G/H$ (reductive)

$$\mathfrak{g} = \mathfrak{h} \oplus \{ (A, B) \mid A = \overline{A}^t, \ tr A = 0, \ B = -\overline{B}^t, \ tr B = 0 \}$$

The spinor determined by J(A, B) = (iA, iB) and $\eta = 0$ is harmonic. (here, as happens often, $\phi \in \text{Ker } D \iff \text{the } SU(3)$ class is W_3)

examples - twistor spaces

The twistor spaces of self-dual Einstein 4-manifolds

$$\frac{SO(5)}{U(2)} \longrightarrow S^4, \qquad \frac{U(3)}{U(1) \times U(1) \times U(1)} \longrightarrow \mathbb{CP}^2$$

carry a family g_t of metrics with $scal(g_t) = 2c(6 - t + 1/t)$

[Hitchin, Friedrich-Kurke] *g*₁ is Kähler

[Eells-Salamon, Friedrich] $g_{1/2}$ is nearly Kähler, induced by $\phi_\epsilon~(\epsilon=\pm 1)$

Theorem:

• For
$$t \neq 0$$
 let $A_{\epsilon} = \epsilon \operatorname{diag}\left(\frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{\sqrt{t}}{2}, \frac{1-t}{2\sqrt{t}}, \frac{1-t}{2\sqrt{t}}\right)$. Then
 $\nabla_X \phi_{\epsilon} = A_{\epsilon}(X) \cdot \phi_{\epsilon}$

(except when t = 1/2: type $W_{\overline{12}}$ and $D \phi_{\epsilon} = \epsilon \sqrt{c} \frac{t+1}{\sqrt{t}} \phi_{\epsilon}$)

• For t = 1: ϕ_{ϵ} are Kählerian KS, don't define a compatible *SU*(3) structure

G₂ story

Similar picture, same recipe:

- (M^7, Φ) G_2 manifold \longleftrightarrow (M^7, g, ϕ) spin with $||\phi|| = 1$
- $\Phi(X, Y, Z) = \langle X \cdot Y \cdot Z \cdot \phi, \phi \rangle$ expressing $SO(7)/G_2 \cong \mathbb{RP}^7$
- $\bullet \ \Sigma = \mathbb{R}^8 \ = \ \mathbb{R} \phi \ \oplus \ \textit{TM}^7 \cdot \phi \quad \text{real}$

(here no conjugation, but still the same dim as the Σ on p.8)

Propⁿ: $\nabla_X \phi = A(X) \cdot \phi$, and the fundamental tensor is $-\frac{2}{3}A \lrcorner \Phi$

Theorem: ϕ is harmonic iff the G_2 structure is of class W_{23} .

Manifest power of spin approach

 $(\overline{V} = \mathbb{R}^7, \Phi)$ induces *SU*(3) structure on any hypersurface $V = \vec{n}^{\perp}$:

– (usually) restrict $\Phi_{|_V}$, so that $\vec{n} \, \neg \, \Phi$ defines a complex str on V

– (much simpler) both structures, on \overline{V} and V, correspond to the same choice of real spinor $\phi \in \Sigma$.

hypersurface theory

[Friedrich] $M^2 \hookrightarrow \mathbb{R}^3$ isometric: $D \phi = H \phi \iff \nabla_X \phi = \frac{1}{2} \alpha(X) \cdot \phi$ \rightsquigarrow example of Killing spinor: $\nabla_X \phi = \lambda X \cdot \phi$

For $M^6 \hookrightarrow Y^7$ the best 'app' are *generalised* Killing spinors:

$$\overline{\nabla}_{X}\phi = A(X) \cdot \phi$$

We are at freedom to choose $A \in \text{Sym}^2 TM$ (Weingarten map) and the metric connection with skew torsion $\overline{\nabla} = \nabla + 2s \mathcal{T}$, where $\mathcal{T} \in \Lambda^3$ (torsion), $s \in \mathbb{R}$ (parameter). Thus we can control the reduction process (from 7 to 6 dims) and the oxidation (from 6 to 7). As an application

Theorem (*spin cones*): $(M^6, g, \phi), h : I \to S^1, f : I \to \mathbb{R}_+$ smooth. Then $(M^6 \times I, f(t)^2 g + dt^2)$ has a family of G_2 structures $\widetilde{\phi}_t = (\operatorname{Re} h)\phi + (\operatorname{Im} h)\overline{\phi}.$

This subsumes

- holonomy cones [Bär]
- f(t) = t straight spin cone [Agricola-Höll]

• $f = \sin, h(t) = e^{it/2}, A = \frac{1}{2}$ Id 'sine' cone [Acharya & al.]

memento: 2 appointments

Rio, 1-2 Sept 2016

"Geometric structures, Lie theory and applications"

http://www.sbm.org.br/jointmeeting-italy/special-sessions/

http://jovens.ime.unicamp.br