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traditional framework

(Mn,g) Riemannian manifold
• φ ∈ Λ∗M with open orbit and stabiliser G ⊆ SO(n)

• ∇φ ∈ T ∗M ⊗ so(n)

g
= W1 ⊕ . . .⊕WN is often determined

by the deRham complex (dφ and the like)

Example:
n φ G N

2m ω ∈ Λ2, ξ ∈ Λ3,0 SU(m) 7
Gives rise to classes of almost Hermitian geometry, eg

∇φ ∈ W3 ⊕W4 ⊕W5 ⇐⇒ Hermitian
∇φ ∈ W2 ⊕W5 ⇐⇒ almost Kähler

∇φ ∈ W1 ⊕W2 ⊕W3 ⇐⇒ 1/2 flat
∇φ ∈ W1 ⇐⇒ nearly Kähler

This also applies to G = U(m),Sp(k),G2,Spin(7),Sp(k)Sp(1) etc. . .
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taking sides
As ‘spin geometry’ is usually relegated to doctoral courses, if offered
at all, I ask:

Should spinors
REMAIN members of Riem Geometry or LEAVE Riem Geometry?

remain camp
- Weyl, Atiyah
- Milnor, Connes
- Dirac, Schrödinger, Witten

leave camp
- Cartan
- . . .
- . . .

The outcome is not straightforward, given recent in/out decisions:

(Rouxit) (Brexit) (Mexit)

I advocate decisively for ‘remain’ (and conquer)
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a tasting
• [Atiyah-Singer] index theorem & al.

• [Witten] positive mass thm (cf. Yamabe solution)

• in low dimensions strong relationship to special metrics, for
Spin(3)/Z2 = SO(3) chirality
Spin(4) = SU(2)2 self-duality
Spin(5) = Sp(2)
Spin(6) = SU(4) (the focus of this talk)
Spin(7) much related to G2,Sp(2)Sp(1)
Spin(8) triality

• [Seiberg-Witten, Donaldson] invariants in dimension 4

• if there is a parallel spinor, the metric is Ricci-flat (holonomy
principle)

• [Friedrich, Grunewald, Hijazi, Kath] ∇Xφ = λX ·φ ⇐⇒
n 3, 4 5 6 7 8
Mn Sn Sasaki-Einstein nearly Kähler weak G2 S8
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dim 6
• (Half-)spin representation Spin(6) −→ SU(Σ), Σ = C4

• Spin(6)-invariant complex structure φ = e1 · . . . · e6 · φ
• Spin bundle S = P ×Spin(6) (Σ⊕ Σ), P/Z2 = ON frames

Spinors φ ∈ Σ rise from quadratic relations:

Σ = span{φ0, φ1, φ2, φ3} dimC Λ2Σ = 6
so

e1 + ie2 = φ0 ∧ φ1 e3 + ie4 = φ0 ∧ φ2 e5 + ie6 = φ0 ∧ φ3

e1 − ie2 = φ2 ∧ φ3 e3 − ie4 = φ3 ∧ φ1 e5 − ie6 = φ1 ∧ φ2

is a basis of 1-forms: (T ∗M)C ∼= Λ2Σ

• (Σ⊕ Σ)⊗2 = C︸︷︷︸
g(ei ,ej )=ei∧ejφ0123

⊕T ∗C ⊕ Λ2T ∗C ⊕ Λ3T ∗C︸ ︷︷ ︸
S2Σ⊕S2Σ

⊕ . . .
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parameter spaces
New definition: an SU(3) manifold is a spin (M6,g, φ) with ||φ|| = 1

• real spinors Rφ ←→ SU(3) structures (J, ξ)

RP7 ∼=
SO(6)

SU(3)
given by {

J(X )·φ := X ·φ
ξ(X ,Y ,Z ) := −〈X ·Y ·Z ·φ, φ〉

• complex spinors Cφ = ` ←→ almost complex structures J

CP3 ∼=
SU(4)

S(U(3)×U(1))
=

SO(6)

U(3)
given by {

Λ1,0 := ` ∧ `⊥ (α-planes in Klein quadric CP5)

Λ0,1 := Λ2`⊥ (β-planes)
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square roots
Fibration (determinant) governing everything:

RP7 S1

−→ CP3

Rφ 7−→ Cφ = Rφ⊕ Rφ

Λ3,0 = `2 means that a complex spinor ` = Cφ is the square root of a
holomorphic 3-form, a fact used by Hitchin to show that a Kähler M6

is spin iff KM has a square root

As always, physicists knew already about
√

:

i } ∂
∂t =

√
c2 }2 ∆ + m2c4  D =

√
∆ + s/4

[Dirac] [Schrödinger-Lichnerowicz]

where D : Σ
∇−→ T ⊗ Σ = Λ2Σ⊗ Σ

∧−→ Λ3Σ ∼= Σ is the Dirac
operator
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simpler & more uniform

Σ ∼= R8 = Rφ⊕ Rφ⊕ TM6 ·φ

Lemma: ∇φ = η ⊗ φ+ A⊗ φ, with η ∈ Λ1, A ∈ End (TM)

Theorem: the geometry of the SU(3) mfd (M6,g, φ) is determined by

the tensor A y ξ − 2
3
η ⊗ ω

 all almost Hermitian types described by spinorial eqn’s (27)

Examples:

• half-flatness:

d(Re ξ) = 0 d(ω2) = 0
2 eqns, 2 unknowns

⇐⇒
∇Xφ = A(X ) · φ ∀X

1 eqn, 1 unknown

• nearly Kähler:

d(Re ξ) = ω2 dω = Im ξ

2 eqns, 3 unknowns
⇐⇒

∇Xφ = λX · φ ∀X
1 eqn, 1 unknown
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spin Hodge

Harmonic spinors H(S) = Ker(D : Σ→ Σ)

depend on the choice of metric (yet, how?) and little control on dimH(S)

Theorem:
• Dφ = 0 ⇐⇒ ?d(?ω) + 2η = 0 (η 6= 0, A 6= c J)

• ‘complementary’ components W1,W1̄ of ∇φ determined by
〈Dφ, φ〉 = −tr (JA), 〈Dφ, φ〉 = −tr (A)

Example: M6 = SL(2,C) =
SL(2,C)× SU(2)

SU(2)diag
= G/H (reductive)

g = h⊕ {(A,B) | A = A
t
, tr A = 0, B = −B

t
, tr B = 0}

The spinor determined by J(A,B) = (iA, iB) and η = 0 is harmonic.

(here, as happens often, φ ∈ Ker D ⇐⇒ the SU(3) class is W3)
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examples – twistor spaces
The twistor spaces of self-dual Einstein 4-manifolds

SO(5)

U(2)
−→ S4,

U(3)

U(1)×U(1)×U(1)
−→ CP2

carry a family gt of metrics with scal (gt ) = 2c(6− t + 1/t)
[Hitchin, Friedrich-Kurke] g1 is Kähler

[Eells-Salamon, Friedrich] g1/2 is nearly Kähler, induced by φε (ε = ±1)

Theorem:
• For t 6= 0 let Aε = εdiag

(√
t

2 ,
√

t
2 ,
√

t
2 ,
√

t
2 ,

1−t
2
√

t
, 1−t

2
√

t

)
. Then

∇Xφε = Aε(X )·φε
(except when t = 1/2: type W 1 2 and Dφε = ε

√
c t+1√

t
φε )

• For t = 1: φε are Kählerian KS, don’t define a compatible SU(3)
structure
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G2 story

Similar picture, same recipe:
• (M7,Φ) G2 manifold ←→ (M7,g, φ) spin with ||φ|| = 1
• Φ(X ,Y ,Z ) = 〈X · Y · Z · φ, φ〉 expressing SO(7)/G2 ∼= RP7

• Σ = R8 = Rφ ⊕ TM7 · φ real
(here no conjugation, but still the same dim as the Σ on p.8)

Propn: ∇Xφ = A(X ) · φ, and the fundamental tensor is −2
3

A yΦ

Theorem: φ is harmonic iff the G2 structure is of class W23.

Manifest power of spin approach
(V = R7,Φ) induces SU(3) structure on any hypersurface V = ~n⊥:
– (usually) restrict Φ


V

, so that ~n yΦ defines a complex str on V

– (much simpler) both structures, on V and V , correspond to the
same choice of real spinor φ ∈ Σ.
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hypersurface theory
[Friedrich] M2 ↪→ R3 isometric: Dφ = Hφ ⇐⇒ ∇Xφ = 1

2α(X )·φ
 example of Killing spinor: ∇Xφ = λX ·φ

For M6 ↪→ Y 7 the best ‘app’ are generalised Killing spinors:
∇Xφ = A(X )·φ

We are at freedom to choose A ∈ Sym2TM (Weingarten map) and the
metric connection with skew torsion ∇ = ∇+ 2s T , where T ∈ Λ3

(torsion), s ∈ R (parameter). Thus we can control the reduction process
(from 7 to 6 dims) and the oxidation (from 6 to 7). As an application

Theorem (spin cones): (M6,g, φ), h : I → S1, f : I → R+ smooth.
Then ( M6 × I , f (t)2g + dt2 ) has a family of G2 structures

φ̃t = (Re h)φ+ (Im h)φ.

This subsumes
• holonomy cones [Bär]
• f (t) = t straight spin cone [Agricola-Höll]

• f = sin, h(t) = eit/2, A = 1
2 Id ‘sine’ cone [Acharya & al.]
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memento: 2 appointments

Rio, 1–2 Sept 2016
“Geometric structures,

Lie theory
and applications”

http://www.sbm.org.br/jointmeeting-italy/special-sessions/

Campinas, 5–7 Dec 2016

“Trends in geometry
and topology”

http://jovens.ime.unicamp.br
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