

Positive Ricci curvature and cohomogeneity-two torus actions

EGEO2016, VI Workshop in Differential Geometry, La Falda, Argentina Fernando Galaz-García | August 2, 2016

KIT, INSTITUT FÜR ALGEBRA UND GEOMETRIE

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

1

(日) (周) (王) (王)

Motivation

Problem

Construct Riemannian manifolds satisfying given geometric properties.

Possible approach:

- M a compact smooth manifold (without boundary),
- G a compact connected Lie group acting effectively on M,
- g a G-invariant Riemannian metric.

Question: When does a closed *G*-manifold admit an invariant Riemannian metric with positive Ricci curvature?

Motivation and background

Cohomogeneity two torus actions

Outline of the proof

Fernando Galaz-García – Positive Ricci Curvature

August 2, 2016 2/12

Motivation

Problem

Construct Riemannian manifolds satisfying given geometric properties.

Possible approach:

- M a compact smooth manifold (without boundary),
- G a compact connected Lie group acting effectively on M,
- g a *G*-invariant Riemannian metric.

Question: When does a closed *G*-manifold admit an invariant Riemannian metric with positive Ricci curvature?

Motivation and background

Outline of the proof

Fernando Galaz-García – Positive Ricci Curvature

August 2, 2016 2/12

Motivation

Problem

Construct Riemannian manifolds satisfying given geometric properties.

Possible approach:

- *M* a compact smooth manifold (without boundary),
- G a compact connected Lie group acting effectively on M,
- g a *G*-invariant Riemannian metric.

Question: When does a closed *G*-manifold admit an invariant Riemannian metric with positive Ricci curvature?

Motivation and background

Cohomogeneity two torus actions

Outline of the proof

Fernando Galaz-García - Positive Ricci Curvature

August 2, 2016 2/12

The **cohomogeneity** of an action is the dimension of its orbit space.

Positive Ricci curvature on homogeneous spaces and cohomogeneity one manifolds

- Berestovskii (1995): *M* = *G*/*H* admits an invariant metric of positive Ricci curvature if and only if |π₁(*M*)| < ∞.</p>
- Grove, Ziller (2002): *M* of cohomogeneity one admits an invariant metric of positive Ricci curvature if and only if |π₁(M)| < ∞.</p>

Motivation and background

Outline of the proof

nan

Fernando Galaz-García - Positive Ricci Curvature

August 2, 2016 3/12

(日)

The **cohomogeneity** of an action is the dimension of its orbit space.

Positive Ricci curvature on homogeneous spaces and cohomogeneity one manifolds

Berestovskii (1995): *M* = *G*/*H* admits an invariant metric of positive Ricci curvature if and only if |*π*₁(*M*)| < ∞.</p>

Grove, Ziller (2002): *M* of cohomogeneity one admits an invariant metric of positive Ricci curvature if and only if |π₁(M)| < ∞.</p>

Motivation and background

Outline of the proof

Fernando Galaz-García – Positive Ricci Curvature

August 2, 2016 3/12

Positive Ricci curvature and cohomogeneity two

- Searle, Wilhelm (2015): *M* of cohomogeneity two. If the fundamental group of a principal orbit is finite and the orbit space has positive Ricci curvature, then *M* admits an invariant metric of positive Ricci curvature.
- Bazaikin, Matvienko (2007): Every compact, simply connected 4-manifold with an effective action of T² admits an invariant metric of positive Ricci curvature.

Remark: Every compact, simply connected 4-manifold with an effective action of T^2 is equivariantly diffeomorphic to a connected sum of copies of S^4 , $\pm CP^2$ or $S^2 \times S^2$ (Orlik, Raymond 1970).

Motivation and background

Cohomogeneity two torus actions

Outline of the proof

Fernando Galaz-García – Positive Ricci Curvature

August 2, 2016 4/12

Positive Ricci curvature and cohomogeneity two

- Searle, Wilhelm (2015): *M* of cohomogeneity two. If the fundamental group of a principal orbit is finite and the orbit space has positive Ricci curvature, then *M* admits an invariant metric of positive Ricci curvature.
- Bazaikin, Matvienko (2007): Every compact, simply connected 4-manifold with an effective action of T² admits an invariant metric of positive Ricci curvature.

Remark: Every compact, simply connected 4-manifold with an effective action of T^2 is equivariantly diffeomorphic to a connected sum of copies of S^4 , $\pm CP^2$ or $S^2 \times S^2$ (Orlik, Raymond 1970).

Motivation and background

Cohomogeneity two torus actions

Outline of the proof

Fernando Galaz-García – Positive Ricci Curvature

August 2, 2016 4/12

Cohomogeneity two torus actions and positive Ricci curvature

Theorem (-, Corro) 2016

Every compact, smooth, simply connected (n + 2)-manifold with a smooth, effective action of a torus T^n admits an invariant Riemannian metric of positive Ricci curvature.

There exist compact, simply connected manifolds with a cohomogeneity two torus action in every dimension $n \ge 2$.

The topological classification is only known up to dimension $n \leq 6$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation and background

Outline of the proof

Cohomogeneity two torus actions and positive Ricci curvature

Theorem (-, Corro) 2016

Every compact, smooth, simply connected (n + 2)-manifold with a smooth, effective action of a torus T^n admits an invariant Riemannian metric of positive Ricci curvature.

- There exist compact, simply connected manifolds with a cohomogeneity two torus action in every dimension $n \ge 2$.
- The topological classification is only known up to dimension $n \leq 6$.

Motivation and background

Torus actions and positive Ricci curvature

Corollary

For every integer $k \ge 4$, every connected sum of the form

$$\#(k-3)(\mathbf{S}^2 \times \mathbf{S}^3), \tag{1}$$

$$(\mathbf{S}^2 \tilde{\times} \mathbf{S}^3) \# (k-4) (\mathbf{S}^2 \times \mathbf{S}^3), \tag{2}$$

$$\#(k-4)(\mathbf{S}^2 \times \mathbf{S}^4)\#(k-3)(\mathbf{S}^3 \times \mathbf{S}^3),$$
 (3)

$$(\mathbf{S}^{2} \tilde{\times} \mathbf{S}^{4}) \# (k-5) (\mathbf{S}^{2} \times \mathbf{S}^{4}) \# (k-3) (\mathbf{S}^{3} \times \mathbf{S}^{3}), \tag{4}$$

has a metric with positive Ricci curvature invariant under a cohomogeneity-two torus action.

 Follows from the topological classification of compact, simply connected 5and 6-manifolds with cohomogeneity two torus actions (Oh, 1983–1982).

The manifolds in (1) are not new examples (Sha, Yang, 1991).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation and background

Torus actions and positive Ricci curvature

Corollary

For every integer $k \ge 4$, every connected sum of the form

$$\#(k-3)(\mathbf{S}^2 \times \mathbf{S}^3), \tag{1}$$

$$(\mathbf{S}^2 \tilde{\times} \mathbf{S}^3) \# (k-4) (\mathbf{S}^2 \times \mathbf{S}^3), \tag{2}$$

$$\#(k-4)(\mathbf{S}^2 \times \mathbf{S}^4)\#(k-3)(\mathbf{S}^3 \times \mathbf{S}^3),$$
 (3)

$$(\mathbf{S}^{2} \tilde{\times} \mathbf{S}^{4}) \# (k-5) (\mathbf{S}^{2} \times \mathbf{S}^{4}) \# (k-3) (\mathbf{S}^{3} \times \mathbf{S}^{3}), \tag{4}$$

has a metric with positive Ricci curvature invariant under a cohomogeneity-two torus action.

- Follows from the topological classification of compact, simply connected 5and 6-manifolds with cohomogeneity two torus actions (Oh, 1983–1982).
- The manifolds in (1) are not new examples (Sha, Yang, 1991).

・ロット 自マット ボット ボット しょうくらく

Motivation and background

Cohomogeneity two torus actions

Outline of the proof

Fernando Galaz-García – Positive Ricci Curvature

August 2, 2016 6/12

M a compact simply connected (n + 2)-manifold, $n \ge 2$, with a cohomogeneity two action of T^n .

These manifolds were studied in the 1970s-1980s.

Kim, McGavran, Pak (1974) and Oh (1983).

- The orbit space M^* is homeomorphic to D^2 .
- The only isotropy groups are T^2 , T^1 and trivial.
- The boundary of *M*^{*} consists of *m* ≥ *n* edges Γ_i with circle isotropy *G*(*a_i*) and *m* vertices *F_i* between the edges Γ_i and Γ_{i+1}, with isotropy *G*(*a_i*) × *G*(*a_i*).

Motivation and background

Orbit space structure of a cohomogeneity-two torus action on a compact, simply connected manifold *M*.

Motivation and background

Cohomogeneity two torus actions

Outline of the proof

Fernando Galaz-García - Positive Ricci Curvature

August 2, 2016 8/12

The orbit space is decorated with isotropy information, the so-called weights.

Definition

Let *M* and *N* be two compact, simply connected smooth (n + 2)-manifolds with effective T^n actions. The orbit spaces M^* and N^* are **isomorphic** if there exists a weight-preserving diffeomorphism between them.

Theorem (Kim, McGavran, Pak 1974, Oh 1983)

Two closed, simply connected smooth (n + 2)-manifolds with an effective T^n -action are equivariantly diffeomorphic if and only if their orbit spaces are isomorphic.

Motivation and background

Cohomogeneity two torus actions

Outline of the proof

Fernando Galaz-García - Positive Ricci Curvature

August 2, 2016 9/12

The orbit space is decorated with isotropy information, the so-called weights.

Definition

Let *M* and *N* be two compact, simply connected smooth (n + 2)-manifolds with effective T^n actions. The orbit spaces M^* and N^* are **isomorphic** if there exists a weight-preserving diffeomorphism between them.

Theorem (Kim, McGavran, Pak 1974, Oh 1983)

Two closed, simply connected smooth (n + 2)-manifolds with an effective T^n -action are equivariantly diffeomorphic if and only if their orbit spaces are isomorphic.

Motivation and background

Cohomogeneity two torus actions

Outline of the proof

Fernando Galaz-García - Positive Ricci Curvature

August 2, 2016 9/12

Let *M* be a compact, simply connected (n + 2)-manifold with a cohomogeneity two action of T^n . Assume $n \ge 2$.

- Let *m* be the number of vertices in the orbit space (i.e the number of orbits with isotropy T^2).
- Construct an (m + 2)-manifold N_m with an effective T^m -action and a free action of a T^{m-n} subgroup of T^m so that N_m/T^{m-n} has an induced cohomogeneity two action of T^n with the same weights as the T^n action on M.

$$N_m = (D^2 \times T^m) / \sim$$

- By the equivariant classification theorem, M and N_m/T^{m-n} are equivariantly diffeomorphic.
- To construct the metric, one considers two cases:
 - (a) the orbit space has at least 5 vertices.
 - (b) the orbit space has at most 4 vertices.

Motivation and background

Cohomogeneity two torus actions

Outline of the proof

Fernando Galaz-García - Positive Ricci Curvature

August 2, 2016 10/12

Let *M* be a compact, simply connected (n + 2)-manifold with a cohomogeneity two action of T^n . Assume $n \ge 2$.

- Let *m* be the number of vertices in the orbit space (i.e the number of orbits with isotropy T^2).
- Construct an (m + 2)-manifold N_m with an effective T^m -action and a free action of a T^{m-n} subgroup of T^m so that N_m/T^{m-n} has an induced cohomogeneity two action of T^n with the same weights as the T^n action on M.

$$N_m = (D^2 \times T^m) / \sim$$

- By the equivariant classification theorem, M and N_m/T^{m-n} are equivariantly diffeomorphic.
- To construct the metric, one considers two cases:
 - (a) the orbit space has at least 5 vertices.
 - (b) the orbit space has at most 4 vertices.

Motivation and background

Let *M* be a compact, simply connected (n + 2)-manifold with a cohomogeneity two action of T^n . Assume $n \ge 2$.

- Let *m* be the number of vertices in the orbit space (i.e the number of orbits with isotropy T^2).
- Construct an (m + 2)-manifold N_m with an effective T^m -action and a free action of a T^{m-n} subgroup of T^m so that N_m/T^{m-n} has an induced cohomogeneity two action of T^n with the same weights as the T^n action on M.

$$N_m = (D^2 \times T^m) / \sim$$

By the equivariant classification theorem, *M* and N_m/T^{m-n} are equivariantly diffeomorphic.

Motivation and background

Cohomogeneity two torus actions

Outline of the proof

Fernando Galaz-García - Positive Ricci Curvature

August 2, 2016 10/12

Let *M* be a compact, simply connected (n + 2)-manifold with a cohomogeneity two action of T^n . Assume $n \ge 2$.

- Let *m* be the number of vertices in the orbit space (i.e the number of orbits with isotropy T^2).
- Construct an (m + 2)-manifold N_m with an effective T^m -action and a free action of a T^{m-n} subgroup of T^m so that N_m/T^{m-n} has an induced cohomogeneity two action of T^n with the same weights as the T^n action on M.

$$N_m = (D^2 \times T^m) / \sim$$

- By the equivariant classification theorem, M and N_m/T^{m-n} are equivariantly diffeomorphic.
- To construct the metric, one considers two cases:

(a) the orbit space has at least 5 vertices.

(b) the orbit space has at most 4 vertices.

Motivation and background

Cohomogeneity two torus actions

Outline of the proof

Fernando Galaz-García - Positive Ricci Curvature

August 2, 2016 10/12

Construction of the metric

Case (a): The orbit space has at least 5 vertices.

- Construct a piecewise-smooth C^1 metric on $N_m = (D^2 \times T^m) / \sim$ that is invariant under the T^{m-n} action.
- This induces a piecewise-smooth C^1 Riemannian metric g on N_m/T^{m-n} .
- The metric *g* has positive Ricci curvature (O'Neill formulas).
- Smooth out the metric *g* while preserving positive Ricci curvature.

Case (b): The orbit space has at most 4 vertices.

The manifold *M* is equivariantly diffeomorphic to S⁴, S⁵, S³ × S³ or to a quotient of S³ × S³ by a free linear torus action.

Motivation and background

Construction of the metric

Case (a): The orbit space has at least 5 vertices.

- Construct a piecewise-smooth C¹ metric on N_m = (D² × T^m)/ ~ that is invariant under the T^{m-n} action.
- This induces a piecewise-smooth C^1 Riemannian metric g on N_m/T^{m-n} .
- The metric *g* has positive Ricci curvature (O'Neill formulas).
- Smooth out the metric *g* while preserving positive Ricci curvature.

Case (b): The orbit space has at most 4 vertices.

The manifold *M* is equivariantly diffeomorphic to S⁴, S⁵, S³ × S³ or to a quotient of S³ × S³ by a free linear torus action.

Motivation and background

Thank you

Motivation and background

Cohomogeneity two torus actions

Outline of the proof

Fernando Galaz-García - Positive Ricci Curvature

August 2, 2016 12/12