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Motivation

Problem
Construct Riemannian manifolds satisfying given geometric properties.

Possible approach:

M a compact smooth manifold (without boundary),

G a compact connected Lie group acting effectively on M,

g a G-invariant Riemannian metric.

Question: When does a closed G-manifold admit an invariant Riemannian
metric with positive Ricci curvature?

Motivation and background Cohomogeneity two torus actions Outline of the proof
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Background

The cohomogeneity of an action is the dimension of its orbit space.

Positive Ricci curvature on homogeneous spaces and
cohomogeneity one manifolds

Berestovskii (1995): M = G/H admits an invariant metric of positive Ricci
curvature if and only if |π1(M)| <∞.

Grove, Ziller (2002): M of cohomogeneity one admits an invariant metric of
positive Ricci curvature if and only if |π1(M)| <∞.
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Background

Positive Ricci curvature and cohomogeneity two

Searle, Wilhelm (2015): M of cohomogeneity two. If the fundamental group
of a principal orbit is finite and the orbit space has positive Ricci curvature,
then M admits an invariant metric of positive Ricci curvature.

Bazaikin, Matvienko (2007): Every compact, simply connected 4-manifold
with an effective action of T 2 admits an invariant metric of positive Ricci
curvature.

Remark: Every compact, simply connected 4-manifold with an effective action of
T 2 is equivariantly diffeomorphic to a connected sum of copies of S4, ±CP2 or
S2 × S2 (Orlik, Raymond 1970).
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Cohomogeneity two torus actions and
positive Ricci curvature

Theorem (–, Corro) 2016

Every compact, smooth, simply connected (n + 2)-manifold with a smooth,
effective action of a torus T n admits an invariant Riemannian metric of positive
Ricci curvature.

There exist compact, simply connected manifolds with a cohomogeneity two
torus action in every dimension n ≥ 2.

The topological classification is only known up to dimension n ≤ 6.
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Torus actions and positive Ricci
curvature

Corollary
For every integer k > 4, every connected sum of the form

#(k − 3)(S2 × S3), (1)

(S2×̃S3)#(k − 4)(S2 × S3), (2)

#(k − 4)(S2 × S4)#(k − 3)(S3 × S3), (3)

(S2×̃S4)#(k − 5)(S2 × S4)#(k − 3)(S3 × S3), (4)

has a metric with positive Ricci curvature invariant under a cohomogeneity-two
torus action.

Follows from the topological classification of compact, simply connected 5-
and 6-manifolds with cohomogeneity two torus actions (Oh, 1983–1982).

The manifolds in (1) are not new examples (Sha, Yang, 1991).

Motivation and background Cohomogeneity two torus actions Outline of the proof
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Cohomogeneity two torus actions on
simply connected manifolds

M a compact simply connected (n + 2)-manifold, n ≥ 2, with a cohomogeneity
two action of T n.

These manifolds were studied in the 1970s-1980s.

Kim, McGavran, Pak (1974) and Oh (1983).

The orbit space M∗ is homeomorphic to D2.

The only isotropy groups are T 2, T 1 and trivial.

The boundary of M∗ consists of m ≥ n edges Γi with circle isotropy G(ai )
and m vertices Fi between the edges Γi and Γi+1, with isotropy
G(ai )× G(ai+1).
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Cohomogeneity two torus actions on
simply connected manifolds

M∗Γ1

Γ2

Γi Γi+1

F1

F2

Fi

Fi+1

trivial isotropy

G(ai )× G(ai+1) isotropy

G(ai ) isotropy

Orbit space structure of a cohomogeneity-two torus action on a compact, simply
connected manifold M.
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Cohomogeneity two torus actions on
simply connected manifolds

The orbit space is decorated with isotropy information, the so-called weights.

Definition
Let M and N be two compact, simply connected smooth (n + 2)-manifolds with
effective T n actions. The orbit spaces M∗ and N∗ are isomorphic if there exists
a weight-preserving diffeomorphism between them.

Theorem (Kim, McGavran, Pak 1974, Oh 1983)
Two closed, simply connected smooth (n + 2)-manifolds with an effective
T n-action are equivariantly diffeomorphic if and only if their orbit spaces are
isomorphic.
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Outline of the proof
Let M be a compact, simply connected (n + 2)-manifold with a cohomogeneity
two action of T n. Assume n ≥ 2.

Let m be the number of vertices in the orbit space (i.e the number of orbits
with isotropy T 2).

Construct an (m + 2)-manifold Nm with an effective T m-action and a free
action of a T m−n subgroup of T m so that Nm/T m−n has an induced
cohomogeneity two action of T n with the same weights as the T n action on
M.

Nm = (D2 × T m)/ ∼

By the equivariant classification theorem, M and Nm/T m−n are equivariantly
diffeomorphic.

To construct the metric, one considers two cases:
(a) the orbit space has at least 5 vertices.
(b) the orbit space has at most 4 vertices.
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Outline of the proof

Construction of the metric

Case (a): The orbit space has at least 5 vertices.

Construct a piecewise-smooth C1 metric on Nm = (D2 × T m)/ ∼ that is
invariant under the T m−n action.

This induces a piecewise-smooth C1 Riemannian metric g on Nm/T m−n.

The metric g has positive Ricci curvature (O’Neill formulas).

Smooth out the metric g while preserving positive Ricci curvature.

Case (b): The orbit space has at most 4 vertices.

The manifold M is equivariantly diffeomorphic to S4, S5, S3 × S3 or to a
quotient of S3 × S3 by a free linear torus action.

�
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Thank you
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