

Moduli spaces of Type \mathcal{A} geometries EGEO 2016 La Falda, Argentina

Peter B Gilkey

Mathematics Department, University of Oregon, Eugene OR USA email: gilkey@uoregon.edu ^a

Joint work with M. Brozos-Vázquez, E. García-Río, and J.H. Park

 $^{\rm a}$ Partially supported by research programs with FEDER funds of Xunta de Galicia (Grant GRC2013-045) and by KIAS.

- Moduli space Type A surfaces with torsion and Rank $(\rho_s)=2$.
- 2 Moduli space Type A manifolds with torsion and Rank (ρ_s) =m
- **(3)** Moduli space Type \mathcal{A} torsion free surfaces and Rank(ρ)=1.
- **(**) Moduli space Type \mathcal{A} torsion free surfaces with Rank(ρ)=2.
- Module spaces of Type B geometries.

Let $\mathcal{M} := (\mathcal{M}, \nabla)$ where ∇ is a connection on the tangent bundle of a smooth manifold \mathcal{M} of dimension m. We say ∇ is *torsion free* if $\nabla_X Y - \nabla_Y X = [X, Y]$. Let $\vec{x} = (x^1, \dots, x^m)$ be a system of local coordinates on \mathcal{M} . Adopt the *Einstein convention* and sum over repeated indices to expand $\nabla_{\partial_{x^i}} \partial_{x^j} = \Gamma_{ij}{}^k \partial_{x^k}$ in terms of the *Christoffel symbols* $\Gamma = (\Gamma_{ij}{}^k)$; the condition that ∇ is torsion free is then equivalent to the symmetry $\Gamma_{ii}{}^k = \Gamma_{ii}{}^k$.

Let $\mathcal{M} := (\mathcal{M}, \nabla)$ where ∇ is a connection on the tangent bundle of a smooth manifold \mathcal{M} of dimension m. We say ∇ is *torsion free* if $\nabla_X Y - \nabla_Y X = [X, Y]$. Let $\vec{x} = (x^1, \dots, x^m)$ be a system of local coordinates on \mathcal{M} . Adopt the *Einstein convention* and sum over repeated indices to expand $\nabla_{\partial_{x^i}} \partial_{x^j} = \Gamma_{ij}{}^k \partial_{x^k}$ in terms of the *Christoffel symbols* $\Gamma = (\Gamma_{ij}{}^k)$; the condition that ∇ is torsion free is then equivalent to the symmetry $\Gamma_{ij}{}^k = \Gamma_{ij}{}^k$.

Theorem

 \mathcal{M} is torsion free if and only if for every point P of M, there exists coordinates centered at P so $\Gamma_{ij}{}^k(P) = 0$.

We say that $\mathcal{M} := (M, \nabla)$ is *locally homogeneous* if given any two points of M, there is the germ of a diffeomorphism Φ taking one point to another with $\Phi^* \nabla = \nabla$.

We say that $\mathcal{M} := (M, \nabla)$ is *locally homogeneous* if given any two points of M, there is the germ of a diffeomorphism Φ taking one point to another with $\Phi^* \nabla = \nabla$.

Some homogeneous examples

Type \mathcal{A} . Let $M := \mathbb{R}^m$ and let $\Gamma \in (\mathbb{R}^{2m})^* \otimes \mathbb{R}^m$ be constant. The translation group \mathbb{R}^m acts transitively on M and preserves ∇ . **Type** \mathcal{B} . Let $M = \mathbb{R}^+ \times \mathbb{R}^{m-1}$ and let $\Gamma_{ij}{}^k = \frac{C_{ij}{}^k}{x^1}$ for $C \in (\mathbb{R}^{2m})^* \otimes \mathbb{R}^m$ constant. The group $(x^1, \ldots) \to (ax^1, ax^2 + b^2, \ldots, ax^m + b^m)$ for a > 0 acts transitively on M and preserves ∇ . **Type** \mathcal{C} . Let ∇ be the Levi-Civita connection on a complete simply connected pseudo-Riemannian manifold M of constant sectional curvature.

Theorem (Opozda; Arias-Marco and Kowalski)

Let $\mathcal{M} = (\mathcal{M}, \nabla)$ be a locally homogeneous surface, possibly with torsion. Then at least one of the following three possibilities holds, which are not exclusive, and which describe the local geometry:

Type \mathcal{A} : There exist local coordinates (x^1, x^2) so that $\Gamma_{ij}{}^k$ is constant.

Type \mathcal{B} : There exist local coordinates (x^1, x^2) so that $\Gamma_{ij}{}^k = (x^1)^{-1}C_{ij}{}^k$ where $C_{ij}{}^k$ is constant.

Type C: ∇ is the Levi-Civita connection of a metric of constant sectional curvature.

^aB. Opozda, "A classification of locally homogeneous connections on 2-dimensional manifolds", J. Diff. Geo. Appl. **21** (2004), 173–198.

^bT. Arias-Marco and O. Kowalski, "Classification of locally homogeneous affine connections with arbitrary torsion on 2-manifolds", *Monatsh. Math.* **153** (2008), 1–18

Observation

- There are no surfaces which are both Type \mathcal{A} and Type \mathcal{C} .
- There are surfaces which are both Type A and Type B; we will characterize these geometries presently from both the Type A and from the Type B perspectives.
- Any surface which is both Type B and Type C is modeled either on the hyperbolic plane or on a Lorentzian analogue.

The curvature operator R, the Ricci tensor ρ , and symmetric Ricci tensor ρ_s are given by

$$R(\xi_1,\xi_2) := \nabla_{\xi_1} \nabla_{\xi_2} - \nabla_{\xi_2} \nabla_{\xi_1} - \nabla_{[\xi_1,\xi_2]},$$

$$\rho(\xi_1,\xi_2) := \mathsf{Tr}\{\xi_3 \to R(\xi_3,\xi_1)\xi_2\},$$

$$\rho_s(\xi_1,\xi_2) := \frac{1}{2}\{\rho(\xi_1,\xi_2) + \rho(\xi_2,\xi_1)\}.$$

If \mathcal{M} is a Type \mathcal{A} manifold of dimension $m \geq 2$, then

$$R_{abc}{}^{d} = \Gamma_{ae}{}^{d}\Gamma_{bc}{}^{e} - \Gamma_{be}{}^{d}\Gamma_{ac}{}^{e},$$

$$\rho_{bc} = \Gamma_{ae}{}^{a}\Gamma_{bc}{}^{e} - \Gamma_{be}{}^{a}\Gamma_{ac}{}^{e},$$

$$\rho_{s,bc} = \frac{1}{2}\{\rho_{bc} + \rho_{cb}\}.$$

If \mathcal{M} is also torsion free, then $\rho = \rho_s$. If m = 2 and if ρ is zero, then \mathcal{M} is flat. However, if m = 3 and if we take $\Gamma_{13}{}^1 = \Gamma_{31}{}^1 = 21$, $\Gamma_{23}{}^2 = \Gamma_{32}{}^2 = 28$, and $\Gamma_{33}{}^3 = 25$, then \mathcal{M} is torsion free, $\rho = 0$ and $R \neq 0$. So this geometry is not flat although $\rho = 0$.

Definition: Let G be a Lie group which acts smoothly on a smooth manifold N.

- Let $G_P := \{g \in G : gP = P\}$ be the isotropy group.
- The action is *fixed point free* if $G_P = {id}$ for all *P*.

• The action is *proper* if given points $P_n \in N$ and $g_n \in G$ with $P_n \rightarrow P \in N$ and $g_n P_n \rightarrow \tilde{P} \in N$, we can choose a convergent subsequence so $g_{n_k} \rightarrow g \in G$.

Theorem. Let *G* be a fixed point free proper smooth action of a Lie group *G* on a smooth manifold *N*. Then the orbit space N/G inherits a smooth structure so that $G \rightarrow N \rightarrow N/G$ is a principal *G* bundle.

S. Gallot, D. Hulin, J. Lafontaine, "Riemannian Geometry 3rd ed", Springer Universitext (2014). Theorem 1.95 Page 32.

1) Let $\mathcal{W}(m) := (\mathbb{R}^{2m})^* \otimes \mathbb{R}^m$ be the parameter space for Type A geometry with torsion; let $\mathcal{Z}(m) := S^2(\mathbb{R}^m) \otimes \mathbb{R}^m$ be the parameter space for torsion free Type \mathcal{A} geometry. 2) If $\Gamma \in \mathcal{Z}(m)$, let $G_{\Gamma}^+ := \{g \in \mathrm{GL}^+(2, \mathbb{R}^m) : g\Gamma = \Gamma\}$ and $G_{\Gamma} := \{g \in GL(2, \mathbb{R}^m) : g\Gamma = \Gamma\}$ be the isotropy subgroups of the natural action of these groups on $(\mathbb{R}^{2m})^* \otimes \mathbb{R}^m$. 3) Let $\mathcal{W}(p,q)$ (resp. $\mathcal{Z}(p,q)$) be the set of Type \mathcal{A} connections with torsion (resp. without torsion) so that $\rho_{s,\Gamma}$ has signature (p,q) for p+q=m. p-timelike and q-spacelike. 4) Let $\mathfrak{W}(p,q)$ (resp. $\mathfrak{Z}(p,q)$) be the associated moduli spaces in the unoriented category. Identify two structures if exists the germ of a diffeomorphism intertwining them. 5) Let $\mathfrak{W}^+(p,q)$ (resp. $\mathfrak{Z}^+(p,q)$) be the associated moduli spaces in the oriented category. Require the diffeomorphism to preserve the orientation.

Isomorphism type of Type $\mathcal A$ manifolds with torsion

Theorem. (Brozos-Vázquez, García-Río, and Gilkey^d)

 $\mathfrak{W}^{+}(p,q) = \mathcal{W}(p,q)/\operatorname{GL}^{+}(m,\mathbb{R}), \ \mathfrak{W}(p,q) = \mathcal{W}(p,q)/\operatorname{GL}(m,\mathbb{R}), \\ \mathfrak{Z}^{+}(p,q) = \mathcal{Z}(p,q)/\operatorname{GL}^{+}(m,\mathbb{R}), \quad \mathfrak{Z}(p,q) = \mathcal{Z}(p,q)/\operatorname{GL}(m,\mathbb{R}).$

^d "Homogeneous affine surfaces: Moduli spaces" arXiv 1604.06610.

Isomorphism type of Type $\mathcal A$ manifolds with torsion

Theorem. (Brozos-Vázquez, García-Río, and Gilkey^d)

 $\mathfrak{W}^{+}(p,q) = \mathcal{W}(p,q)/\operatorname{GL}^{+}(m,\mathbb{R}), \ \mathfrak{W}(p,q) = \mathcal{W}(p,q)/\operatorname{GL}(m,\mathbb{R}), \\ \mathfrak{Z}^{+}(p,q) = \mathcal{Z}(p,q)/\operatorname{GL}^{+}(m,\mathbb{R}), \quad \mathfrak{Z}(p,q) = \mathcal{Z}(p,q)/\operatorname{GL}(m,\mathbb{R}).$

^d "Homogeneous affine surfaces: Moduli spaces" arXiv 1604.06610.

Proof

Let \mathcal{M} be a Type \mathcal{A} manifold. Choose a Type \mathcal{A} coordinate atlas so that $\Gamma \in (\mathbb{R}^{2m})^* \otimes \mathbb{R}^m$ is constant on each chart. The symmetric Ricci tensor is an invariantly defined pseudo-Riemannian metric on \mathcal{M} which is preserved by the coordinate transformations. Since Γ is constant, the components of ρ_s are constant. Thus ρ_s is flat and the coordinate transformations are affine; they take the form $\vec{x} \to A\vec{x} + \vec{b}$ where $A \in GL(m, \mathbb{R})$ and $\vec{b} \in \mathbb{R}^m$; if we are dealing with oriented structures, then $A \in GL^+(m, \mathbb{R})$. The translations do not affect Γ . The desired result now follows.

The oriented moduli spaces in dimension 2

Theorem. (Gilkey)

1) Let (p,q) = (1,1) or (p,q) = (0,2). The action of $GL^+(2,\mathbb{R})$ on $\mathcal{W}(p,q)$ is proper and fixed point free; $\mathfrak{W}^+(p,q)$ and $\mathfrak{Z}^+(p,q)$ admit smooth structures so that $\mathcal{W}^+(p,q) \to \mathfrak{W}^+(p,q)$ and $\mathcal{Z}^+(p,q) \to \mathfrak{Z}^+(p,q)$ are principal $\mathsf{GL}^+(2,\mathbb{R})$ bundles. 2) Let (p,q) = (2,0) (neg. defn.). Let $\{\Gamma_{0,11}^{1} = -1, \Gamma_{12}^{2} = 1,$ $\Gamma_{0,21}^{2} = 1$, $\Gamma_{0,22}^{1} = 1$, and $\Gamma_{0,ii}^{k} = 0$ otherwise} define $\Gamma_0 \in \mathcal{Z}(2,0)$. Let $C_0 := \mathrm{GL}^+(2,\mathbb{R}) \cdot \Gamma_0$; C_0 is a closed orbit in $\mathcal{Z}(2,0)$ and $\mathcal{W}(2,0)$. If $\Gamma \in \mathcal{W}(2,0)$ satisfies $G_{\Gamma}^+ \neq \{id\}$, then $\Gamma \in C_0 \subset \mathcal{Z}(2,0)$ and $G_{\Gamma}^+ = \mathbb{Z}_3$. The punctured oriented moduli spaces admit smooth structures so the projections $\mathcal{W}^+(2,0) - C_0 \to \mathfrak{W}^+(2,0) - [C_0]$ and $\mathcal{Z}^+(2,0) - \mathcal{C}_0 o \mathfrak{Z}^+(2,0) - [\mathcal{C}_0]$ are principal $\mathsf{GL}^+(2,\mathbb{R})$ bundles. The unpunctured oriented moduli spaces $\mathfrak{W}^+(2,0)$ and $\mathfrak{Z}^+(2,0)$ are \mathbb{Z}_3 orbifolds.

P. Gilkey, "The moduli space of Type A surfaces with torsion and non-singular symmetric Ricci tensor", arXiv:1605.06698.

Theorem. (Gilkey)

1) Let (p,q) = (1,1) or let (p,q) = (0,2). The unoriented moduli space $\mathfrak{W}(p,q)$ (resp. $\mathfrak{Z}(p,q)$) admits a smooth structure as a 4-dimensional manifold without boundary (resp. 2-dimensional manifold with boundary) so $\mathfrak{W}^+(p,q) \to \mathfrak{W}(p,q)$ (resp. $\mathfrak{Z}^+(p,q) \to \mathfrak{Z}(p,q)$) is a ramified double cover where the ramification occurs over a smooth 2-dimensional surface (resp. curve which creates the boundary).

2) Let (p, q) = (2, 0). Assertion 1 holds for the punctured unoriented moduli space. Let s_3 be the symmetric group; it is generated by permutations T_i of order 2 and 3. Let s_3 act on $\mathbb{C} \oplus \mathbb{C}$ or \mathbb{C} so that T_3 is multiplication by a third root of unity and T_2 is complex conjugation. Then $\mathfrak{W}(p, q)$ (resp. $\mathfrak{Z}(2, 0)$) has a s_3 orbifold structure where s_3 acts on $\mathbb{C} \oplus \mathbb{C}$ (resp. \mathbb{C}) at the singular orbit.

Let $\mathfrak{P}_m = \mathfrak{P}_m(\Gamma)$ be a polynomial defined on $(\mathbb{R}^{2m})^* \otimes \mathbb{R}^m$ which is divisible by det $(\rho_{s,\Gamma})$ and which doesn't vanish identically on $S^2(\mathbb{R}^m) \otimes \mathbb{R}^m$. Let

$$\mathcal{W}(p,q;\mathfrak{P}_m):=\{\Gamma\in\mathcal{W}(p,q):\mathfrak{P}_m(\Gamma)\neq 0\},\$$

$$\mathcal{Z}(p,q;\mathfrak{P}_m) := \{ \Gamma \in \mathcal{Z}(p,q) : \mathfrak{P}_m(\Gamma) \neq 0 \}.$$

These are open dense subsets of $\mathcal{W}(p,q)$ and $\mathcal{Z}(p,q)$, respectively; the Christoffel symbols so $\mathfrak{P}_m(\Gamma) \neq 0$ are generic.

Theorem (Gilkey-Park^b)

There exists \mathfrak{P}_m so that $GL(m, \mathbb{R})$ preserves $\mathcal{W}(p, q; \mathfrak{P}_m)$ and $\mathcal{Z}(p, q; \mathfrak{P}_m)$ and so that the action is proper and fixed point free. Thus there are smooth structures on the associated moduli spaces $\mathcal{W}(p, q; \mathfrak{P}_m)/\operatorname{GL}^+(m, \mathbb{R}), \qquad \mathcal{W}(p, q; \mathfrak{P}_m)/\operatorname{GL}(m, \mathbb{R}),$ $\mathcal{Z}(p, q; \mathfrak{P}_m)/\operatorname{GL}^+(m, \mathbb{R}), \qquad \mathcal{Z}(p, q; \mathfrak{P}_m)/\operatorname{GL}(m, \mathbb{R}),$ and the projections from $\mathcal{W}(p, q; \mathfrak{P}_m)$ and $\mathcal{Z}(p, q; \mathfrak{P}_m)$ to these

moduli spaces are smooth principal bundles. Furthermore, the projections from the oriented to the unoriented moduli spaces are \mathbb{Z}_2 covering projections.

^bModuli spaces of oriented Type \mathcal{A} manifolds of dimension at least 3 arXiv:1607.01563

Theorem (Gilkey-Park)

Suppose that m > 3. 1) There exists c(m) so that if G_{Γ}^+ contains no elements of infinite order, then every element of G_{Γ}^+ has order at most c(m). 2) { $\Gamma \in \mathcal{W}(p,q)$: dim{ G_{Γ} } ≥ 1 } is closed. $\{\Gamma \in \mathcal{Z}(p,q) : \dim\{G_{\Gamma}\} \geq 1\}$ is closed. **3)** If p = 0 or q = 0, then **a.** The action of $GL(m, \mathbb{R})$ on $\mathcal{Z}(p, q)$ and $\mathcal{W}(p, q)$ is proper. **b.** If $\Gamma \in \mathcal{W}(p,q)$, then either G_{Γ}^+ is finite or dim $\{G_{\Gamma}^+\} \ge 1$. If $\Gamma \in \mathcal{Z}(p,q)$, then either G_{Γ}^+ is finite or dim $\{G_{\Gamma}^+\} \ge 1$. **c.** { $\Gamma \in \mathcal{W}(p,q)$: $G_{\Gamma} \neq \{id\}$ } is closed in $\mathcal{W}(p,q)$. $\{\Gamma \in \mathcal{Z}(p,q) : G_{\Gamma} \neq \{id\}\}$ is closed in $\mathcal{Z}(p,q)$. 4) If $p \ge 1$ and $q \ge 1$, then the action of $GL(m, \mathbb{R})$ on $\mathcal{Z}(p, q)$ and on $\mathcal{W}(p,q)$ is not proper.

Choose
$$X \in T_P M$$
 so $\rho(X, X) \neq 0$. Set
 $\alpha_X(\mathcal{M}) := \nabla \rho(X, X; X)^2 \cdot \rho(X, X)^{-3}.$
 $\epsilon_X(\mathcal{M}) := \operatorname{Sign}\{\rho(X, X)\} = \pm 1.$

Theorem. (Brozos-Vázquez, García-Río, and Gilkey^c)

Let $\mathcal{M} = (\mathcal{M}, \nabla)$ be a torsion free Type \mathcal{A} surface. Let $\rho := \rho_{\nabla}$. **1)** If Rank{ ρ } = 1, then $\alpha(\mathcal{M}) := \alpha_X(\mathcal{M})$ and $\varepsilon(\mathcal{M}) := \varepsilon_X(\mathcal{M})$ are invariants of the underlying structure and are independent of the particular X chosen, and the moduli space of torsion free Type \mathcal{A} surfaces with Rank{ ρ } = 1 is $(-\infty, 0] \dot{\cup} [0, \infty)$. **2)** \mathcal{M} is also of Type \mathcal{B} if and only if Rank(ρ) = 1 and either $\alpha(\mathcal{M}) \notin (0, 16)$ or $\alpha(\mathcal{M}) = 0$ and $\epsilon(\mathcal{M}) < 0$.

 c "Homogeneous affine surfaces: Killing vector fields and gradient Ricci solitons", http://arxiv.org/abs/1512.05515.

Theorem. (Brozos-Vázquez, García-Río, and Gilkey^d)

Let $\mathcal{M} = (\mathcal{M}, \nabla)$ be a locally homogeneous oriented torsion free surface of Type \mathcal{A} where Rank $\{\rho\} = 2$. Set

$$\begin{split} \check{\rho}_{ij} &:= \Gamma_{ik}{}^{I}\Gamma_{jl}{}^{k}, \ \psi := \mathrm{Tr}_{\rho}\{\check{\rho}\} = \rho^{ij}\check{\rho}_{ij}, \ \Psi := \det(\check{\rho})/\det(\rho), \\ \chi(\Gamma) &:= \rho(\Gamma_{ab}{}^{b}\Gamma_{ij}{}^{k}\check{\rho}_{kl}\rho^{ij}dx^{a} \wedge dx^{l}, \mathrm{dvol}). \end{split}$$

1. ψ , Ψ , and χ are invariantly defined on \mathcal{M} and do not depend on the particular choice of Type \mathcal{A} coordinates.

2) $\Xi(p,q) := (\psi, \Psi, \chi)$ is a 1-1 map from each $\mathfrak{Z}^+(p,q)$ to a closed surface in \mathbb{R}^3 and provides a complete set of invariants in the oriented context.

3. $\Theta(p,q) := (\psi, \Psi)$ defines a 1-1 map from $\mathfrak{Z}(p,q)$ to a simply connected closed subset $\mathfrak{V}(p,q)$ of \mathbb{R}^2 and provides a complete set of invariants in the unoriented context.

^d "Homogeneous affine surfaces: Moduli spaces", to appear JMAA.

Proof of Invariance

Since the rank of the symmetric Ricci tensor is 2, the structure group is $\operatorname{GL}^+(m,\mathbb{R})$ or $\operatorname{GL}(m,\mathbb{R})$. Contracting an upper index against a lower index is invariant under the action of the general linear group. It now follows that ψ , Ψ , and χ are invariants and descend to invariants on the moduli space which are smooth away from the singular orbit.

Description of $\mathfrak{V}(p,q)$

Consider the two curves

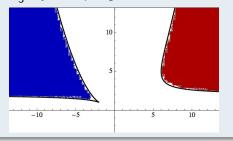
$$\sigma_{+}(t) := (4t^{2} + \frac{1}{t^{2}} + 2, 4t^{4} + 4t^{2} + 2),$$

$$\sigma_{-}(t) := (-4t^{2} - \frac{1}{t^{2}} + 2, 4t^{4} - 4t^{2} + 2).$$

Note that $\sigma_{\pm}(t) = \sigma_{\mp}(\sqrt{-1}t)$. The curve σ_{+} is smooth; the curve σ_{-} has a cusp at (-2, 1) when $t = \frac{1}{\sqrt{2}}$. These two curves divide the plane into 3 open regions. The set $\mathfrak{V}(2, 0)$ (in blue below) lies in the second quadrant and is bounded on the right by σ_{-} , the set $\mathfrak{V}(0, 2)$ (in red below) lies in the first quadrant, and is bounded on the left by σ_{+} and the set $\mathfrak{V}(1, 1)$ (in white) lies in between and is bounded on the left by σ_{+} .

Remark on the Domains

 $\Theta(p,q)$ is 1-1 on $\mathfrak{Z}(p,q)$ and $\Theta(1,1)(\mathfrak{Z}(1,1))$ intersects $\Theta(0,2)(\mathfrak{Z}(0,2))$ (resp. $\Theta(2,0)(\mathfrak{Z}(2,0))$) along their common boundary σ_+ (resp. σ_-). This does not mean that $\mathfrak{Z}(1,1)$ intersects $\mathfrak{Z}(0,2)$ (resp. $\mathfrak{Z}(2,0)$) nor does it mean that $\Theta(p,q)$ is not 1-1 on the respective domains. There is an apparent cusp in the picture. For (p,q) = (1,1), this is an artifact of the parametrization and for (p,q) = (2,0), we have replaced a corner with an angle of $\frac{2\pi}{3}$ by a cusp; again, this is an artifact.



Theorem (Gilkey-Park)

Let $\Gamma \in \mathcal{Z}(p,q)$ for p + q = 3. Assume $G_{\Gamma}^+ \neq \{id\}$. We can make a linear change of coordinates so that one of the following 4 possibilities holds:

Case 1) There exist $(a, b, c, d) \in \mathbb{R}^4$ with $ad \neq 0$ and $-b^2 + bd + c(-c+d) \neq 0$ so $G_{\Gamma}^+ = SO(1,1)$, $\Gamma_{12}{}^3 = a$, $\Gamma_{13}{}^1 = b$, $\Gamma_{23}{}^2 = c$, $\Gamma_{33}{}^3 = d$, $\rho = ad(e^1 \otimes e^2 + e^2 \otimes e^1) + (-b^2 + bd + c(-c+d))e^3 \otimes e^3$. **Case 2)** There exist $(a, b, c, d) \in \mathbb{R}^4$ with $ad \neq 0$ and $bd - b^2 + c^2 \neq 0$ so $G_{\Gamma}^+ = SO(2)$, $\Gamma_{11}{}^3 = a$, $\Gamma_{13}{}^1 = b$, $\Gamma_{13}{}^2 = c$, $\Gamma_{22}{}^3 = a$, $\Gamma_{23}{}^1 = -c$, $\Gamma_{23}{}^2 = b$, $\Gamma_{33}{}^3 = d$, $\rho_{\Gamma} = ad(e^1 \otimes e^1 + e^2 \otimes e^2) + 2(bd - b^2 + c^2)e^3 \otimes e^3$. **Case 3)** There exists $T \in G_{\Gamma}^+$ with $\nu(T) = 3$. Furthermore, $\nu(S) \leq 3$ for every $S \in G_{\Gamma}^+$. Then T acts by a rotation through an angle of $\frac{2\pi}{3}$ on Span $\{e_1, e_2\}$ and there exists $(a, b, c, d) \in \mathbb{R}^4$ so $\Gamma_{11}{}^1 = 1$, $\Gamma_{11}{}^3 = a$, $\Gamma_{12}{}^2 = -1$, $\Gamma_{13}{}^1 = b$, $\Gamma_{13}{}^2 = c$, $\Gamma_{22}{}^1 = -1, \quad \Gamma_{22}{}^3 = a, \quad \Gamma_{23}{}^1 = -c, \quad \Gamma_{23}{}^2 = b, \quad \Gamma_{33}{}^3 = d.$ with $2(-b^2 + c^2 + bd) \neq 0$, and $ad - 2 \neq 0$. $\rho_{\Gamma} = (ad - 2)(e^1 \otimes e^1 + e^2 \otimes e^2) + 2(bd - b^2 + c^2)e^3 \otimes e^3$. We have $G_{\Gamma}^{+} = \mathbb{Z}_{3}$ except for the following exceptional structures: **Case 3a)** a = 0, b = 0, c = 1, d = 0, and $G_{\Gamma}^{+} = \{ id, T, T^{2}, S_{1}, TS_{1}, T^{2}S_{1} \} \approx s_{3}.$ **Case 3b)** c = 0, $a = b = \pm \frac{1}{\sqrt{2}}$, $d = \pm \sqrt{2}$, and $G_{\Gamma}^{+} = a_{4}$.

Case 4) All elements of G_{Γ}^+ have order 2. There are two structures:

Case 4a) $G_{\Gamma}^{+} = \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, \Gamma_{12}{}^{3} = 1, \Gamma_{13}{}^{2} = 1, \Gamma_{23}{}^{1} = -1, \text{ and } \rho = -2(e^{1} \otimes e^{1} + e^{2} \otimes e^{2}) + 2e^{3} \otimes e^{3}.$

Case 4b) $G_{\Gamma}^{+} = \mathbb{Z}_2$, $\Gamma_{ij}^{k} = 0$ unless the index 3 appears an odd number of times.

$$\begin{array}{l} \Gamma_{11}{}^3 := a, \quad \Gamma_{12}{}^3 = b, \quad \Gamma_{13}{}^1 := c, \quad \Gamma_{13}{}^2 = d, \\ \Gamma_{21}{}^3 := b, \quad \Gamma_{22}{}^3 = e, \quad \Gamma_{23}{}^1 := f, \quad \Gamma_{23}{}^2 = g, \\ \Gamma_{31}{}^1 := c, \quad \Gamma_{31}{}^2 := d, \quad \Gamma_{32}{}^1 := f, \quad \Gamma_{32}{}^2 := g, \\ \Gamma_{33}{}^3 := h. \\ \rho_{11} = -2bd + a(-c + g + h), \\ \rho_{12} = \rho_{21} = -de - af + bh, \\ \rho_{33} = -c^2 - 2df + ch + g(-g + h), \end{array}$$

One requires det $(\rho) \neq 0$.

Let $\mathcal{WB}(p, q)$ be the set of connections $(x^1)^{-1}C_{ij}{}^k$ with torsion of Type \mathcal{B} on $\mathbb{R}^+ \times \mathbb{R}$ where the symmetric Ricci tensor is non-degenerate and has signature (p, q) for p + q = 2. Let $\mathcal{I} := \{T_{a,b} : (x^1, x^2) \to (x^1, ax^1 + bx^2)\}$ for $b \neq 0$ and \mathcal{I}^+ the connected component of the identity where b > 0.

Let $\mathcal{WB}(p, q)$ be the set of connections $(x^1)^{-1}C_{ij}{}^k$ with torsion of Type \mathcal{B} on $\mathbb{R}^+ \times \mathbb{R}$ where the symmetric Ricci tensor is non-degenerate and has signature (p, q) for p + q = 2. Let $\mathcal{I} := \{T_{a,b} : (x^1, x^2) \to (x^1, ax^1 + bx^2)\}$ for $b \neq 0$ and \mathcal{I}^+ the connected component of the identity where b > 0.

Theorem. [Gilkey]

If $\Gamma, \tilde{\Gamma} \in \mathcal{WB}(p, q)$ define locally isomorphic structures for p + q = 2, then there exists $T \in \mathcal{I}$ so that $T\Gamma = \tilde{\Gamma}$; thus only the linear action is relevant. The action of \mathcal{I}^+ on $\mathcal{WB}(p, q)$ is proper and without fixed points so the projection from $\mathcal{WB}(p, q)$ to the oriented moduli space space $\mathfrak{WB}(p, q) := \mathcal{WB}(p, q)/\mathcal{I}^+$ is a principal \mathcal{I}^+ bundle. No element of $\mathcal{W}(p, q)$ is also of Type \mathcal{A} .

Let Γ_{ij}^k := 1/x¹C_{ij}^k be a torsion free Type B connection on ℝ⁺ × ℝ.
Let ZB(2) := {C ∈ ℝ⁶ : (C₁₂², C₂₂¹, C₂₂²) ≠ (0,0,0)}. These are the Type B geometries which are not of Type A.
Let 3𝔅⁺(2) the oriented moduli space.
Let 3𝔅(2) the unoriented moduli space.
Let I⁺ := {T : T(x¹, x²) = (x¹, bx¹ + cx²)} for c > 0}.

Theorem (Brozos-Vázquez, García-Río, and Gilkey^d)

Let
$$\Gamma = (x^1)^{-1}C$$
 define a torsion-free Type \mathcal{B} surface.
1) If $\rho \neq 0$, then the surface is of Type A if and only if
 $(C_{12}^2, C_{22}^1, C_{22}^2) = (0, 0, 0)$.
2) $\mathfrak{B}^+(2) = \mathcal{Z}\mathcal{B}(2)/\mathcal{I}^+$.
3) The action of \mathcal{I}^+ on $\mathcal{Z}\mathcal{B}(2)$ is proper and without fixed points.
4) $\mathfrak{B}^+(2)$ is a 4-dimensional manifold.
5) $\mathcal{Z}\mathcal{B}(2) \rightarrow \mathfrak{B}^+(2)$ is a principal $\mathcal{Z}\mathcal{B}(2)$ bundle.
6) $\mathfrak{B}(2)$ is a smooth 4-dimensional manifold.
7) $\mathfrak{B}^+(2) \rightarrow \mathfrak{B}(2)$ is a ramified double cover where the
ramification set is surface diffeomorphic to $\mathbb{C} - \{0\} \cup \mathbb{C} - \{0\}$.
8) $\mathfrak{B}^+(2)$ and $\mathfrak{B}(2)$ are simply connected.
9) $H^2_{\text{DeRham}}(\mathfrak{B}^+(2)) = \mathbb{R}$ and $H^2_{\text{DeRham}}(\mathfrak{B}(2)) = \mathbb{R}$.

 $^{\it d}$ "Homogeneous affine surfaces: Moduli spaces", to appear JMAA

References Cited

- T. Arias-Marco and O. Kowalski, "Classification of locally homogeneous affine connections with arbitrary torsion on 2-manifolds", *Monatsh. Math.* 153 (2008), 1–18.
- W. Boothby, "An introduction to differentiable manifolds and Riemannian geometry", Academic Press (1976), New York.
- Brozos-Vázquez, García-Río, and Gilkey, "Homogeneous affine surfaces: Killing vector fields and gradient Ricci solitons", arXiv 1512.05515.
- Brozos-Vázquez, García-Río, and Gilkey, "Homogeneous affine surfaces: Moduli spaces", to appear JMAA.
- P. Gilkey, "The moduli space of Type A surfaces with torsion and non-singular symmetric Ricci tensor", arXiv 1605.06698.
- B. Opozda, "A classification of locally homogeneous connections on 2-dimensional manifolds", J. Diff. Geo. Appl. 21 (2004), 173–198.