Nodal solutions of Yamabe equation

Guillermo Henry

UBA - CONICET

La Falda, August 4th 2016

Nodal solutions of Yamabe equation

Let (M, g) be a closed Riemannian manifold of dim $(M) = n \ge 3$. $u \in C^{\infty}(M)$ is a solution of the Yamabe equation if satisfies (for some $c \in \mathbb{R}$)

 $(YEq) a_n \Delta_g u + s_g u = c |u|^{p_n - 2} u$

where $a_n = 4(n-1)/(n-2)$, $p_n = 2n/(n-2)$, and s_g is the scalar curvature of (M, g).

Let (M, g) be a closed Riemannian manifold of dim $(M) = n \ge 3$. $u \in C^{\infty}(M)$ is a solution of the Yamabe equation if satisfies (for some $c \in \mathbb{R}$)

$$(YEq) a_n \Delta_g u + s_g u = c |u|^{p_n - 2} u$$

where $a_n = 4(n-1)/(n-2)$, $p_n = 2n/(n-2)$, and s_g is the scalar curvature of (M, g). We say that u is a nodal solution if u changes sign. Let (M, g) be a closed Riemannian manifold of dim $(M) = n \ge 3$. $u \in C^{\infty}(M)$ is a solution of the Yamabe equation if satisfies (for some $c \in \mathbb{R}$)

$$(YEq) a_n \Delta_g u + s_g u = c |u|^{p_n - 2} u$$

where $a_n = 4(n-1)/(n-2)$, $p_n = 2n/(n-2)$, and s_g is the scalar curvature of (M, g). We say that u is a nodal solution if u changes sign.

If u is a positive solution, then $u^{p_n-2}g$ is a metric of constant scalar curvature c.

(Yamabe problem) There exist positive solutions of (YEq) iff sign(c) = sign(Y(M, [g]))

The Yamabe functional is defined by

$$h \in [g] \longmapsto Y(h) := \frac{\int_M s_h dv_h}{vol(M,h)^{\frac{n-2}{n}}}.$$

 $[g] := \{ fg : f \in C^{\infty}_{>0}(M) \}.$ The Yamabe constant is defined by

$$Y(M,[g]) = \inf_{h \in [g]} Y(h).$$

The infimum is attained by a metric of constant scalar curvature.

The conformal Laplacian of (M, g) is the second order elliptic operator

$$L_g(u) = a_n \Delta_g u + s_g u$$

$$(EYq) \quad L_g(u) = c|u|^{p_n-2}u.$$

The conformal Laplacian of (M, g) is the second order elliptic operator

$$L_g(u) = a_n \Delta_g u + s_g u.$$

$$(EYq) \quad L_g(u) = c|u|^{p_n-2}u.$$

The spectrum of L_g is a non-decreasing sequence of eigenvalues

$$\lambda_1(L_g) \leq \lambda_2(L_g) \leq \cdots \leq \lambda_k(L_g) \longrightarrow +\infty$$

If $Y(M, [g]) \ge 0$,

$$Y(M,[g]) = \inf_{h \in [g]} \lambda_1(L_h) \operatorname{vol}(M,h)^{\frac{2}{n}}.$$

The second Yamabe constant is defined by

$$Y^{2}(M,[g]) := \inf_{h \in [g]} \lambda_{2}(L_{h}) \operatorname{vol}(M,h)^{\frac{2}{n}}.$$

The second Yamabe constant is defined by

$$Y^{2}(M,[g]) := \inf_{h \in [g]} \lambda_{2}(L_{h}) \operatorname{vol}(M,h)^{\frac{2}{n}}.$$

- If $\lambda_2(L_h) < 0$ for some $h \in [g]$, then $Y^2(M, [g]) = -\infty$.
- In general, $Y^2(M,g)$ is not attained by a Riemannian metric: (for instance, if M is connected and $Y^2(M) > 0$)
- Second Yamabe constant is related with nodal solutions of the Yamabe equation.

The second Yamabe constant is defined by

$$Y^{2}(M,[g]) := \inf_{h \in [g]} \lambda_{2}(L_{h}) \operatorname{vol}(M,h)^{\frac{2}{n}}.$$

- If $\lambda_2(L_h) < 0$ for some $h \in [g]$, then $Y^2(M, [g]) = -\infty$.
- In general, $Y^2(M,g)$ is not attained by a Riemannian metric: (for instance, if M is connected and $Y^2(M) > 0$)
- Second Yamabe constant is related with nodal solutions of the Yamabe equation.

From now on let (M,g) such that $Y(M,[g]) \ge 0$.

The generalized conformal class of g is the set

$$[g]_{gen} := \{ u^{p_n-2}g : u \in L^{p_n}_{\geq 0}(M) - \{0\} \}$$

 $u^{p_n-2}g$ is a generalized metric.

The generalized conformal class of g is the set

$$[g]_{gen} := \{ u^{p_n-2}g : u \in L^{p_n}_{\geq 0}(M) - \{0\} \}$$

 $u^{p_n-2}g$ is a generalized metric.

By extending naturally the definition of $\lambda_2(L_h)$ and vol(M, h) we get

$$Y^2(M,[g]) := \inf_{h \in [g]_{gen}} \lambda_2(L_h) \operatorname{vol}(M,h)^{\frac{2}{n}}.$$

Theorem [Ammann-Humbert (2006)] If $Y^2(M, [g]) > 0$ and is attained by a generalized metric $h = u^{p_n - 2}g$, then u = |w|, where $w \in C^{3,\alpha}(M)$ ($w \in C^{\infty}(M - \{w = 0\})$) is a nodal solution of Yamabe equation

 $L_g(w) = \lambda_2(h) |w|^{p_n-2} w.$

Theorem [Ammann-Humbert (2006)] $Y^2(M, [g])$ is attained if

$$Y^{2}(M,g) < \left[Y(M,g)^{rac{n}{2}} + Y(S^{n})^{rac{n}{2}}
ight]^{rac{2}{n}}.$$

(with the strict inequality we avoid concentration phenomena of minimizing sequences of metrics)

Let G be a compact subgroup of the isometry group of (M, g). The G – equivariant Yamabe constant is

$$Y_G(M,[g]_G) = \inf_{h \in [g]_G} Y(h)$$

where $[g]_G$ is the subset of metrics of [g] that are *G*-invariant. If $G = \{Id\}$, then $Y_G(M, [g]_G) = Y(M, [g])$. Let G be a compact subgroup of the isometry group of (M, g). The G – equivariant Yamabe constant is

$$Y_G(M,[g]_G) = \inf_{h \in [g]_G} Y(h)$$

where $[g]_G$ is the subset of metrics of [g] that are *G*-invariant. If $G = \{Id\}$, then $Y_G(M, [g]_G) = Y(M, [g])$. and the *G* - *equivariant* second Yamabe constant is

$$Y_G^2(M,[g]_g) = \inf_{h \in [g]_G} \lambda_2^G(L_h) \operatorname{vol}(M,h)^{\frac{2}{n}}$$

where $\lambda_2^G(L_h)$ is the second eigenvalue of L_h restricted to G-invariant functions. If $G = \{Id\}$, then $Y_G^2(M, [g]_G) = Y^2(M, [g])$. Theorem [H-Madani (2016)] Let $\Lambda_G = \inf_{x \in M} \sharp \{ O_G(x) \}$. Then

$$Y_{G}^{2}(M,g) < \left[Y_{G}(M,g)^{\frac{n}{2}} + Y(S^{n})^{\frac{n}{2}}\Lambda_{G}\right]^{\frac{2}{n}}$$

if one of the following items is satisfied:

Theorem [H-Madani (2016)] Let $\Lambda_G = \inf_{x \in M} \sharp \{ O_G(x) \}$. Then

$$Y_G^2(M,g) < \left[Y_G(M,g)^{\frac{n}{2}} + Y(S^n)^{\frac{n}{2}} \Lambda_G\right]^{\frac{2}{n}}$$

if one of the following items is satisfied:

[Ammann-Humbert] Proved this theorem when $G = \{Id\}$ and M is non locally conformally flat.

$$Y_{G}^{2}(M,g) \leq \sup_{v \in V - \{0\}} \frac{\int_{M} a_{n} |\nabla v|_{g+th}^{2} + s_{g} v^{2} dv_{g}}{\int_{M} u^{p_{m+n}-2} v^{2} dv_{g}} (\int_{M} u^{p_{n}} dv_{g})^{\frac{2}{n}}.$$

for any $u \in L^{p_n}_{G,\geq 0}(M)$ and V any 2-dimensional subspace of $H^2_{1,G}(M)$ and $H^2_{1,G}(M - \{u = 0\})$.

$$Y_{G}^{2}(M,g) \leq \sup_{v \in V - \{0\}} \frac{\int_{M} a_{n} |\nabla v|_{g+th}^{2} + s_{g} v^{2} dv_{g}}{\int_{M} u^{p_{m+n}-2} v^{2} dv_{g}} (\int_{M} u^{p_{n}} dv_{g})^{\frac{2}{n}}.$$

for any $u \in L^{p_n}_{G,\geq 0}(M)$ and V any 2-dimensional subspace of $H^2_{1,G}(M)$ and $H^2_{1,G}(M - \{u = 0\})$. When $Y_G(M,g) > 0$, $\Lambda_G < \infty$

$$u_{\varepsilon} := Y(\phi_{\varepsilon})^{\frac{n-2}{4}}\phi_{\varepsilon} + Y_G(M,g)^{\frac{n-2}{4}}\psi$$

and

$$V_{\varepsilon} = span\{\phi_{\varepsilon},\psi\}$$

Where $Y(\varphi) = Y_G(M,g)$ and

$$u_{\varepsilon} := Y(\phi_{\varepsilon})^{\frac{n-2}{4}}\phi_{\varepsilon} + Y_{\mathcal{G}}(M,g)^{\frac{n-2}{4}}\psi$$

Let P such that $O_G(P)$ is minimal, then

$$\phi_{P,\varepsilon}(Q) = \eta_{P,\delta} \left(\frac{\varepsilon}{\varepsilon^2 + d^2(P,Q)}\right)^{\frac{n-2}{2}}$$

and

$$\psi_{P,\varepsilon}(Q) = (1 + r^{\omega+2} \sum_{k=1}^{\left\lfloor \frac{\omega}{2} \right\rfloor} c_k \varphi_k(\xi)) \phi_{P,\varepsilon}(Q)$$

Finally,

$$\phi_{\varepsilon} = \sum_{\sigma \in G/H} \psi_{P,\varepsilon} \circ \sigma^{-1}$$

 $H \subset G$ the stabilizer of P.

$$egin{aligned} u_arepsilon &:= Y(\phi_arepsilon)^{rac{n-2}{4}} \phi_arepsilon + Y_G(M,g)^{rac{n-2}{4}} arphi \ V_arepsilon &= span\{\phi_arepsilon,arphi\} \end{aligned}$$

for ε small enough.

$$Y_{G}^{2}(M,g) \leq \sup_{v \in V_{\varepsilon} - \{0\}} \frac{\int_{M} a_{n} |\nabla v|_{g+th}^{2} + s_{g} v^{2} dv_{g}}{\int_{M} u_{\varepsilon}^{p_{m+n}-2} v^{2} dv_{g}}$$
$$\times (\int_{M} u_{\varepsilon}^{p_{n}} dv_{g})^{\frac{2}{n}} < \left[Y_{G}(M,g)^{\frac{n}{2}} + Y(S^{n})^{\frac{n}{2}} \Lambda_{G}\right]^{\frac{2}{n}}.$$

We always have

$$2^{\frac{2}{n}}Y_{G}(M,g) \leq Y_{G}^{2}(M,g) \leq \left[Y_{G}(M,g)^{\frac{n}{2}} + Y(S^{n})^{\frac{n}{2}}\Lambda_{G}\right]^{\frac{2}{n}}$$

In Particular if $G = \{Id\}$

$$2^{\frac{2}{n}}Y(M,[g]) \le Y^{2}(M,[g]) \le \left[Y(M,g)^{\frac{n}{2}} + Y(S^{n})^{\frac{n}{2}}\right]^{\frac{2}{n}}$$
$$Y^{2}(S^{n},g_{0}^{n}) = 2^{\frac{2}{n}}Y(S^{n}).$$

Theorem [H (2015)] Let (M^m, g) and (N^n, h) be closed manifolds, $(m \ge 2)$ and $s_g > 0$. Then,

$$\lim_{t\to+\infty}Y^2(M\times N,[g+th])=2^{\frac{2}{m+n}}Y(M\times {\rm I\!R}^n,[g+g_e^n]).$$

Theorem [H (2015)] Let (M^m, g) and (N^n, h) be closed manifolds, $(m \ge 2)$ and $s_g > 0$. Then,

 $\lim_{t\to+\infty}Y^2(M\times N,[g+th])=2^{\frac{2}{m+n}}Y(M\times {\rm I\!R}^n,[g+g_e^n]).$

This is the second Yamabe constant's version of Theorem [Akutagawa, Florit, and Petean (2007)]

 $\lim_{t\to+\infty}Y(M\times N,[g+th])=Y(M\times {\rm I\!R}^n,[g+g_e^n]).$

 $L_{g+h}(v) = c|v|^{p_{m+n}-2}v$

$$L_{g+h}(v) = c|v|^{p_{m+n}-2}v$$

$$egin{aligned} &Y^2(M imes N,g+th) < \left[Y(M imes N,[g+th])^{rac{m+n}{2}}+Y(S^{m+n})^{rac{m+n}{2}}
ight]^{rac{2}{m+n}}\ &\Rightarrow &Y^2(M imes N,g+th) > 0 ext{ is attained}. \end{aligned}$$

$$L_{g+h}(v) = c|v|^{p_{m+n}-2}v$$

Moreover, $v \in C^{3,\alpha}(M \times N)$ and is smooth in $M \times N - \{v^{-1}(0)\}$. Proof: If

$$egin{aligned} &Y^2(M imes N,g+th) < \left[Y(M imes N,[g+th])^{rac{m+n}{2}}+Y(S^{m+n})^{rac{m+n}{2}}
ight]^{rac{z}{m+n}}\ &\Rightarrow &Y^2(M imes N,g+th) > 0 ext{ is attained}. \end{aligned}$$

 $Y^{2}(M \times N, [g+th]) \leq \left[Y(M \times N, g+th)^{\frac{m+n}{2}} + Y(S^{m+n})^{\frac{m+n}{2}}\right]^{\frac{2}{m+n}}$

$$L_{g+h}(v) = c|v|^{p_{m+n}-2}v$$

$$egin{aligned} &Y^2(M imes N,g+th) < \left[Y(M imes N,[g+th])^{rac{m+n}{2}}+Y(S^{m+n})^{rac{m+n}{2}}
ight]^{rac{z}{m+n}}\ &\Rightarrow &Y^2(M imes N,g+th) > 0 ext{ is attained}. \end{aligned}$$

$$L_{g+h}(v) = c|v|^{p_{m+n}-2}v$$

$$egin{aligned} &Y^2(M imes N,g+th) < \left[Y(M imes N,[g+th])^{rac{m+n}{2}}+Y(S^{m+n})^{rac{m+n}{2}}
ight]^{rac{z}{m+n}}\ &\Rightarrow &Y^2(M imes N,g+th) > 0 ext{ is attained}. \end{aligned}$$

$$L_{g+h}(v) = c|v|^{p_{m+n}-2}v$$

$$egin{aligned} &Y^2(M imes N,g+th) < \left[Y(M imes N,[g+th])^{rac{m+n}{2}}+Y(S^{m+n})^{rac{m+n}{2}}
ight]^{rac{z}{m+n}}\ &\Rightarrow &Y^2(M imes N,g+th) > 0 ext{ is attained}. \end{aligned}$$

$$L_{g+h}(v) = c|v|^{p_{m+n}-2}v$$

Moreover, $v \in C^{3,\alpha}(M \times N)$ and is smooth in $M \times N - \{v^{-1}(0)\}$. Proof: If

$$egin{aligned} &Y^2(M imes N,g+th) < \left[Y(M imes N,[g+th])^{rac{m+n}{2}}+Y(S^{m+n})^{rac{m+n}{2}}
ight]^{rac{z}{m+n}}\ &\Rightarrow &Y^2(M imes N,g+th) > 0 ext{ is attained}. \end{aligned}$$

 $Y^2(M \times N, g+th) < \left| Y(M \times N, [g+th])^{\frac{m+n}{2}} + Y(S^{m+n})^{\frac{m+n}{2}} \right|^{\frac{m}{m}}$

2 T

Nodal solutions of Yamabe equation

Remarks $(M^m \times N^n, g + th)$ is not locally conformally flat $(s_g > 0 \Longrightarrow Y(M \times N, [g + h]) > 0$ if t large enough). So if $m + n \ge 11$ we can apply Ammann and Humbert's Theorem. Actually our result improve the previous results when $4 \le m + n < 11$.

Let $(M^m \times N^n, g + h)$, the *N*-Yamabe constant is

$$Y_N(M \times N, g + h) := \inf_{u \in C^{\infty}(N) - \{0\}} Y(u^{p_{m+n}-2}(g + h)).$$

 $Y(M \times N, g + h) \leq Y_N(M \times N, g + h)$

Let $(M^m \times N^n, g + h)$, the N-Yamabe constant is

$$Y_N(M \times N, g + h) := \inf_{u \in C^{\infty}(N) - \{0\}} Y(u^{p_{m+n}-2}(g + h)).$$

 $Y(M \times N, g + h) \leq Y_N(M \times N, g + h)$

The second N-Yamabe constant

$$Y^2_{\mathcal{N}}(M \times N, g+h) := \inf_{\tilde{h} \in [g+h]_{\mathcal{N}}} \lambda^{\mathcal{N}}_2(L_{\tilde{h}}) vol(M \times N, \tilde{h})^{\frac{2}{m+n}},$$

where $[g + h]_N : \{\tilde{h} = u^{p_{m+n}-2}(g + h), u \in L^{p_{m+n}}(N) - \{0\}\}$ and $\lambda_2^N(\tilde{h})$ is the 2-nd eigenvalue of $L_{\tilde{h}}$ restricted to functions that depend only on the variable N.

$$Y^2(M imes N, g+h) \leq Y^2_N(M imes N, g+h)$$

Theorem[H] (2015) Let (M^m, g) $(m \ge 2)$ $s_g \equiv c > 0$ and (N^n, h) be a closed manifold. Then,

 $\lim_{t\to+\infty}Y_N^2(M\times N,g+th)=2^{\frac{2}{m+n}}Y_{\mathrm{I\!R}^n}(M\times \mathrm{I\!R}^n,g+g_e^n).$

Theorem[H] (2015) Let (M^m, g) $(m \ge 2)$ $s_g \equiv c > 0$ and (N^n, h) be a closed manifold. Then,

 $\lim_{t\to+\infty}Y^2_N(M\times N,g+th)=2^{\frac{2}{m+n}}Y_{\mathrm{I\!R}^n}(M\times \mathrm{I\!R}^n,g+g^n_e).$

 $Y^2(M \times N, g + h)$ is always attained, because $i : H_1^2(N) \longrightarrow L^{p_{m+n}}(N)$ is a compact operator $(p_{m+n} < p_n)$, so we can avoid concentration phenomena of minimizing sequences. Therefore, is this situation we always have a nodal solution of

 $L_{g+h}(u) = c|u|^{p_{m+n}-2}u$

where u is a functions that depends on N.

Let G be compact subgroup of the isometry group of (M,g). Assume that $Y_G(M,g) > 0$, then we have Theorem[H-Madani] (2016) If $Y_G^2(M,g)$ is attained by $h = u^{p_n-2}g$ with $u \in L_{\geq 0,G}^{p_n}$, then u = |w|, with w a G-invariant nodal solution of the Yamabe equation

$$L_g(w) = \lambda |w|^{p_n-2} w.$$

 $u \in C^{2,\alpha}$ and is smooth outside the nodal set.

Let G be compact subgroup of the isometry group of (M,g). Assume that $Y_G(M,g) > 0$, then we have Theorem[H-Madani] (2016) If $Y_G^2(M,g)$ is attained by $h = u^{p_n-2}g$ with $u \in L_{\geq 0,G}^{p_n}$, then u = |w|, with w a G-invariant nodal solution of the Yamabe equation

$$L_g(w) = \lambda |w|^{p_n-2} w.$$

 $u \in C^{2,\alpha}$ and is smooth outside the nodal set. For instance, if the orbits of the group action are not finite \implies $Y^2_G(M,g)$ is attained. (the inclusion of $H^2_{1,G}(M)$ in $L^{p_n}(M)$ is compact if $\inf_{x \in M} \dim(O_G(x)) \ge 1$) Let $G = G_1 \times G_2 \subseteq I(M_1 \times M_2)$ where $G_1 \subseteq I(M, g)$ and $G_2 \subseteq I(N, h)$. In the same way as the second N-Yamabe constant, we can define the G-equivariant N-second Yamabe constant as:

$$Y^2_{N,G}(M\times N,g+h):=\inf_{\bar{g}\in [g+h]_{N,G}}\lambda^N_{2,G}(L_{\bar{g}})vol(M\times N,\bar{g})^{\frac{2}{m+n}}.$$

where

$$[g+h]_{N,G} := \{u^{p_n-2}(g+h) \ , \ u \in C^{\infty}_{G,>0}(N) / \ \sigma^*(u) = u \ \forall \ \sigma \in G\}$$

If $G_2 = \{Id\}$, then $Y^2_{N,G}(M \times N, g+h) = Y^2_N(M \times N, g+h)$.

Proposition [H-M] Let (M, g) of constant scalar curvature. Then, the *G*-equivariant *N*-second Yamabe constant is always achieved.

Corollary [H-M] Let (M^m, g) of c. s. c. and (N^n, h) be closed Riemannian manifolds and let $G \subseteq I(N, g)$. There exists a G-invariant nodal solution of the Yamabe equation on $(M \times N, g + h)$ that depends only on the N variable.

Theorem [H-Madani] (2016)

Let (M^m, g) with $m \ge 2$ (of positive scalar curvature). Let G_1 be a subgroup of I(M, g). Let G_1 be a subgroup of I(M, g) and $G = G_1 \times \{Id\}$.

 $\lim_{t\to+\infty}Y_G(M\times N,g+th)=Y_G(M\times {\rm I\!R}^n,g+g_e^n).$

b)

a)

 $\lim_{t\to+\infty}Y_G^2(M\times N,g+th)=2^{\frac{2}{m+n}}Y_G(M\times {\rm I\!R}^n,g+g_e^n).$

c)

$$\lim_{t\to+\infty}Y^2_{N,G}(M\times N,g+th)=2^{\frac{2}{m+n}}Y_{\mathbb{R}^n,G}(M\times \mathbb{R}^n).$$

Thanks!

Nodal solutions of Yamabe equation