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Noncompact Homogeneous Einstein Manifolds:
Big Questions

I Question: Which manifolds admit a metric of constant
negative Ricci curvature?

I Easier question: Which manifolds admit a homogeneous
metric of constant negative Ricci curvature?

Alekseevskii conjecture [1975]: Every noncompact homogeneous
Einstein manifold is a solvmanifold, a Riemannian manifold with a
solvable group of isometries.



Solvmanifolds

All our homogeneous examples will be solvable Lie groups with a
left invariant metric

Definition
A simply connected solvmanifold S with a left invariant metric g is
completely determined by its metric Lie algebra (s, 〈 , 〉).

Definition
Write a metric solvable algebra (s, 〈 , 〉) as s = a⊕ n where n is the
nilradical of s. We say s is of Iwasawa type if

I a is abelian

I adA is symmetric relative to 〈 , 〉, for all A in a

I for some A in a, adA |n is positive definite.



Rank and Nilpotency

I For a solvmanifold s, the algebraic rank of s is the dimension
of a

I The nilpotency of the nilradical n of s is the step-size:

I n is k-step if the (k − 1) derived algebra is non-zero but the
kth derived algebra vanishes ([n, [n, [. . . [n, n]..]]] = 0).

In general, it seems difficult to find explicit examples of Einstein
solvmanifolds with higher nilpotency.



Rank One Reduction

I Given any Einstein solvmanifold (s, 〈 , 〉), we can find a rank
one sub-solvmanifold,

s′ = 〈A0〉+ n.

I Endowed with the induced metric, the sub-solvmanifold s′ is
not only also Einstein, it inherits its Einstein constant from s.

I This suggests the structure of n determines the Ricci
geometry of s.

We will see that in some cases, a comparable reduction can be
done on n (and a), so that again, the constant Ricci curvature is
inherited.



Solvmanifolds from symmetric spaces (H. Tamaru)

I Let g be a semisimple Lie algebra.

I Use a Cartan involution σ to decompose g = k + p
(σ|k = Id, σ|p = − Id).

I Define Bσ(X ,Y ) := −B(X , σ(Y )), an adk-invariant inner
product on g.

I Let a be a maximal torus in p.

I g = g0 +
∑

α∈∆ gα is root space decomposition,
g0 is the centralizer of a in g,

I gα = {X ∈ g | (ad A)X = α(A)X for all A ∈ a}.
I In ∆+, take simple roots Λ ⊂ ∆+.



Tamaru’s construction

I Define n :=
∑

α∈∆+ gα, the nilradical of g.

I Define s := a + n, with inner product

〈 , 〉 = 2Bσ|a×a + Bσ|n×n.

I The corresponding simply connected solvmanifold (S , g) is a
symmetric space.



Tamaru’s construction

I Let H i in a be the dual to αi in a∗, so that αi (H j) = δij .

I Choose a subset of fundamental roots

Γ′ = {αi1 , αi2 , . . . , αik} ⊂ Λ.

I Let Z = H i1 + H i2 + · · ·+ H ik , the characteristic element.

Definition

I Let a′ = span{H i1 ,H i2 , . . . ,H ik} ⊂ a

I Let n′ =
∑

α(Z)>0

nα

I Take s′ = a′ + n′, with 〈 , 〉′ = 〈 , 〉, restricted.



Ricci curvature

Tamaru’s original solvmanifold (s, 〈 , 〉) corresponds to a
noncompact symmetric space with the symmetric metric: Einstein.

The subalgebra is constructed so that the constant Ricci curvature
is unchanged:

I For any A,A′ ∈ a′ and any X ,Y ∈ n′,

I Rics
′
(A,A′) = Rics(A,A′)

I Rics
′
(A,X ) = Rics(A,X ) = 0

I Rics
′
(X ,Y ) = Rics(X ,Y ).



Outline of Tamaru’s Proof:

Theorem (Wolter)

Let (s = a + n, 〈 , 〉) be a solvable metric Lie algebra of Iwasawa
type. Then the Ricci curvature satisfies

(1) Rics(A,A′) = tr(adA) ◦ (adA′) for all A,A′ ∈ a,

(2) Rics(X ,A) = 0 for all A ∈ a and X ∈ n,

(3) Rics(X ,Y ) = Ricn(X ,Y )− 〈adH0 X ,Y 〉 for all X ,Y ∈ n.

Here H0 is the mean curvature vector for s. Thanks to Wolter,

Corollary

Rics
′
(A1,A2) = Rics(A1,A2) for every A1,A2 ∈ a′.



Outline of Tamaru’s Proof, cont.

Theorem (Alekseevskii)

Let {Ei} be an orthonormal basis for the nilpotent metric Lie
algebra (n, 〈 , 〉). The Ricci endomorphism Ricn is given by

Ricn =
1

4

∑
(adEi

) ◦ (adEi
)∗ − 1

2

∑
(adEi

)∗ ◦ (adEi
).

Lemma
Let X ∈ n′ and let H⊥0 = H0 − H ′0. Then

Ricn(X )− Ricn
′
(X ) = [H⊥0 ,X ].

As above, H0 is the MCV for s, and H ′0 denotes the MCV for s′.



Outline of Tamaru’s Proof, cont.

Using the Lemma, Ricn(X )− Ricn
′
(X ) = [H⊥0 ,X ].

Combining this with Wolter’s result,

Rics(X ,Y )− Rics
′
(X ,Y ) = Ricn(X ,Y )− Ricn

′
(X ,Y )

− (〈[H0,X ],Y 〉 − 〈[H ′0,X ],Y 〉)
= 〈[H⊥0 ,X ],Y 〉 − 〈[H0 − H ′0,X ],Y 〉
= 〈[H⊥0 ,X ],Y 〉 − 〈[H⊥0 ,X ],Y 〉
= 0.



Other consequences

I S ′ is a minimal submanifold of S .

I The Einstein condition is not needed here. The trace of the
second fundamental form vanishes.

I S ′ in S is not totally geodesic, as long as Γ′ and Λ \ Γ′ are not
orthogonal.



Extending Tamaru’s construction

Let s = a⊕ n be an Einstein solvable Lie algebra.

I

s = a +
∑
α∈∆

nα

where nα = {X ∈ n | [A,X ] = α(A)X for all A ∈ a}.
I

∆ = {α ∈ a∗ | nα 6= 0}.

I Let Λ = {α1, α2, . . . , αr} be a set of fundamental roots.

I Let H i in a be the dual to αi in a∗.

I Choose a subset of fundamental roots

Γ′ = {αi1 , αi2 , . . . , αik} ⊂ Λ.



Sub-solvmanifold:

Let Z = H i1 + H i2 + · · ·+ H ik ∈ a.

Definition
The subset Γ′ defines the following subalgebras of s:

I a′ = span{H i1 ,H i2 , . . . ,H ik} ⊂ a

I n′ =
∑

α(Z)>0 nα

I s′ = a′ + n′

Restrict the inner product 〈 , 〉 on s to s′. We say that (s′, 〈 , 〉) is
an attached metric Lie subalgebra to (s, 〈 , 〉).



Ricci Curvatures, outline of proof

Lemma
Let X ∈ n′ and let H⊥0 = H0 − H ′0. Then

Ricn(X )− Ricn
′
(X ) = [H⊥0 ,X ]

if and only if
(i)

∑
i (adE ′i

)∗E ′i is in a′ (the mean curvature vector for s′), and
(ii)∑
j

(adE⊥j
)∗(adE⊥j

)(X )−
∑
j

(adE⊥j
)(adE⊥j

)∗(X ) =
∑
j

ad(ad
E⊥
j

)∗E⊥j
(X ).



(i) Mean curvature vector

The MCV for s is H0 = −
∑

k(adEk
)∗Ek , where the sum is over an

orthonormal basis {Ek} for all of n.
We choose {Ek} = {E ′i } ∪ {E⊥j } where each basis vector is in a

root space and {E ′i } is a basis for n′, while {E⊥j } is a basis for n0.

H0 = −
∑
k

(adEk
)∗Ek = −

∑
i

(adE ′i
)∗E ′i +−

∑
j

(adE⊥j
)∗E⊥j .

To preserve constant Ricci curvature, we need −
∑

i (adE ′i
)∗E ′i ∈ a′.

This is not always the case.



(ii) When is the “ad-star” condition true?

If (adE⊥j
)∗ = adX for some X (in some larger algebra), then write

adE⊥j
= adY . Our condition (before summing)

(adE⊥j
)∗(adE⊥j

)− (adE⊥j
)(adE⊥j

)∗ = ad(ad
E⊥
j

)∗E⊥j

is exactly the Jacobi Identity: adX adY − adY adX = ad[X ,Y ] .

∑
j

(adE⊥j
)∗(adE⊥j

)(·)−
∑
j

(adE⊥j
)(adE⊥j

)∗(·) =
∑
j

ad(ad
E⊥
j

)∗E⊥j
(·).

For our condition, we need only sum over n0 and apply to n′.
Although this is weaker, it does not hold in all cases.
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