Submanifolds of Einstein solvmanifolds

Megan Kerr Wellesley College joint work with Tracy Payne

VI Workshop on Differential Geometry EGEO 2016 La Falda, Córdoba

Table of contents

Introduction

The Symmetric setting

Extension to General Einstein Solvmanifolds

Noncompact Homogeneous Einstein Manifolds: Big Questions

- Question: Which manifolds admit a metric of constant negative Ricci curvature?
- Easier question: Which manifolds admit a homogeneous metric of constant negative Ricci curvature?

Alekseevskii conjecture [1975]: Every noncompact homogeneous Einstein manifold is a *solvmanifold*, a Riemannian manifold with a solvable group of isometries.

Solvmanifolds

All our homogeneous examples will be solvable Lie groups with a left invariant metric

Definition

A simply connected solvmanifold S with a left invariant metric g is completely determined by its *metric Lie algebra* $(\mathfrak{s}, \langle, \rangle)$.

Definition

Write a metric solvable algebra $(\mathfrak{s}, \langle , \rangle)$ as $\mathfrak{s} = \mathfrak{a} \oplus \mathfrak{n}$ where \mathfrak{n} is the nilradical of \mathfrak{s} . We say \mathfrak{s} is of *Iwasawa type* if

- a is abelian
- ad_A is symmetric relative to \langle , \rangle , for all A in a
- for some A in \mathfrak{a} , $\operatorname{ad}_A|_{\mathfrak{n}}$ is positive definite.

Rank and Nilpotency

- For a solvmanifold s, the algebraic rank of s is the dimension of a
- The nilpotency of the nilradical n of s is the step-size:
- n is k-step if the (k − 1) derived algebra is non-zero but the kth derived algebra vanishes ([n, [n, [...[n, n]..]]] = 0).

In general, it seems difficult to find explicit examples of Einstein solvmanifolds with higher nilpotency.

Rank One Reduction

 Given any Einstein solvmanifold (s, (,)), we can find a rank one sub-solvmanifold,

$$\mathfrak{s}' = \langle A_0 \rangle + \mathfrak{n}.$$

- Endowed with the induced metric, the sub-solvmanifold s' is not only also Einstein, it inherits its Einstein constant from s.
- This suggests the structure of n determines the Ricci geometry of s.

We will see that in some cases, a comparable reduction can be done on \mathfrak{n} (and \mathfrak{a}), so that again, the constant Ricci curvature is inherited.

Solvmanifolds from symmetric spaces (H. Tamaru)

- Let g be a semisimple Lie algebra.
- Use a Cartan involution σ to decompose g = ℓ + p (σ|_ℓ = Id, σ|_p = − Id).
- ▶ Define B_σ(X, Y) := −B(X, σ(Y)), an ad_ℓ-invariant inner product on g.
- Let α be a maximal torus in p.
- 𝑘 = 𝑘₀ + ∑_{α∈Δ} 𝑘_α is root space decomposition,
 𝑘₀ is the centralizer of 𝑘 in 𝑘,
- $\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g} \mid (\operatorname{ad} A)X = \alpha(A)X \text{ for all } A \in \mathfrak{a}\}.$
- In Δ^+ , take simple roots $\Lambda \subset \Delta^+$.

Tamaru's construction

- Define $\mathfrak{n} := \sum_{\alpha \in \Delta^+} \mathfrak{g}_{\alpha}$, the nilradical of \mathfrak{g} .
- Define $\mathfrak{s} := \mathfrak{a} + \mathfrak{n}$, with inner product

$$\langle \,,\,\rangle = 2B_{\sigma}|_{\mathfrak{a}\times\mathfrak{a}} + B_{\sigma}|_{\mathfrak{n}\times\mathfrak{n}}.$$

The corresponding simply connected solvmanifold (S,g) is a symmetric space.

Tamaru's construction

• Let H^i in \mathfrak{a} be the dual to α_i in \mathfrak{a}^* , so that $\alpha_i(H^j) = \delta_{ij}$.

Choose a subset of fundamental roots

$$\Gamma' = \{\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_k}\} \subset \Lambda.$$

• Let $Z = H^{i_1} + H^{i_2} + \cdots + H^{i_k}$, the *characteristic element*.

Definition

• Let
$$\mathfrak{a}' = \operatorname{span} \{ H^{i_1}, H^{i_2}, \dots, H^{i_k} \} \subset \mathfrak{a}$$

• Let $\mathfrak{n}' = \sum_{\alpha(Z) > 0} \mathfrak{n}_{\alpha}$

• Take $\mathfrak{s}' = \mathfrak{a}' + \mathfrak{n}'$, with $\langle , \rangle' = \langle , \rangle$, restricted.

Ricci curvature

Tamaru's original solvmanifold $(\mathfrak{s}, \langle, \rangle)$ corresponds to a noncompact symmetric space with the symmetric metric: Einstein.

The subalgebra is constructed so that the constant Ricci curvature is unchanged:

• For any
$$A, A' \in \mathfrak{a}'$$
 and any $X, Y \in \mathfrak{n}'$,

•
$$\operatorname{Ric}^{\mathfrak{s}'}(A, A') = \operatorname{Ric}^{\mathfrak{s}}(A, A')$$

•
$$\operatorname{Ric}^{\mathfrak{s}'}(A,X) = \operatorname{Ric}^{\mathfrak{s}}(A,X) = 0$$

•
$$\operatorname{Ric}^{\mathfrak{s}'}(X,Y) = \operatorname{Ric}^{\mathfrak{s}}(X,Y).$$

Outline of Tamaru's Proof:

Theorem (Wolter)

Let $(\mathfrak{s} = \mathfrak{a} + \mathfrak{n}, \langle, \rangle)$ be a solvable metric Lie algebra of Iwasawa type. Then the Ricci curvature satisfies (1) $\operatorname{Ric}^{\mathfrak{s}}(A, A') = \operatorname{tr}(\operatorname{ad}_{A}) \circ (\operatorname{ad}_{A'})$ for all $A, A' \in \mathfrak{a}$, (2) $\operatorname{Ric}^{\mathfrak{s}}(X, A) = 0$ for all $A \in \mathfrak{a}$ and $X \in \mathfrak{n}$, (3) $\operatorname{Ric}^{\mathfrak{s}}(X, Y) = \operatorname{Ric}^{\mathfrak{n}}(X, Y) - \langle \operatorname{ad}_{H_{0}} X, Y \rangle$ for all $X, Y \in \mathfrak{n}$.

Here H_0 is the mean curvature vector for \mathfrak{s} . Thanks to Wolter, Corollary $\operatorname{Ric}^{\mathfrak{s}'}(A_1, A_2) = \operatorname{Ric}^{\mathfrak{s}}(A_1, A_2)$ for every $A_1, A_2 \in \mathfrak{a}'$. Outline of Tamaru's Proof, cont.

Theorem (Alekseevskii)

Let $\{E_i\}$ be an orthonormal basis for the nilpotent metric Lie algebra (n, \langle , \rangle) . The Ricci endomorphism Ricⁿ is given by

$$\mathsf{Ric}^{\mathfrak{n}} = \frac{1}{4} \sum (\mathsf{ad}_{E_i}) \circ (\mathsf{ad}_{E_i})^* - \frac{1}{2} \sum (\mathsf{ad}_{E_i})^* \circ (\mathsf{ad}_{E_i}).$$

Lemma

Let $X \in \mathfrak{n}'$ and let $H_0^{\perp} = H_0 - H_0'$. Then

$$\operatorname{Ric}^{\mathfrak{n}}(X) - \operatorname{Ric}^{\mathfrak{n}'}(X) = [H_0^{\perp}, X].$$

As above, H_0 is the MCV for \mathfrak{s} , and H'_0 denotes the MCV for \mathfrak{s}' .

Outline of Tamaru's Proof, cont.

Using the Lemma, $\operatorname{Ric}^{\mathfrak{n}}(X) - \operatorname{Ric}^{\mathfrak{n}'}(X) = [H_0^{\perp}, X]$. Combining this with Wolter's result,

$$\begin{aligned} \operatorname{Ric}^{\mathfrak{s}}(X,Y) - \operatorname{Ric}^{\mathfrak{s}'}(X,Y) &= \operatorname{Ric}^{\mathfrak{n}}(X,Y) - \operatorname{Ric}^{\mathfrak{n}'}(X,Y) \\ &- \left(\langle [H_0,X],Y \rangle - \langle [H_0',X],Y \rangle \right) \\ &= \langle [H_0^{\perp},X],Y \rangle - \langle [H_0 - H_0',X],Y \rangle \\ &= \langle [H_0^{\perp},X],Y \rangle - \langle [H_0^{\perp},X],Y \rangle \\ &= 0. \end{aligned}$$

Other consequences

- S' is a minimal submanifold of S.
- The Einstein condition is not needed here. The trace of the second fundamental form vanishes.
- S' in S is not totally geodesic, as long as Γ' and Λ \ Γ' are not orthogonal.

Extending Tamaru's construction

Let $\mathfrak{s} = \mathfrak{a} \oplus \mathfrak{n}$ be an Einstein solvable Lie algebra.

$$\mathfrak{s} = \mathfrak{a} + \sum_{lpha \in \Delta} \mathfrak{n}_{lpha}$$

where $\mathfrak{n}_{\alpha} = \{X \in \mathfrak{n} \mid [A, X] = \alpha(A)X \text{ for all } A \in \mathfrak{a}\}.$

$$\Delta = \{ \alpha \in \mathfrak{a}^* \mid \mathfrak{n}_{\alpha} \neq \mathbf{0} \}.$$

- Let $\Lambda = \{\alpha_1, \alpha_2, \dots, \alpha_r\}$ be a set of fundamental roots.
- Let H^i in \mathfrak{a} be the dual to α_i in \mathfrak{a}^* .
- Choose a subset of fundamental roots

$$\Gamma' = \{\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_k}\} \subset \Lambda.$$

Sub-solvmanifold:

Let
$$Z = H^{i_1} + H^{i_2} + \cdots + H^{i_k} \in \mathfrak{a}$$
.

Definition

The subset Γ' defines the following subalgebras of \mathfrak{s} :

$$\mathfrak{a}' = \operatorname{span} \{ H^{i_1}, H^{i_2}, \dots, H^{i_k} \} \subset \mathfrak{a}$$

$$\mathfrak{n}' = \sum_{\alpha(Z) > 0} \mathfrak{n}_{\alpha}$$

$$\mathfrak{s}' = \mathfrak{a}' + \mathfrak{n}'$$

Restrict the inner product \langle , \rangle on \mathfrak{s} to \mathfrak{s}' . We say that $(\mathfrak{s}', \langle , \rangle)$ is an *attached* metric Lie subalgebra to $(\mathfrak{s}, \langle , \rangle)$.

Ricci Curvatures, outline of proof

Lemma Let
$$X \in \mathfrak{n}'$$
 and let $H_0^{\perp} = H_0 - H_0'$. Then

$$\operatorname{Ric}^{\mathfrak{n}}(X) - \operatorname{Ric}^{\mathfrak{n}'}(X) = [H_0^{\perp}, X]$$

if and only if (i) $\sum_{i} (\operatorname{ad}_{E'_{i}})^{*} E'_{i}$ is in \mathfrak{a}' (the mean curvature vector for \mathfrak{s}'), and (ii)

$$\sum_{j} (\mathrm{ad}_{E_{j}^{\perp}})^{*} (\mathrm{ad}_{E_{j}^{\perp}})(X) - \sum_{j} (\mathrm{ad}_{E_{j}^{\perp}}) (\mathrm{ad}_{E_{j}^{\perp}})^{*}(X) = \sum_{j} \mathrm{ad}_{(\mathrm{ad}_{E_{j}^{\perp}})^{*}E_{j}^{\perp}}(X).$$

(i) Mean curvature vector

The MCV for \mathfrak{s} is $H_0 = -\sum_k (\operatorname{ad}_{E_k})^* E_k$, where the sum is over an orthonormal basis $\{E_k\}$ for all of \mathfrak{n} . We choose $\{E_k\} = \{E'_i\} \cup \{E_j^{\perp}\}$ where each basis vector is in a root space and $\{E'_i\}$ is a basis for \mathfrak{n}' , while $\{E_i^{\perp}\}$ is a basis for \mathfrak{n}^0 .

$$H_0 = -\sum_k (\operatorname{ad}_{E_k})^* E_k = -\sum_i (\operatorname{ad}_{E_i'})^* E_i' + -\sum_j (\operatorname{ad}_{E_j^\perp})^* E_j^\perp.$$

To preserve constant Ricci curvature, we need $-\sum_i (\operatorname{ad}_{E'_i})^* E'_i \in \mathfrak{a}'$. This is not always the case.

(ii) When is the "ad-star" condition true?

If $(\operatorname{ad}_{E_j^{\perp}})^* = \operatorname{ad}_X$ for some X (in some larger algebra), then write $\operatorname{ad}_{E_j^{\perp}} = \operatorname{ad}_Y$. Our condition (before summing)

$$(\mathsf{ad}_{E_j^\perp})^*(\mathsf{ad}_{E_j^\perp}) - (\mathsf{ad}_{E_j^\perp})(\mathsf{ad}_{E_j^\perp})^* = \mathsf{ad}_{(\mathsf{ad}_{E_i^\perp})^*E_j^\perp}$$

is exactly the Jacobi Identity: $\operatorname{ad}_X \operatorname{ad}_Y - \operatorname{ad}_Y \operatorname{ad}_X = \operatorname{ad}_{[X,Y]}$.

$$\sum_{j} (\mathrm{ad}_{E_{j}^{\perp}})^{*} (\mathrm{ad}_{E_{j}^{\perp}})(\cdot) - \sum_{j} (\mathrm{ad}_{E_{j}^{\perp}}) (\mathrm{ad}_{E_{j}^{\perp}})^{*} (\cdot) = \sum_{j} \mathrm{ad}_{(\mathrm{ad}_{E_{j}^{\perp}})^{*} E_{j}^{\perp}} (\cdot).$$

For our condition, we need only sum over n^0 and apply to n'. Although this is weaker, it does not hold in all cases.