Metric 2-step Nilpotent Lie Algebras associated with Graphs

Meera Mainkar

Central Michigan University

VI Workshop on Differential Geometry

Joint work with Rachelle DeCoste and Lisa DeMeyer

(ロ)、<()、<()、<()、<()、<()、<()</p>

Graphs and metric 2-step nilpotent Lie algebras

$\bigcirc j(Z)$ maps

- 3 Singularity Properties
- 4 Heisenberg-Like Lie Algebras
- 5 Density of Closed Geodesics

I Graphs and metric 2-step nilpotent Lie algebras

$\bigcirc j(Z)$ maps

- 3 Singularity Properties
- 4 Heisenberg-Like Lie Algebras
- 5 Density of Closed Geodesics

< A

Let G = (S, E) be a simple directed graph. Let $S = \{X_1, \ldots, X_m\}$ and $E = \{Z_1, \ldots, Z_q\}$. Define $\mathfrak{n}_G = \mathfrak{v} \oplus \mathfrak{z}$ where *S* is a basis for \mathfrak{v} and *E* is a basis for \mathfrak{z} over \mathbb{R} .

The Lie bracket on n_G is defined by extending linearly the following relations.

 $[X_i, X_j] = Z_k$ if Z_k is a directed edge from vertex X_i to vertex X_j .

All other Lie brackets are defined to be zero.

Then \mathfrak{n}_G s a 2-step nilpotent Lie algebra associated with graph *G*. This construction was introduced by Dani and M. (2005) to study Anosov automorphisms on corresponding nilmanifolds. Define the inner product <, > on \mathfrak{n}_G such that $S \cup E$ is an orthonormal basis for \mathfrak{n}_G .

< ロ > < 同 > < 回 > < 国 > < 国

Let G = (S, E) be a simple directed graph. Let $S = \{X_1, \ldots, X_m\}$ and $E = \{Z_1, \ldots, Z_q\}$. Define $\mathfrak{n}_G = \mathfrak{v} \oplus \mathfrak{z}$ where *S* is a basis for \mathfrak{v} and *E* is a basis for \mathfrak{z} over \mathbb{R} .

The Lie bracket on n_G is defined by extending linearly the following relations.

 $[X_i, X_j] = Z_k$ if Z_k is a directed edge from vertex X_i to vertex X_j .

All other Lie brackets are defined to be zero.

Then \mathfrak{n}_G s a 2-step nilpotent Lie algebra associated with graph *G*. This construction was introduced by Dani and M. (2005) to study Anosov automorphisms on corresponding nilmanifolds. Define the inner product <, > on \mathfrak{n}_G such that $S \cup E$ is an orthonormal basis for \mathfrak{n}_G .

< ロ > < 同 > < 回 > < 国 > < 国

Let G = (S, E) be a simple directed graph. Let $S = \{X_1, \ldots, X_m\}$ and $E = \{Z_1, \ldots, Z_q\}$. Define $\mathfrak{n}_G = \mathfrak{v} \oplus \mathfrak{z}$ where *S* is a basis for \mathfrak{v} and *E* is a basis for \mathfrak{z} over \mathbb{R} .

The Lie bracket on n_G is defined by extending linearly the following relations.

 $[X_i, X_j] = Z_k$ if Z_k is a directed edge from vertex X_i to vertex X_j .

All other Lie brackets are defined to be zero.

Then \mathfrak{n}_G s a 2-step nilpotent Lie algebra associated with graph *G*. This construction was introduced by Dani and M. (2005) to study Anosov automorphisms on corresponding nilmanifolds. Define the inner product <, > on \mathfrak{n}_G such that $S \cup E$ is an orthonormal basis for \mathfrak{n}_G .

・ロト ・四ト ・ヨト ・ヨト

Let G = (S, E) be a simple directed graph. Let $S = \{X_1, \ldots, X_m\}$ and $E = \{Z_1, \ldots, Z_q\}$. Define $\mathfrak{n}_G = \mathfrak{v} \oplus \mathfrak{z}$ where *S* is a basis for \mathfrak{v} and *E* is a basis for \mathfrak{z} over \mathbb{R} .

The Lie bracket on n_G is defined by extending linearly the following relations.

 $[X_i, X_j] = Z_k$ if Z_k is a directed edge from vertex X_i to vertex X_j .

All other Lie brackets are defined to be zero.

Then n_G s a 2-step nilpotent Lie algebra associated with graph *G*. This construction was introduced by Dani and M. (2005) to study Anosov automorphisms on corresponding nilmanifolds.

Define the inner product <,> on \mathfrak{n}_G such that $S \cup E$ is an orthonormal basis for \mathfrak{n}_G .

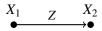


Figure: Graph K₂

The Lie algebra n_{k_2} is the 3-dimensional Heisenberg Lie algebra.

Graphs and metric 2-step nilpotent Lie algebras

$\bigcirc j(Z)$ maps

- 3 Singularity Properties
- 4 Heisenberg-Like Lie Algebras
- 5 Density of Closed Geodesics

Let n be a 2-step nilpotent Lie algebra with inner product \langle , \rangle . Let \mathfrak{z} denote the center of n and $\mathfrak{v} = \mathfrak{z}^{\perp}$. For each $Z \in \mathfrak{z}$, the skew-symmetric linear transformation $j(Z) : \mathfrak{v} \to \mathfrak{v}$ is defined by

 $\langle j(Z)X,Y\rangle = \langle [X,Y],Z\rangle$ for all $X,Y\in\mathfrak{v}$ and $Z\in\mathfrak{z}$

These j(Z) maps (introduced by Kaplan) capture both the bracket and metric structure on n and hence they are very useful to describe the geometry of the associated simply connected Lie group N with the left invariant metric.

Let n be a 2-step nilpotent Lie algebra with inner product \langle , \rangle . Let \mathfrak{z} denote the center of n and $\mathfrak{v} = \mathfrak{z}^{\perp}$. For each $Z \in \mathfrak{z}$, the skew-symmetric linear transformation $j(Z) : \mathfrak{v} \to \mathfrak{v}$ is defined by

 $\langle j(Z)X,Y\rangle = \langle [X,Y],Z\rangle$ for all $X,Y \in \mathfrak{v}$ and $Z \in \mathfrak{z}$

These j(Z) maps (introduced by Kaplan) capture both the bracket and metric structure on n and hence they are very useful to describe the geometry of the associated simply connected Lie group N with the left invariant metric.

Let n be a 2-step nilpotent Lie algebra with inner product \langle , \rangle . Let \mathfrak{z} denote the center of n and $\mathfrak{v} = \mathfrak{z}^{\perp}$. For each $Z \in \mathfrak{z}$, the skew-symmetric linear transformation $j(Z) : \mathfrak{v} \to \mathfrak{v}$ is defined by

 $\langle j(Z)X,Y\rangle = \langle [X,Y],Z\rangle$ for all $X,Y \in \mathfrak{v}$ and $Z \in \mathfrak{z}$

These j(Z) maps (introduced by Kaplan) capture both the bracket and metric structure on n and hence they are very useful to describe the geometry of the associated simply connected Lie group N with the left invariant metric.

Graphs and metric 2-step nilpotent Lie algebras

$\bigcirc j(Z)$ maps

4 Heisenberg-Like Lie Algebras

5 Density of Closed Geodesics

< A

Singular, Nonsingular and Almost Nonsingular

(Lee-Park) Every 2-step nilpotent Lie algebra is exactly one of the following types.

- nonsingular : j(Z) is nonsingular for every nonzero $Z \in \mathfrak{z}$
- singular: j(Z) is singular for all $Z \in \mathfrak{z}$
- almost nonsingular : j(Z) is nonsingular for all Z in some open dense subset of \mathfrak{z} .

Lemma

If G is a graph with at least one edge, then the Lie algebra \mathfrak{n}_G is nonsingular if and only if G is the complete graph on two vertices.

Proof.

If *G* has an edge *Z* and a vertex *X* such that *Z* is not incident to *X*, then $j(Z)(X) = 0 \implies j(Z)$ is singular $\implies \mathfrak{n}_G$ is not nonsingular.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Singular, Nonsingular and Almost Nonsingular

(Lee-Park) Every 2-step nilpotent Lie algebra is exactly one of the following types.

- nonsingular : j(Z) is nonsingular for every nonzero $Z \in \mathfrak{z}$
- singular: j(Z) is singular for all $Z \in \mathfrak{z}$
- almost nonsingular : j(Z) is nonsingular for all Z in some open dense subset of \mathfrak{z} .

Lemma

If G is a graph with at least one edge, then the Lie algebra \mathfrak{n}_G is nonsingular if and only if G is the complete graph on two vertices.

Proof.

If *G* has an edge *Z* and a vertex *X* such that *Z* is not incident to *X*, then $j(Z)(X) = 0 \implies j(Z)$ is singular $\implies n_G$ is not nonsingular.

• • • • • • • • • • • • •

Singular, Nonsingular and Almost Nonsingular

(Lee-Park) Every 2-step nilpotent Lie algebra is exactly one of the following types.

- nonsingular : j(Z) is nonsingular for every nonzero $Z \in \mathfrak{z}$
- singular: j(Z) is singular for all $Z \in \mathfrak{z}$
- almost nonsingular : j(Z) is nonsingular for all Z in some open dense subset of \mathfrak{z} .

Lemma

If G is a graph with at least one edge, then the Lie algebra \mathfrak{n}_G is nonsingular if and only if G is the complete graph on two vertices.

Proof.

If G has an edge Z and a vertex X such that Z is not incident to X, then $j(Z)(X) = 0 \implies j(Z)$ is singular $\implies \mathfrak{n}_G$ is not nonsingular.

• • • • • • • • • • • • •

Example: Singular

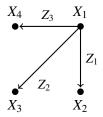


Figure: Star Graph $K_{1,3}$

• $n_{K_{1,3}}$ is singular because the matrix of $j(a_1Z_1 + a_2Z_2 + a_3Z_3)$ is

•

Example: Almost Nonsingular

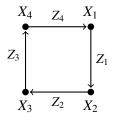


Figure: C_4

• n_{C_4} is almost nonsingular. The matrix of $j(a_1Z_1 + a_3Z_3)$ is

$$\left(egin{array}{cccc} 0 & a_1 & 0 & 0 \ -a_1 & 0 & 0 & 0 \ 0 & 0 & 0 & a_3 \ 0 & 0 & -a_3 & 0 \end{array}
ight)$$

and hence it is nonsingular if a_1 and a_3 are both non-zero.

Classification: Singular and Almost Nonsingular

Definition

Let G = (S, E) be a graph with |S| = 2n, n > 1 and the set of vertices $S = \{X_1, \ldots, X_{2n}\}$. We say that *G* has a *vertex covering by n disjoint copies of* K_2 if there exists a permutation $\sigma \in S_{2n}$ such that $X_{\sigma(2i-1)}X_{\sigma(2i)} \in E$ for all $1 \le i \le n$, where S_{2n} is the symmetric group.

Example

• The cycle C_{2n} has a vertiex covering by *n* disjoint copies of K_2 .

• The star graph $K_{1,n}$ does not admit a vertex covering by disjoint copies of K_2 .

Proposition

Let G = (S, E) be a graph with |S| = 2n, n > 1. Then \mathfrak{n}_G is almost nonsingular if and only if G has a vertex covering by n disjoint copies of K_2 .

Classification: Singular and Almost Nonsingular

Definition

Let G = (S, E) be a graph with |S| = 2n, n > 1 and the set of vertices $S = \{X_1, \ldots, X_{2n}\}$. We say that *G* has a *vertex covering by n disjoint copies of* K_2 if there exists a permutation $\sigma \in S_{2n}$ such that $X_{\sigma(2i-1)}X_{\sigma(2i)} \in E$ for all $1 \le i \le n$, where S_{2n} is the symmetric group.

Example

- The cycle C_{2n} has a vertiex covering by *n* disjoint copies of K_2 .
- The star graph $K_{1,n}$ does not admit a vertex covering by disjoint copies of K_2 .

Proposition

Let G = (S, E) be a graph with |S| = 2n, n > 1. Then \mathfrak{n}_G is almost nonsingular if and only if G has a vertex covering by n disjoint copies of K_2

Classification: Singular and Almost Nonsingular

Definition

Let G = (S, E) be a graph with |S| = 2n, n > 1 and the set of vertices $S = \{X_1, \ldots, X_{2n}\}$. We say that *G* has a *vertex covering by n disjoint copies of* K_2 if there exists a permutation $\sigma \in S_{2n}$ such that $X_{\sigma(2i-1)}X_{\sigma(2i)} \in E$ for all $1 \le i \le n$, where S_{2n} is the symmetric group.

Example

- The cycle C_{2n} has a vertiex covering by *n* disjoint copies of K_2 .
- The star graph $K_{1,n}$ does not admit a vertex covering by disjoint copies of K_2 .

Proposition

Let G = (S, E) be a graph with |S| = 2n, n > 1. Then \mathfrak{n}_G is almost nonsingular if and only if G has a vertex covering by n disjoint copies of K_2 .

Graphs and metric 2-step nilpotent Lie algebras

- 2 j(Z) maps
 - 3 Singularity Properties
- 4 Heisenberg-Like Lie Algebras
- 5 Density of Closed Geodesics

Let $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$ be a 2-step nilpotent Lie algebra. For $z \in \mathfrak{z}$ denote the distinct eigenvalues of j(Z) by $\pm i\theta_1(Z), \ldots, \pm i\theta_m(Z)$.

Theorem (Blanchard, Gornet-Mast)

n is Heisenberg-like if and only if m is a fixed integer for all nonzero $Z \in \mathfrak{z}$ and for every i = 1, ..., m, there exists a constant $c_i \ge 0$ such that for every $Z \in \mathfrak{z}, \theta_i(Z) = c_i ||Z||$.

• Heisenberg-like Lie algebra is nonsingular or singular.

Let $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$ be a 2-step nilpotent Lie algebra. For $z \in \mathfrak{z}$ denote the distinct eigenvalues of j(Z) by $\pm i\theta_1(Z), \ldots, \pm i\theta_m(Z)$.

Theorem (Blanchard, Gornet-Mast)

n is Heisenberg-like if and only if *m* is a fixed integer for all nonzero $Z \in \mathfrak{z}$ and for every i = 1, ..., m, there exists a constant $c_i \ge 0$ such that for every $Z \in \mathfrak{z}, \theta_i(Z) = c_i ||Z||$.

• Heisenberg-like Lie algebra is nonsingular or singular.

Let $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$ be a 2-step nilpotent Lie algebra. For $z \in \mathfrak{z}$ denote the distinct eigenvalues of j(Z) by $\pm i\theta_1(Z), \ldots, \pm i\theta_m(Z)$.

Theorem (Blanchard, Gornet-Mast)

n is Heisenberg-like if and only if m is a fixed integer for all nonzero $Z \in \mathfrak{z}$ and for every i = 1, ..., m, there exists a constant $c_i \ge 0$ such that for every $Z \in \mathfrak{z}, \theta_i(Z) = c_i ||Z||$.

• Heisenberg-like Lie algebra is nonsingular or singular.

Let $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$ be a 2-step nilpotent Lie algebra. For $z \in \mathfrak{z}$ denote the distinct eigenvalues of j(Z) by $\pm i\theta_1(Z), \ldots, \pm i\theta_m(Z)$.

Theorem (Blanchard, Gornet-Mast)

n is Heisenberg-like if and only if m is a fixed integer for all nonzero $Z \in \mathfrak{z}$ and for every i = 1, ..., m, there exists a constant $c_i \ge 0$ such that for every $Z \in \mathfrak{z}, \theta_i(Z) = c_i ||Z||$.

• Heisenberg-like Lie algebra is nonsingular or singular.

Theorem

Let G be a connected graph. The associated metric 2-step nilpotent Lie algebra is Heisenberg-like if and only if one of the following holds: (i) G is the star graph $K_{1,n}$ for n > 1. (ii) G is the complete graph on 3 vertices. Graphs and metric 2-step nilpotent Lie algebras

- 2 j(Z) maps
 - 3 Singularity Properties
 - 4 Heisenberg-Like Lie Algebras
- 5 Density of Closed Geodesics

< A

Density of Closed Geodesics in Nilmanifolds

Eberlein (1994), Mast (1994), Lee-Park (1996), DeMeyer (2001), DeCoste (2008)

Definition

Let *N* be a simply connected nilpotent Lie group and Γ be a lattice in *N*. The nilmanifold $\Gamma \setminus N$ has the *density of closed geodesics property* if the vectors tangent to closed, unit speed geodesics are dense in the unit tangent bundle of $\Gamma \setminus N$.

- (Eberlein) Heisenberg type nilmanifolds have the density of closed geodesics property.
- (DeMeyer) Construction of Heisenberg-like nilmanifolds using irreducible representations of $\mathfrak{su}(2)$ having density of closed geodesics property.

Question

What about Heisenberg-like nilmanifolds associated with star graphs?

Density of Closed Geodesics in Nilmanifolds

Eberlein (1994), Mast (1994), Lee-Park (1996), DeMeyer (2001), DeCoste (2008)

Definition

Let *N* be a simply connected nilpotent Lie group and Γ be a lattice in *N*. The nilmanifold $\Gamma \setminus N$ has the *density of closed geodesics property* if the vectors tangent to closed, unit speed geodesics are dense in the unit tangent bundle of $\Gamma \setminus N$.

- (Eberlein) Heisenberg type nilmanifolds have the density of closed geodesics property.
- (DeMeyer) Construction of Heisenberg-like nilmanifolds using irreducible representations of $\mathfrak{su}(2)$ having density of closed geodesics property.

Question

What about Heisenberg-like nilmanifolds associated with star graphs?

Density of Closed Geodesics in Nilmanifolds

Eberlein (1994), Mast (1994), Lee-Park (1996), DeMeyer (2001), DeCoste (2008)

Definition

Let *N* be a simply connected nilpotent Lie group and Γ be a lattice in *N*. The nilmanifold $\Gamma \setminus N$ has the *density of closed geodesics property* if the vectors tangent to closed, unit speed geodesics are dense in the unit tangent bundle of $\Gamma \setminus N$.

- (Eberlein) Heisenberg type nilmanifolds have the density of closed geodesics property.
- (DeMeyer) Construction of Heisenberg-like nilmanifolds using irreducible representations of $\mathfrak{su}(2)$ having density of closed geodesics property.

Question

What about Heisenberg-like nilmanifolds associated with star graphs?

Definition

Let n be a metric 2-step nilpotent Lie algebra and let \mathfrak{z} denote the center of n. For a nonzero $Z \in \mathfrak{z}$, we say that the map j(Z) is *in resonance* if the ratio of any pair of nonzero eigenvalues of j(Z) is rational.

- (Mast) Nonsingular 2-step nilmanifolds satisfying the resonance condition have the density property. Moreover, if a 2-step nilmanifold has the density of closed geodesics property, then *j*(*Z*) is in resonance for a dense subset of *Z* ∈ 3.
- (Lee-Park) In almost nonsingular case, the condition that j(Z) is in resonance for Z in a dense subset of the center is a necessary and sufficient condition for the density of closed geodesics property.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition

Let n be a metric 2-step nilpotent Lie algebra and let \mathfrak{z} denote the center of n. For a nonzero $Z \in \mathfrak{z}$, we say that the map j(Z) is *in resonance* if the ratio of any pair of nonzero eigenvalues of j(Z) is rational.

- (Mast) Nonsingular 2-step nilmanifolds satisfying the resonance condition have the density property. Moreover, if a 2-step nilmanifold has the density of closed geodesics property, then *j*(*Z*) is in resonance for a dense subset of *Z* ∈ 3.
- (Lee-Park) In almost nonsingular case, the condition that j(Z) is in resonance for Z in a dense subset of the center is a necessary and sufficient condition for the density of closed geodesics property.

Definition

Let n be a metric 2-step nilpotent Lie algebra and let \mathfrak{z} denote the center of n. For a nonzero $Z \in \mathfrak{z}$, we say that the map j(Z) is *in resonance* if the ratio of any pair of nonzero eigenvalues of j(Z) is rational.

- (Mast) Nonsingular 2-step nilmanifolds satisfying the resonance condition have the density property. Moreover, if a 2-step nilmanifold has the density of closed geodesics property, then *j*(*Z*) is in resonance for a dense subset of *Z* ∈ 3.
- (Lee-Park) In almost nonsingular case, the condition that j(Z) is in resonance for Z in a dense subset of the center is a necessary and sufficient condition for the density of closed geodesics property.

Let $G = K_{1,n}$ be a star graph. Note that n_G is singular and the resonance condition is not known to be sufficient in order to have the density of closed geodesics property.

Theorem

Let \mathfrak{n}_G denote the metric 2-step nilpotent Lie algebra associated with a star graph on 3 vertices and N denote the corresponding simply connected nilpotent Lie group. Then for any lattice Γ in N, $\Gamma \setminus N$ has the density of closed geodesics property.

Proof uses the first hit map approach (introduced by Eberlein).

Theorem

Let \mathfrak{n}_G denote the metric 2-step nilpotent Lie algebra where either $G = K_{1,n}$ or G is a complete graph on 3 vertices. Let N denote the corresponding simply connected nilpotent Lie group. Then there exists a lattice Γ in N, $\Gamma \setminus N$ has the density of closed geodesics property.

The first hit map approach fails in these cases.

Thank You!

Э