Einstein extensions of Riemannian manifolds

D.Alekseevsky ¹ Y. Nikolayevsky ²

¹IITP, Russian Academy of Sciences, Moscow, Russia

²La Trobe University, Melbourne, Australia

EGEO2016, VI Workshop on Differential Geometry, Córdoba, Argentina, August 4, 2016

Suppose we are given

- a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N. Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- ▶ $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- Lie bracket: for $X, Y \in \mathfrak{n}, [X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}, [A, X]_{\mathfrak{m}} := \eta(X);$
- Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X, Y \rangle_{\mathfrak{m}} := \langle X, Y \rangle, \ \langle A, X \rangle_{\mathfrak{m}} := 0, \ \|A\|_{\mathfrak{m}} := 1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by $a^D = du^2 + (\exp(uD))^*a$.

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$,

Suppose we are given

- ▶ a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N. Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- ▶ $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- Lie bracket: for $X, Y \in \mathfrak{n}, [X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}, [A, X]_{\mathfrak{m}} := \eta(X);$
- Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X, Y \rangle_{\mathfrak{m}} := \langle X, Y \rangle, \ \langle A, X \rangle_{\mathfrak{m}} := 0, \ \|A\|_{\mathfrak{m}} := 1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by $g^D = du^2 + (\exp(uD))^* q$.

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$,

Suppose we are given

- a Lie group N with the Lie algebra \mathfrak{n} ,
- ▶ an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N. Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- ▶ $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- Lie bracket: for $X, Y \in \mathfrak{n}$, $[X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}$, $[A, X]_{\mathfrak{m}} := \eta(X)$;
- Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X, Y \rangle_{\mathfrak{m}} := \langle X, Y \rangle, \ \langle A, X \rangle_{\mathfrak{m}} := 0, \ \|A\|_{\mathfrak{m}} := 1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by $a^D = du^2 + (\exp(uD))^*a$.

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$,

Suppose we are given

- a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N. Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- ▶ $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- Lie bracket: for $X, Y \in \mathfrak{n}, [X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}, [A, X]_{\mathfrak{m}} := \eta(X);$
- Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X, Y \rangle_{\mathfrak{m}} := \langle X, Y \rangle, \ \langle A, X \rangle_{\mathfrak{m}} := 0, \ \|A\|_{\mathfrak{m}} := 1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by $a^D = du^2 + (\exp(uD))^*a$.

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$,

Suppose we are given

- ▶ a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N. Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- ▶ $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- Lie bracket: for $X, Y \in \mathfrak{n}$, $[X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}$, $[A, X]_{\mathfrak{m}} := \eta(X)$;
- Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X, Y \rangle_{\mathfrak{m}} := \langle X, Y \rangle, \ \langle A, X \rangle_{\mathfrak{m}} := 0, \ \|A\|_{\mathfrak{m}} := 1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by $a^D = du^2 + (\exp(uD))^*a$.

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$,

Suppose we are given

- ▶ a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N. Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- ▶ $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- Lie bracket: for $X, Y \in \mathfrak{n}$, $[X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}$, $[A, X]_{\mathfrak{m}} := \eta(X)$;
- Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X, Y \rangle_{\mathfrak{m}} := \langle X, Y \rangle, \ \langle A, X \rangle_{\mathfrak{m}} := 0, \ \|A\|_{\mathfrak{m}} := 1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by $a^D = du^2 + (\exp(uD))^*a$.

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$,

Suppose we are given

- a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N.

Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- ▶ $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- ▶ Lie bracket: for $X, Y \in \mathfrak{n}$, $[X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}$, $[A, X]_{\mathfrak{m}} := \eta(X)$;
- Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X,Y
angle_{\mathfrak{m}} := \langle X,Y
angle, \ \langle A,X
angle_{\mathfrak{m}} := 0, \ \|A\|_{\mathfrak{m}} := 1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by $a^D = du^2 + (\exp(uD))^*a$.

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$,

Suppose we are given

- a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N. Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- ▶ $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space
- Lie bracket: for $X, Y \in \mathfrak{n}$, $[X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}$, $[A, X]_{\mathfrak{m}} := \eta(X)$;
- Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X, Y \rangle_{\mathfrak{m}} := \langle X, Y \rangle, \ \langle A, X \rangle_{\mathfrak{m}} := 0, \ \|A\|_{\mathfrak{m}} := 1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by $g^D = du^2 + (\exp(uD))^* g$.

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$,

Suppose we are given

- ▶ a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N. Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- Lie bracket: for $X, Y \in \mathfrak{n}$, $[X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}$, $[A, X]_{\mathfrak{m}} := \eta(X)$;
- ▶ Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X,Y\rangle_{\mathfrak{m}}:=\langle X,Y\rangle,\;\langle A,X\rangle_{\mathfrak{m}}:=0,\;\|A\|_{\mathfrak{m}}:=1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by $a^D = du^2 + (\exp(uD))^*a$.

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$,

Suppose we are given

- ▶ a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N. Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- Lie bracket: for $X, Y \in \mathfrak{n}$, $[X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}$, $[A, X]_{\mathfrak{m}} := \eta(X)$;
- ▶ Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X, Y \rangle_{\mathfrak{m}} := \langle X, Y \rangle, \ \langle A, X \rangle_{\mathfrak{m}} := 0, \ \|A\|_{\mathfrak{m}} := 1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by $a^D = du^2 + (\exp(uD))^*a$.

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$,

Suppose we are given

- a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N. Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- Lie bracket: for $X, Y \in \mathfrak{n}$, $[X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}$, $[A, X]_{\mathfrak{m}} := \eta(X)$;
- Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X,Y\rangle_{\mathfrak{m}}:=\langle X,Y\rangle,\;\langle A,X\rangle_{\mathfrak{m}}:=0,\;\|A\|_{\mathfrak{m}}:=1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by

 $g^D = du^2 + (\exp(uD))^*g.$

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$

Suppose we are given

- a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N. Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- Lie bracket: for $X, Y \in \mathfrak{n}$, $[X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}$, $[A, X]_{\mathfrak{m}} := \eta(X)$;
- Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X,Y\rangle_{\mathfrak{m}}:=\langle X,Y\rangle,\;\langle A,X\rangle_{\mathfrak{m}}:=0,\;\|A\|_{\mathfrak{m}}:=1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by

 $g^D = du^2 + (\exp(uD))^*g.$

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$

Suppose we are given

- ▶ a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N.

Now consider the one-dimensional extension $\mathfrak m$ of $\mathfrak n$ by D:

- $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- Lie bracket: for $X, Y \in \mathfrak{n}$, $[X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}$, $[A, X]_{\mathfrak{m}} := \eta(X)$;
- Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X,Y\rangle_{\mathfrak{m}}:=\langle X,Y\rangle,\;\langle A,X\rangle_{\mathfrak{m}}:=0,\;\|A\|_{\mathfrak{m}}:=1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by $g^D = du^2 + (\exp(uD))^* q$.

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$,

Suppose we are given

- ▶ a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N.

Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- ▶ $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- Lie bracket: for $X, Y \in \mathfrak{n}$, $[X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}$, $[A, X]_{\mathfrak{m}} := \eta(X)$;
- Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X,Y\rangle_{\mathfrak{m}}:=\langle X,Y\rangle,\;\langle A,X\rangle_{\mathfrak{m}}:=0,\;\|A\|_{\mathfrak{m}}:=1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by $g^D = du^2 + (\exp(uD))^*g$.

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$,

Suppose we are given

- ▶ a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N.

Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- Lie bracket: for $X, Y \in \mathfrak{n}$, $[X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}$, $[A, X]_{\mathfrak{m}} := \eta(X)$;
- Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X,Y\rangle_{\mathfrak{m}}:=\langle X,Y\rangle,\;\langle A,X\rangle_{\mathfrak{m}}:=0,\;\|A\|_{\mathfrak{m}}:=1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by $g^D = du^2 + (\exp(uD))^*g$.

Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$,

Suppose we are given

- ▶ a Lie group N with the Lie algebra \mathfrak{n} ,
- an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} , and
- ▶ a symmetric derivation η of \mathfrak{n} .

Then $\langle \cdot, \cdot \rangle$ generates a left-invariant metric g on N.

Now consider the one-dimensional extension \mathfrak{m} of \mathfrak{n} by D:

- ▶ $\mathfrak{m} := \mathbb{R}A \oplus \mathfrak{n}$ as a linear space;
- Lie bracket: for $X, Y \in \mathfrak{n}$, $[X, Y]_{\mathfrak{m}} := [X, Y]_{\mathfrak{n}}$, $[A, X]_{\mathfrak{m}} := \eta(X)$;
- Inner product: for $X, Y \in \mathfrak{n}$,

 $\langle X,Y\rangle_{\mathfrak{m}}:=\langle X,Y\rangle,\;\langle A,X\rangle_{\mathfrak{m}}:=0,\;\|A\|_{\mathfrak{m}}:=1.$

The inner product $\langle \cdot, \cdot \rangle_{\mathfrak{m}}$ generates a left-invariant Riemannian metric on the group $M = N \rtimes \mathbb{R}$ which can explicitly be represented by the following ansatz.

Suppose D is the left invariant operator field on M such that $D(e) = \eta$. Then the metric g^D on M is given by $g^D = du^2 + (\exp(uD))^*g$. Equivalently, for $t_1A + X_1, t_2A + X_2 \in T_{(u,x)}M$,

$$g^{D}(t_{1}A + X_{1}, t_{2}A + X_{2}) = t_{1}t_{2} + g(e^{uD}X_{1}, e^{uD}X_{2}).$$

n is nilpotent and $\langle \cdot, \cdot \rangle$ is a *nilsoliton inner product*. Then if we choose η "in the correct way", the resulting metric Lie group (M, g^D) is an *Einstein solvmanifold*. (And if the conjecture of the first named author is true, any non-compact Einstein homogeneous space is isometric to a one of those).

•
$$\operatorname{Ric}_{\mathfrak{n}} = (\operatorname{Tr} \eta) \eta - \operatorname{Tr}(\eta^2) \operatorname{id};$$

- n is naturally graded by η (so that all the eigenvalues of η are integer [rational], up to scaling);
- The eigenvalues satisfy certain linear relations, and for every n, there is only a finite number of the eigenvalue types of η of dimension n, up to scaling.

n is nilpotent and $\langle \cdot, \cdot \rangle$ is a *nilsoliton inner product*. Then if we choose η "in the correct way", the resulting metric Lie group (M, g^D) is an *Einstein solvmanifold*. (And if the conjecture of the first named author is true, any non-compact Einstein homogeneous space is isometric to a one of those).

•
$$\operatorname{Ric}_{\mathfrak{n}} = (\operatorname{Tr} \eta) \eta - \operatorname{Tr}(\eta^2) \operatorname{id};$$

- n is naturally graded by η (so that all the eigenvalues of η are integer [rational], up to scaling);
- The eigenvalues satisfy certain linear relations, and for every n, there is only a finite number of the eigenvalue types of η of dimension n, up to scaling.

n is nilpotent and $\langle \cdot, \cdot \rangle$ is a *nilsoliton inner product*. Then if we choose η "in the correct way", the resulting metric Lie group (M, g^D) is an *Einstein solumanifold*. (And if the conjecture of the first named author is true, any non-compact Einstein homogeneous space is isometric to a one of those).

•
$$\operatorname{Ric}_{\mathfrak{n}} = (\operatorname{Tr} \eta) \eta - \operatorname{Tr}(\eta^2) \operatorname{id};$$

- n is naturally graded by η (so that all the eigenvalues of η are integer [rational], up to scaling);
- The eigenvalues satisfy certain linear relations, and for every n, there is only a finite number of the eigenvalue types of η of dimension n, up to scaling.

n is nilpotent and $\langle \cdot, \cdot \rangle$ is a *nilsoliton inner product*. Then if we choose η "in the correct way", the resulting metric Lie group (M, g^D) is an *Einstein solumanifold*. (And if the conjecture of the first named author is true, any non-compact Einstein homogeneous space is isometric to a one of those).

•
$$\operatorname{Ric}_{\mathfrak{n}} = (\operatorname{Tr} \eta) \eta - \operatorname{Tr}(\eta^2) \operatorname{id};$$

- n is naturally graded by η (so that all the eigenvalues of η are integer [rational], up to scaling);
- The eigenvalues satisfy certain linear relations, and for every n, there is only a finite number of the eigenvalue types of η of dimension n, up to scaling.

n is nilpotent and $\langle \cdot, \cdot \rangle$ is a *nilsoliton inner product*. Then if we choose η "in the correct way", the resulting metric Lie group (M, g^D) is an *Einstein solvmanifold*. (And if the conjecture of the first named author is true, any non-compact Einstein homogeneous space is isometric to a one of those).

•
$$\operatorname{Ric}_{\mathfrak{n}} = (\operatorname{Tr} \eta) \eta - \operatorname{Tr}(\eta^2) \operatorname{id};$$

- n is naturally graded by η (so that all the eigenvalues of η are integer [rational], up to scaling);
- The eigenvalues satisfy certain linear relations, and for every n, there is only a finite number of the eigenvalue types of η of dimension n, up to scaling.

n is nilpotent and $\langle \cdot, \cdot \rangle$ is a *nilsoliton inner product*. Then if we choose η "in the correct way", the resulting metric Lie group (M, g^D) is an *Einstein solvmanifold*. (And if the conjecture of the first named author is true, any non-compact Einstein homogeneous space is isometric to a one of those).

- $\operatorname{Ric}_{\mathfrak{n}} = (\operatorname{Tr} \eta) \eta \operatorname{Tr}(\eta^2) \operatorname{id};$
- **n** is naturally graded by η (so that all the eigenvalues of η are integer [rational], up to scaling);
- The eigenvalues satisfy certain linear relations, and for every n, there is only a finite number of the eigenvalue types of η of dimension n, up to scaling.

n is nilpotent and $\langle \cdot, \cdot \rangle$ is a *nilsoliton inner product*. Then if we choose η "in the correct way", the resulting metric Lie group (M, g^D) is an *Einstein solvmanifold*. (And if the conjecture of the first named author is true, any non-compact Einstein homogeneous space is isometric to a one of those).

- $\operatorname{Ric}_{\mathfrak{n}} = (\operatorname{Tr} \eta) \eta \operatorname{Tr}(\eta^2) \operatorname{id};$
- \mathfrak{n} is naturally graded by η (so that all the eigenvalues of η are integer [rational], up to scaling);
- The eigenvalues satisfy certain linear relations, and for every n, there is only a finite number of the eigenvalue types of η of dimension n, up to scaling.

n is nilpotent and $\langle \cdot, \cdot \rangle$ is a *nilsoliton inner product*. Then if we choose η "in the correct way", the resulting metric Lie group (M, g^D) is an *Einstein solvmanifold*. (And if the conjecture of the first named author is true, any non-compact Einstein homogeneous space is isometric to a one of those).

- $\operatorname{Ric}_{\mathfrak{n}} = (\operatorname{Tr} \eta) \eta \operatorname{Tr}(\eta^2) \operatorname{id};$
- n is naturally graded by η (so that all the eigenvalues of η are integer [rational], up to scaling);
- The eigenvalues satisfy certain linear relations, and for every n, there is only a finite number of the eigenvalue types of η of dimension n, up to scaling.

n is nilpotent and $\langle \cdot, \cdot \rangle$ is a *nilsoliton inner product*. Then if we choose η "in the correct way", the resulting metric Lie group (M, g^D) is an *Einstein solvmanifold*. (And if the conjecture of the first named author is true, any non-compact Einstein homogeneous space is isometric to a one of those).

- $\operatorname{Ric}_{\mathfrak{n}} = (\operatorname{Tr} \eta) \eta \operatorname{Tr}(\eta^2) \operatorname{id};$
- n is naturally graded by η (so that all the eigenvalues of η are integer [rational], up to scaling);
- The eigenvalues satisfy certain linear relations, and for every n, there is only a finite number of the eigenvalue types of η of dimension n, up to scaling.

n is nilpotent and $\langle \cdot, \cdot \rangle$ is a *nilsoliton inner product*. Then if we choose η "in the correct way", the resulting metric Lie group (M, g^D) is an *Einstein solvmanifold*. (And if the conjecture of the first named author is true, any non-compact Einstein homogeneous space is isometric to a one of those).

- $\operatorname{Ric}_{\mathfrak{n}} = (\operatorname{Tr} \eta) \eta \operatorname{Tr}(\eta^2) \operatorname{id};$
- n is naturally graded by η (so that all the eigenvalues of η are integer [rational], up to scaling);
- The eigenvalues satisfy certain linear relations, and for every n, there is only a finite number of the eigenvalue types of η of dimension n, up to scaling.

n is nilpotent and $\langle \cdot, \cdot \rangle$ is a *nilsoliton inner product*. Then if we choose η "in the correct way", the resulting metric Lie group (M, g^D) is an *Einstein solvmanifold*. (And if the conjecture of the first named author is true, any non-compact Einstein homogeneous space is isometric to a one of those).

- $\operatorname{Ric}_{\mathfrak{n}} = (\operatorname{Tr} \eta) \eta \operatorname{Tr}(\eta^2) \operatorname{id};$
- n is naturally graded by η (so that all the eigenvalues of η are integer [rational], up to scaling);
- The eigenvalues satisfy certain linear relations, and for every n, there is only a finite number of the eigenvalue types of η of dimension n, up to scaling.

Idea: drop the homogeneity assumption and look at what is left ...

Definition

Let (N, g) be a Riemannian manifold of dimension n > 1, and D be a field of symmetric operators on (N, g). For every $u \in \mathbb{R}$, define the *D*-deformation of the metric g on N by $g^u := (\exp(uD))^* g$, and the *D*-extension, by

$$(M := \mathbb{R} \times N, \ g^D := du^2 + g^u).$$

If locally D has pairwise distinct eigenvalues q_1, \ldots, q_k , with the corresponding eigendistributions $V(q_i)$, then the D-deformation g^u and the D-extension g^D are locally given by

$$g^{u} = e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k}, \qquad g^{D} = du^{2} + e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k},$$

- a particular case of codimension one Riemannian submersions;
- a generalisation of the warped product metric (but we make no assumptions on the integrability of the eigendistributions).

Idea: drop the homogeneity assumption and look at what is left ...

Definition

Let (N, g) be a Riemannian manifold of dimension n > 1, and D be a field of symmetric operators on (N, g). For every $u \in \mathbb{R}$, define the *D*-deformation of the metric g on N by $g^u := (\exp(uD))^* g$, and the *D*-extension, by

$$(M := \mathbb{R} \times N, \ g^D := du^2 + g^u).$$

If locally D has pairwise distinct eigenvalues q_1, \ldots, q_k , with the corresponding eigendistributions $V(q_i)$, then the D-deformation g^u and the D-extension g^D are locally given by

$$g^{u} = e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k}, \qquad g^{D} = du^{2} + e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k},$$

- a particular case of codimension one Riemannian submersions;
- a generalisation of the warped product metric (but we make no assumptions on the integrability of the eigendistributions).

Idea: drop the homogeneity assumption and look at what is left ...

Definition

Let (N, g) be a Riemannian manifold of dimension n > 1, and D be a field of symmetric operators on (N, g). For every $u \in \mathbb{R}$, define the *D*-deformation of the metric g on N by $g^u := (\exp(uD))^* g$, and the *D*-extension, by

$$(M := \mathbb{R} \times N, \ g^D := du^2 + g^u).$$

If locally D has pairwise distinct eigenvalues q_1, \ldots, q_k , with the corresponding eigendistributions $V(q_i)$, then the D-deformation g^u and the D-extension g^D are locally given by

$$g^{u} = e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k}, \qquad g^{D} = du^{2} + e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k},$$

- a particular case of codimension one Riemannian submersions;
- a generalisation of the warped product metric (but we make no assumptions on the integrability of the eigendistributions).

Idea: drop the homogeneity assumption and look at what is left ...

Definition

Let (N, g) be a Riemannian manifold of dimension n > 1, and D be a field of symmetric operators on (N, g). For every $u \in \mathbb{R}$, define the *D*-deformation of the metric g on N by $g^u := (\exp(uD))^* g$, and the *D*-extension, by

$$(M := \mathbb{R} \times N, \ g^D := du^2 + g^u).$$

If locally D has pairwise distinct eigenvalues q_1, \ldots, q_k , with the corresponding eigendistributions $V(q_i)$, then the D-deformation g^u and the D-extension g^D are locally given by

$$g^{u} = e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k}, \qquad g^{D} = du^{2} + e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k},$$

- a particular case of codimension one Riemannian submersions;
- a generalisation of the warped product metric (but we make no assumptions on the integrability of the eigendistributions).

Idea: drop the homogeneity assumption and look at what is left ...

Definition

Let (N, g) be a Riemannian manifold of dimension n > 1, and D be a field of symmetric operators on (N, g). For every $u \in \mathbb{R}$, define the *D*-deformation of the metric g on N by $g^u := (\exp(uD))^* g$, and the *D*-extension, by

$$(M := \mathbb{R} \times N, \ g^D := du^2 + g^u).$$

If locally D has pairwise distinct eigenvalues q_1, \ldots, q_k , with the corresponding eigendistributions $V(q_i)$, then the D-deformation g^u and the D-extension g^D are locally given by

$$g^{u} = e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k}, \qquad g^{D} = du^{2} + e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k},$$

- ▶ a particular case of codimension one Riemannian submersions;
- a generalisation of the warped product metric (but we make no assumptions on the integrability of the eigendistributions).

Idea: drop the homogeneity assumption and look at what is left ...

Definition

Let (N, g) be a Riemannian manifold of dimension n > 1, and D be a field of symmetric operators on (N, g). For every $u \in \mathbb{R}$, define the *D*-deformation of the metric g on N by $g^u := (\exp(uD))^* g$, and the *D*-extension, by

$$(M := \mathbb{R} \times N, \ g^D := du^2 + g^u).$$

If locally D has pairwise distinct eigenvalues q_1, \ldots, q_k , with the corresponding eigendistributions $V(q_i)$, then the D-deformation g^u and the D-extension g^D are locally given by

$$g^u = e^{2q_1u}g_1 + \dots + e^{2q_ku}g_k, \qquad g^D = du^2 + e^{2q_1u}g_1 + \dots + e^{2q_ku}g_k,$$

where $g_i := g_{|V(q_i)}$. D-extensions can also be viewed as

a particular case of codimension one Riemannian submersions;
 a generalisation of the warped product metric (but we make neasumptions on the integrability of the eigendistributions).

Idea: drop the homogeneity assumption and look at what is left ...

Definition

Let (N, g) be a Riemannian manifold of dimension n > 1, and D be a field of symmetric operators on (N, g). For every $u \in \mathbb{R}$, define the *D*-deformation of the metric g on N by $g^u := (\exp(uD))^* g$, and the *D*-extension, by

$$(M := \mathbb{R} \times N, \ g^D := du^2 + g^u).$$

If locally D has pairwise distinct eigenvalues q_1, \ldots, q_k , with the corresponding eigendistributions $V(q_i)$, then the D-deformation g^u and the D-extension g^D are locally given by

 $g^u = e^{2q_1u}g_1 + \dots + e^{2q_ku}g_k,$ $g^D = du^2 + e^{2q_1u}g_1 + \dots + e^{2q_ku}g_k,$ where $g_i := g_{|V(q_i)}$. D-extensions can also be viewed as

 a generalisation of the warped product metric (but we make no assumptions on the integrability of the eigendistributions).

Idea: drop the homogeneity assumption and look at what is left ...

Definition

Let (N, g) be a Riemannian manifold of dimension n > 1, and D be a field of symmetric operators on (N, g). For every $u \in \mathbb{R}$, define the *D*-deformation of the metric g on N by $g^u := (\exp(uD))^* g$, and the *D*-extension, by

$$(M := \mathbb{R} \times N, \ g^D := du^2 + g^u).$$

If locally D has pairwise distinct eigenvalues q_1, \ldots, q_k , with the corresponding eigendistributions $V(q_i)$, then the D-deformation g^u and the D-extension g^D are locally given by

 $g^{u} = e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k}, \qquad g^{D} = du^{2} + e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k},$

- ▶ a particular case of codimension one Riemannian submersions;
- a generalisation of the warped product metric (but we make no assumptions on the integrability of the eigendistributions).

Definition and Theorem

Idea: drop the homogeneity assumption and look at what is left ...

Definition

Let (N, g) be a Riemannian manifold of dimension n > 1, and D be a field of symmetric operators on (N, g). For every $u \in \mathbb{R}$, define the *D*-deformation of the metric g on N by $g^u := (\exp(uD))^* g$, and the *D*-extension, by

$$(M := \mathbb{R} \times N, \ g^D := du^2 + g^u).$$

If locally D has pairwise distinct eigenvalues q_1, \ldots, q_k , with the corresponding eigendistributions $V(q_i)$, then the D-deformation g^u and the D-extension g^D are locally given by

$$g^{u} = e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k}, \qquad g^{D} = du^{2} + e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k},$$

where $g_i := g_{|V(q_i)}$. D-extensions can also be viewed as

- ▶ a particular case of codimension one Riemannian submersions;
- a generalisation of the warped product metric (but we make no assumptions on the integrability of the eigendistributions).

Definition and Theorem

Idea: drop the homogeneity assumption and look at what is left ...

Definition

Let (N, g) be a Riemannian manifold of dimension n > 1, and D be a field of symmetric operators on (N, g). For every $u \in \mathbb{R}$, define the *D*-deformation of the metric g on N by $g^u := (\exp(uD))^* g$, and the *D*-extension, by

$$(M := \mathbb{R} \times N, \ g^D := du^2 + g^u).$$

If locally D has pairwise distinct eigenvalues q_1, \ldots, q_k , with the corresponding eigendistributions $V(q_i)$, then the D-deformation g^u and the D-extension g^D are locally given by

$$g^{u} = e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k}, \qquad g^{D} = du^{2} + e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k},$$

where $g_i := g_{|V(q_i)}$. D-extensions can also be viewed as

- ▶ a particular case of codimension one Riemannian submersions;
- a generalisation of the warped product metric (but we make no assumptions on the integrability of the eigendistributions).

Definition and Theorem

Idea: drop the homogeneity assumption and look at what is left ...

Definition

Let (N, g) be a Riemannian manifold of dimension n > 1, and D be a field of symmetric operators on (N, g). For every $u \in \mathbb{R}$, define the *D*-deformation of the metric g on N by $g^u := (\exp(uD))^* g$, and the *D*-extension, by

$$(M := \mathbb{R} \times N, \ g^D := du^2 + g^u).$$

If locally D has pairwise distinct eigenvalues q_1, \ldots, q_k , with the corresponding eigendistributions $V(q_i)$, then the D-deformation g^u and the D-extension g^D are locally given by

$$g^{u} = e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k}, \qquad g^{D} = du^{2} + e^{2q_{1}u}g_{1} + \dots + e^{2q_{k}u}g_{k},$$

where $g_i := g_{|V(q_i)}$. D-extensions can also be viewed as

- ▶ a particular case of codimension one Riemannian submersions;
- ▶ a generalisation of the warped product metric (but we make no assumptions on the integrability of the eigendistributions).

- ▶ Ricci D-stable if the Ricci operator Ric^u := Ric_{g^u} does not depend on u;
- D-Einstein if the extension g^D is Einstein.

Question:

When the extension (M, g^D) is Einstein?

Theorem

The extension (M, g^D) is Einstein if and only if

The operator D has constant eigenvalues and

 $\operatorname{div} D = 0,$

where (div D)X := Tr(Y → (∇_YD)X); and The manifold (N, g) is Ricci D-stable and Bic^u = (Tr D) D = Tr(D²);

- ▶ Ricci D-stable if the Ricci operator Ric^u := Ric_{g^u} does not depend on u;
- D-Einstein if the extension g^D is Einstein.

Question:

```
When the extension (M, g^D) is Einstein?
```

Theorem

The extension (M, g^D) is Einstein if and only if

The operator D has constant eigenvalues and

 $\operatorname{div} D = 0,$

where $(\operatorname{div} D)X := \operatorname{Tr}(Y \mapsto (\nabla_Y D)X)$; and The manifold (N,g) is Ricci D-stable and $\operatorname{Bic}^u = (\operatorname{Tr} D)D - \operatorname{Tr}(D^2)$

- ▶ *Ricci D-stable* if the Ricci operator $\operatorname{Ric}^{u} := \operatorname{Ric}_{g^{u}}$ does not depend on u;
- D-Einstein if the extension g^D is Einstein.

Question:

When the extension (M, g^D) is Einstein?

Theorem

The extension (M, g^D) is Einstein if and only if

The operator D has constant eigenvalues and

 $\operatorname{div} D = 0,$

where (div D)X := Tr(Y → (∇_YD)X); and The manifold (N, g) is Ricci D-stable and Bic^u = (Tr D) D = Tr(D²);

- ▶ *Ricci D-stable* if the Ricci operator $\operatorname{Ric}^{u} := \operatorname{Ric}_{g^{u}}$ does not depend on u;
- D-Einstein if the extension g^D is Einstein.

Question:

When the extension (M, g^D) is Einstein?

Theorem

The extension (M, g^D) is Einstein if and only if

The operator D has constant eigenvalues and

 $\operatorname{div} D = 0,$

where $(\operatorname{div} D)X := \operatorname{Tr}(Y \mapsto (\nabla_Y D)X);$ and The manifold (N,g) is Ricci D-stable and $\operatorname{Ric}^u = (\operatorname{Tr} D)D = \operatorname{Tr}(D^2)i$

- ▶ *Ricci D-stable* if the Ricci operator $\operatorname{Ric}^{u} := \operatorname{Ric}_{g^{u}}$ does not depend on u;
- D-Einstein if the extension g^D is Einstein.

Question:

When the extension (M, g^D) is Einstein?

Theorem

The extension (M, g^D) is Einstein if and only if

The operator D has constant eigenvalues and

 $\operatorname{div} D = 0,$

where $(\operatorname{div} D)X := \operatorname{Tr}(Y \mapsto (\nabla_Y D)X);$ and The manifold (N,g) is Ricci D-stable and $\operatorname{Ric}^u = (\operatorname{Tr} D)D = \operatorname{Tr}(D^2)i$

- ► Ricci D-stable if the Ricci operator Ric^u := Ric_{g^u} does not depend on u;
- D-Einstein if the extension g^D is Einstein.

Question:

When the extension (M, g^D) is Einstein?

Theorem

The extension (M, g^D) is Einstein if and only if

The operator D has constant eigenvalues and

 $\operatorname{div} D = 0,$

where $(\operatorname{div} D)X := \operatorname{Tr}(Y \mapsto (\nabla_Y D)X)$; and The manifold (N,g) is Ricci D-stable and $D : \mathcal{V} = (\mathcal{T} \cap D) D = \mathcal{T} (D^2)$

- ► Ricci D-stable if the Ricci operator Ric^u := Ric_{g^u} does not depend on u;
- D-Einstein if the extension g^D is Einstein.

Question:

When the extension (M, g^D) is Einstein?

Γ heorem

The extension (M, g^D) is Einstein if and only if

The operator D has constant eigenvalues and

 $\operatorname{div} D = 0$

where $(\operatorname{div} D)X := \operatorname{Tr}(Y \mapsto (\nabla_Y D)X)$; and The manifold (N, g) is Ricci D-stable and Div^{μ} (Tr. D) D $\operatorname{Tr}(D^2)$:

- ► Ricci D-stable if the Ricci operator Ric^u := Ric_{g^u} does not depend on u;
- D-Einstein if the extension g^D is Einstein.

Question:

When the extension (M, g^D) is Einstein?

Theorem 1

The extension (M, g^D) is Einstein if and only if

• The operator D has constant eigenvalues and

 $\operatorname{div} D = 0,$

where $(\operatorname{div} D)X := \operatorname{Tr}(Y \mapsto (\nabla_Y D)X)$; and

The manifold (N, g) is Ricci D-stable and

 $\operatorname{Ric}^{u} = (\operatorname{Tr} D) D - \operatorname{Tr}(D^{2}) \operatorname{id}.$

- ► Ricci D-stable if the Ricci operator Ric^u := Ric_{g^u} does not depend on u;
- D-Einstein if the extension g^D is Einstein.

Question:

When the extension (M, g^D) is Einstein?

Theorem 1

The extension (M, g^D) is Einstein if and only if

• The operator D has constant eigenvalues and

 $\operatorname{div} D = 0,$

where $(\operatorname{div} D)X := \operatorname{Tr}(Y \mapsto (\nabla_Y D)X)$; and

The manifold (N, g) is Ricci D-stable and

 $\operatorname{Ric}^{u} = (\operatorname{Tr} D) D - \operatorname{Tr}(D^{2}) \operatorname{id}.$

- ► Ricci D-stable if the Ricci operator Ric^u := Ric_{g^u} does not depend on u;
- ▶ D-Einstein if the extension g^D is Einstein.

Question:

When the extension (M, g^D) is Einstein?

Theorem 1

The extension (M, g^D) is Einstein if and only if

• The operator D has constant eigenvalues and

 $\operatorname{div} D = 0,$

where $(\operatorname{div} D)X := \operatorname{Tr}(Y \mapsto (\nabla_Y D)X)$; and

2 The manifold (N, g) is Ricci D-stable and

 $\operatorname{Ric}^{u} = (\operatorname{Tr} D) D - \operatorname{Tr}(D^{2}) \operatorname{id}.$

- ► Ricci D-stable if the Ricci operator Ric^u := Ric_{g^u} does not depend on u;
- ▶ D-Einstein if the extension g^D is Einstein.

Question:

When the extension (M, g^D) is Einstein?

Theorem 1

The extension (M, g^D) is Einstein if and only if

• The operator D has constant eigenvalues and

 $\operatorname{div} D = 0,$

where $(\operatorname{div} D)X := \operatorname{Tr}(Y \mapsto (\nabla_Y D)X)$; and

2 The manifold (N, g) is Ricci D-stable and

 $\operatorname{Ric}^{u} = (\operatorname{Tr} D) D - \operatorname{Tr}(D^{2}) \operatorname{id}.$

- ► Ricci D-stable if the Ricci operator Ric^u := Ric_{g^u} does not depend on u;
- D-Einstein if the extension g^D is Einstein.

Question:

When the extension (M, g^D) is Einstein?

Theorem 1

The extension (M, g^D) is Einstein if and only if

• The operator D has constant eigenvalues and

 $\operatorname{div} D = 0,$

where $(\operatorname{div} D)X := \operatorname{Tr}(Y \mapsto (\nabla_Y D)X)$; and

2 The manifold (N, g) is Ricci D-stable and

 $\operatorname{Ric}^{u} = (\operatorname{Tr} D) D - \operatorname{Tr}(D^{2}) \operatorname{id}.$

- A Ricci flat manifold (N^n, g) is id-Einstein, that is, the metric $g^{id} = du^2 + e^{2u}g$ is Einstein with Einstein constant -n. The converse (any id-Einstein manifold is Ricci flat) follows from (2).
- A direct product $(N_1 \times N_2, g_1 + g_2)$ of Ricci D_i -stable manifolds $(N_i, g_i), i = 1, 2$, is Ricci $D = (D_1 \oplus D_2)$ -stable.
- Suppose (N, g) is a Lie group with a left-invariant metric, D is also left invariant and is defined by a symmetric derivation of the Lie algebra of N. Then (N, g) is D-stable.
- Let (N, g, ξ) be an η -Einstein K-contact manifold (in particular, η -Einstein Sasaki manifold) with the Ricci tensor ric $= -2g + (n + 1)\eta \otimes \eta$, where ξ is a unit Killing vector which defines the contact 1-form $\eta = g \circ \xi$, and D is the canonical endomorphism given by $D = \operatorname{id}_{\operatorname{Ker} \eta} \oplus \operatorname{2id}_{\mathbb{R}\xi}$. Then (N, g) is D-Einstein manifold.

- A Ricci flat manifold (N^n, g) is id-Einstein, that is, the metric $g^{id} = du^2 + e^{2u}g$ is Einstein with Einstein constant -n. The converse (any id-Einstein manifold is Ricci flat) follows from (2).
- A direct product $(N_1 \times N_2, g_1 + g_2)$ of Ricci D_i -stable manifolds $(N_i, g_i), i = 1, 2$, is Ricci $D = (D_1 \oplus D_2)$ -stable.
- Suppose (N, g) is a Lie group with a left-invariant metric, D is also left invariant and is defined by a symmetric derivation of the Lie algebra of N. Then (N, g) is D-stable.
- Let (N, g, ξ) be an η -Einstein K-contact manifold (in particular, η -Einstein Sasaki manifold) with the Ricci tensor ric $= -2g + (n + 1)\eta \otimes \eta$, where ξ is a unit Killing vector which defines the contact 1-form $\eta = g \circ \xi$, and D is the canonical endomorphism given by $D = \operatorname{id}_{\operatorname{Ker} \eta} \oplus \operatorname{2id}_{\mathbb{R}\xi}$. Then (N, g) is D-Einstein manifold.

- A Ricci flat manifold (N^n, g) is id-Einstein, that is, the metric $g^{id} = du^2 + e^{2u}g$ is Einstein with Einstein constant -n. The converse (any id-Einstein manifold is Ricci flat) follows from (2).
- A direct product $(N_1 \times N_2, g_1 + g_2)$ of Ricci D_i -stable manifolds $(N_i, g_i), i = 1, 2$, is Ricci $D = (D_1 \oplus D_2)$ -stable.
- Suppose (N, g) is a Lie group with a left-invariant metric, D is also left invariant and is defined by a symmetric derivation of the Lie algebra of N. Then (N, g) is D-stable.
- Let (N, g, ξ) be an η -Einstein K-contact manifold (in particular, η -Einstein Sasaki manifold) with the Ricci tensor ric $= -2g + (n + 1)\eta \otimes \eta$, where ξ is a unit Killing vector which defines the contact 1-form $\eta = g \circ \xi$, and D is the canonical endomorphism given by $D = \operatorname{id}_{\operatorname{Ker} \eta} \oplus \operatorname{2id}_{\mathbb{R}\xi}$. Then (N, g) is D-Einstein manifold.

- A Ricci flat manifold (N^n, g) is id-Einstein, that is, the metric $g^{id} = du^2 + e^{2u}g$ is Einstein with Einstein constant -n. The converse (any id-Einstein manifold is Ricci flat) follows from (2)
- A direct product $(N_1 \times N_2, g_1 + g_2)$ of Ricci D_i -stable manifolds $(N_i, g_i), i = 1, 2$, is Ricci $D = (D_1 \oplus D_2)$ -stable.
- Suppose (N, g) is a Lie group with a left-invariant metric, D is also left invariant and is defined by a symmetric derivation of the Lie algebra of N. Then (N, g) is D-stable.
- Let (N, g, ξ) be an η -Einstein K-contact manifold (in particular, η -Einstein Sasaki manifold) with the Ricci tensor ric $= -2g + (n + 1)\eta \otimes \eta$, where ξ is a unit Killing vector which defines the contact 1-form $\eta = g \circ \xi$, and D is the canonical endomorphism given by $D = \operatorname{id}_{\operatorname{Ker} \eta} \oplus \operatorname{2id}_{\mathbb{R}\xi}$. Then (N, g) is D-Einstein manifold.

- A Ricci flat manifold (N^n, g) is id-Einstein, that is, the metric $g^{id} = du^2 + e^{2u}g$ is Einstein with Einstein constant -n. The converse (any id-Einstein manifold is Ricci flat) follows from (2).
- A direct product $(N_1 \times N_2, g_1 + g_2)$ of Ricci D_i -stable manifolds $(N_i, g_i), i = 1, 2$, is Ricci $D = (D_1 \oplus D_2)$ -stable.
- Suppose (N, g) is a Lie group with a left-invariant metric, D is also left invariant and is defined by a symmetric derivation of the Lie algebra of N. Then (N, g) is D-stable.
- Let (N, g, ξ) be an η -Einstein K-contact manifold (in particular, η -Einstein Sasaki manifold) with the Ricci tensor ric $= -2g + (n + 1)\eta \otimes \eta$, where ξ is a unit Killing vector which defines the contact 1-form $\eta = g \circ \xi$, and D is the canonical endomorphism given by $D = \operatorname{id}_{\operatorname{Ker} \eta} \oplus \operatorname{2id}_{\mathbb{R}\xi}$. Then (N, g) is D-Einstein manifold.

- A Ricci flat manifold (N^n, g) is id-Einstein, that is, the metric $g^{id} = du^2 + e^{2u}g$ is Einstein with Einstein constant -n. The converse (any id-Einstein manifold is Ricci flat) follows from (2).
- **2** A direct product $(N_1 \times N_2, g_1 + g_2)$ of Ricci D_i -stable manifolds $(N_i, g_i), i = 1, 2$, is Ricci $D = (D_1 \oplus D_2)$ -stable.
- Suppose (N,g) is a Lie group with a left-invariant metric, D is also left invariant and is defined by a symmetric derivation of the Lie algebra of N. Then (N,g) is D-stable.
- Let (N, g, ξ) be an η -Einstein K-contact manifold (in particular, η -Einstein Sasaki manifold) with the Ricci tensor ric $= -2g + (n + 1)\eta \otimes \eta$, where ξ is a unit Killing vector which defines the contact 1-form $\eta = g \circ \xi$, and D is the canonical endomorphism given by $D = \operatorname{id}_{\operatorname{Ker} \eta} \oplus \operatorname{2id}_{\mathbb{R}\xi}$. Then (N, g) is D-Einstein manifold.

- A Ricci flat manifold (N^n, g) is id-Einstein, that is, the metric $g^{id} = du^2 + e^{2u}g$ is Einstein with Einstein constant -n. The converse (any id-Einstein manifold is Ricci flat) follows from (2).
- **2** A direct product $(N_1 \times N_2, g_1 + g_2)$ of Ricci D_i -stable manifolds $(N_i, g_i), i = 1, 2$, is Ricci $D = (D_1 \oplus D_2)$ -stable.
- Suppose (N,g) is a Lie group with a left-invariant metric, D is also left invariant and is defined by a symmetric derivation of the Lie algebra of N. Then (N,g) is D-stable.
- Let (N, g, ξ) be an η -Einstein K-contact manifold (in particular, η -Einstein Sasaki manifold) with the Ricci tensor ric $= -2g + (n + 1)\eta \otimes \eta$, where ξ is a unit Killing vector which defines the contact 1-form $\eta = g \circ \xi$, and D is the canonical endomorphism given by $D = \operatorname{id}_{\operatorname{Ker} \eta} \oplus \operatorname{2id}_{\mathbb{R}\xi}$. Then (N, g) is D-Einstein manifold.

- A Ricci flat manifold (N^n, g) is id-Einstein, that is, the metric $g^{id} = du^2 + e^{2u}g$ is Einstein with Einstein constant -n. The converse (any id-Einstein manifold is Ricci flat) follows from (2).
- **2** A direct product $(N_1 \times N_2, g_1 + g_2)$ of Ricci D_i -stable manifolds $(N_i, g_i), i = 1, 2$, is Ricci $D = (D_1 \oplus D_2)$ -stable.
- Suppose (N, g) is a Lie group with a left-invariant metric, D is also left invariant and is defined by a symmetric derivation of the Lie algebra of N. Then (N, g) is D-stable.
- Let (N, g, ξ) be an η -Einstein K-contact manifold (in particular, η -Einstein Sasaki manifold) with the Ricci tensor ric $= -2g + (n + 1)\eta \otimes \eta$, where ξ is a unit Killing vector which defines the contact 1-form $\eta = g \circ \xi$, and D is the canonical endomorphism given by $D = \operatorname{id}_{\operatorname{Ker} \eta} \oplus \operatorname{2id}_{\mathbb{R}\xi}$. Then (N, g) is D-Einstein manifold.

- A Ricci flat manifold (N^n, g) is id-Einstein, that is, the metric $g^{id} = du^2 + e^{2u}g$ is Einstein with Einstein constant -n. The converse (any id-Einstein manifold is Ricci flat) follows from (2).
- **2** A direct product $(N_1 \times N_2, g_1 + g_2)$ of Ricci D_i -stable manifolds $(N_i, g_i), i = 1, 2$, is Ricci $D = (D_1 \oplus D_2)$ -stable.
- Suppose (N, g) is a Lie group with a left-invariant metric, D is also left invariant and is defined by a symmetric derivation of the Lie algebra of N. Then (N, g) is D-stable.
- Let (N, g, ξ) be an η -Einstein K-contact manifold (in particular, η -Einstein Sasaki manifold) with the Ricci tensor ric $= -2g + (n + 1)\eta \otimes \eta$, where ξ is a unit Killing vector which defines the contact 1-form $\eta = g \circ \xi$, and D is the canonical endomorphism given by $D = \operatorname{id}_{\operatorname{Ker} \eta} \oplus \operatorname{2id}_{\mathbb{R}\xi}$. Then (N, g) is D-Einstein manifold.

- A Ricci flat manifold (N^n, g) is id-Einstein, that is, the metric $g^{id} = du^2 + e^{2u}g$ is Einstein with Einstein constant -n. The converse (any id-Einstein manifold is Ricci flat) follows from (2).
- **2** A direct product $(N_1 \times N_2, g_1 + g_2)$ of Ricci D_i -stable manifolds $(N_i, g_i), i = 1, 2$, is Ricci $D = (D_1 \oplus D_2)$ -stable.
- Suppose (N, g) is a Lie group with a left-invariant metric, D is also left invariant and is defined by a symmetric derivation of the Lie algebra of N. Then (N, g) is D-stable.
- Let (N, g, ξ) be an η -Einstein K-contact manifold (in particular, η -Einstein Sasaki manifold) with the Ricci tensor ric $= -2g + (n + 1)\eta \otimes \eta$, where ξ is a unit Killing vector which defines the contact 1-form $\eta = g \circ \xi$, and D is the canonical endomorphism given by $D = \operatorname{id}_{\operatorname{Ker} \eta} \oplus \operatorname{2id}_{\mathbb{R}\xi}$. Then (N, g) is D-Einstein manifold.

- A Ricci flat manifold (N^n, g) is id-Einstein, that is, the metric $g^{id} = du^2 + e^{2u}g$ is Einstein with Einstein constant -n. The converse (any id-Einstein manifold is Ricci flat) follows from (2).
- **2** A direct product $(N_1 \times N_2, g_1 + g_2)$ of Ricci D_i -stable manifolds $(N_i, g_i), i = 1, 2$, is Ricci $D = (D_1 \oplus D_2)$ -stable.
- Suppose (N, g) is a Lie group with a left-invariant metric, D is also left invariant and is defined by a symmetric derivation of the Lie algebra of N. Then (N, g) is D-stable.
- Let (N, g, ξ) be an η -Einstein K-contact manifold (in particular, η -Einstein Sasaki manifold) with the Ricci tensor ric = $-2g + (n + 1)\eta \otimes \eta$, where ξ is a unit Killing vector which defines the contact 1-form $\eta = g \circ \xi$, and D is the canonical endomorphism given by $D = \operatorname{id}_{\operatorname{Ker} \eta} \oplus 2\operatorname{id}_{\mathbb{R}\xi}$. Then (N, g) is D-Einstein manifold.

- A Ricci flat manifold (N^n, g) is id-Einstein, that is, the metric $g^{id} = du^2 + e^{2u}g$ is Einstein with Einstein constant -n. The converse (any id-Einstein manifold is Ricci flat) follows from (2).
- **2** A direct product $(N_1 \times N_2, g_1 + g_2)$ of Ricci D_i -stable manifolds $(N_i, g_i), i = 1, 2$, is Ricci $D = (D_1 \oplus D_2)$ -stable.
- Suppose (N, g) is a Lie group with a left-invariant metric, D is also left invariant and is defined by a symmetric derivation of the Lie algebra of N. Then (N, g) is D-stable.
- Let (N, g, ξ) be an η -Einstein K-contact manifold (in particular, η -Einstein Sasaki manifold) with the Ricci tensor ric = $-2g + (n + 1)\eta \otimes \eta$, where ξ is a unit Killing vector which defines the contact 1-form $\eta = g \circ \xi$, and D is the canonical endomorphism given by $D = \operatorname{id}_{\operatorname{Ker} \eta} \oplus 2\operatorname{id}_{\mathbb{R}\xi}$. Then (N, g) is D-Einstein manifold.

- A Ricci flat manifold (N^n, g) is id-Einstein, that is, the metric $g^{id} = du^2 + e^{2u}g$ is Einstein with Einstein constant -n. The converse (any id-Einstein manifold is Ricci flat) follows from (2).
- **2** A direct product $(N_1 \times N_2, g_1 + g_2)$ of Ricci D_i -stable manifolds $(N_i, g_i), i = 1, 2$, is Ricci $D = (D_1 \oplus D_2)$ -stable.
- Suppose (N, g) is a Lie group with a left-invariant metric, D is also left invariant and is defined by a symmetric derivation of the Lie algebra of N. Then (N, g) is D-stable.
- Let (N, g, ξ) be an η -Einstein K-contact manifold (in particular, η -Einstein Sasaki manifold) with the Ricci tensor ric = $-2g + (n + 1)\eta \otimes \eta$, where ξ is a unit Killing vector which defines the contact 1-form $\eta = g \circ \xi$, and D is the canonical endomorphism given by $D = \operatorname{id}_{\operatorname{Ker} \eta} \oplus \operatorname{2id}_{\mathbb{R}\xi}$. Then (N, g) is D-Einstein manifold.

- ▶ \mathbb{R}^n a Euclidean space with an orthonormal basis $\{f_i\}_{i=1}^n$;
- ▶ $p = (p_1, \ldots, p_n)^t$ and $\mathbf{1}_n = (1, \ldots, 1)^t$ (*n* ones) vectors in \mathbb{R}^n ;
- $F_p = \{v_1, \ldots, v_m\}$ maximal linearly independent subset of $F \cap p^{\perp}$;
- ▶ V be an $n \times m$ matrix whose vector columns are the vectors v_a (if $v_a = f_i + f_j - f_k \in F_p$, then the *a*-th column of V has 1 in rows *i* and *j*, -1 in row *k*, and zeros elsewhere).

Theorem 2

Suppose that (M, g^D) is Einstein and that det $D \neq 0$.

- The projection of $\mathbf{1}_n$ to p^{\perp} lies in the convex cone hull of $F \cap p^{\perp}$.
- \bigcirc If, in addition, $\operatorname{Tr} D \neq 0$, then up to scaling,

$$p = \mathbf{1}_n - V(V^t V)^{-1} \mathbf{1}_m.$$

In particular, up to scaling, all the p_i are integers. Moreover, for every dimension n, there is only a finite number of the eigenvalue types of the operator D, with det $D \neq 0$ and Tr $D \neq 0$.

▶ \mathbb{R}^n a Euclidean space with an orthonormal basis $\{f_i\}_{i=1}^n$;

 $\blacktriangleright F = \{f_i + f_j - f_k : i \neq j, k \neq i, j\} \subset \mathbb{R}^n;$

▶ $p = (p_1, \ldots, p_n)^t$ and $\mathbf{1}_n = (1, \ldots, 1)^t$ (*n* ones) vectors in \mathbb{R}^n ;

- $F_p = \{v_1, \ldots, v_m\}$ maximal linearly independent subset of $F \cap p^{\perp}$;
- ▶ V be an $n \times m$ matrix whose vector columns are the vectors v_a (if $v_a = f_i + f_j - f_k \in F_p$, then the *a*-th column of V has 1 in rows *i* and *j*, -1 in row *k*, and zeros elsewhere).

Theorem 2

Suppose that (M, g^D) is Einstein and that det $D \neq 0$.

- The projection of $\mathbf{1}_n$ to p^{\perp} lies in the convex cone hull of $F \cap p^{\perp}$.
- If, in addition, $\operatorname{Tr} D \neq 0$, then up to scaling,

 $p = \mathbf{1}_n - V(V^t V)^{-1} \mathbf{1}_m$

In particular, up to scaling, all the p_i are integers. Moreover, for every dimension n, there is only a finite number of the eigenvalue types of the operator D, with det $D \neq 0$ and $\operatorname{Tr} D \neq 0$.

- ▶ \mathbb{R}^n a Euclidean space with an orthonormal basis $\{f_i\}_{i=1}^n$; ▶ $F = \{f_i + f_j - f_k : i \neq j, k \neq i, j\} \subset \mathbb{R}^n$;
- ▶ $p = (p_1, \ldots, p_n)^t$ and $\mathbf{1}_n = (1, \ldots, 1)^t$ (*n* ones) vectors in \mathbb{R}^n ;
- $F_p = \{v_1, \ldots, v_m\}$ maximal linearly independent subset of $F \cap p^{\perp}$;
- ▶ V be an $n \times m$ matrix whose vector columns are the vectors v_a (if $v_a = f_i + f_j - f_k \in F_p$, then the *a*-th column of V has 1 in rows *i* and *j*, -1 in row *k*, and zeros elsewhere).

Theorem 2

Suppose that (M, g^D) is Einstein and that det $D \neq 0$.

- The projection of $\mathbf{1}_n$ to p^{\perp} lies in the convex cone hull of $F \cap p^{\perp}$.
- If, in addition, $\operatorname{Tr} D \neq 0$, then up to scaling,

 $p = \mathbf{1}_n - V(V^t V)^{-1} \mathbf{1}_m.$

In particular, up to scaling, all the p_i are integers. Moreover, for every dimension n, there is only a finite number of the eigenvalue types of the operator D, with det $D \neq 0$ and Tr $D \neq 0$.

Rⁿ a Euclidean space with an orthonormal basis {f_i}ⁿ_{i=1};
 F = {f_i + f_j - f_k : i ≠ j, k ≠ i, j} ⊂ Rⁿ;
 p = (p₁,..., p_n)^t and 1_n = (1,...,1)^t (n ones) vectors in Rⁿ;
 F_p = {v₁,..., v_m} maximal linearly independent subset of F ∩ p[⊥];
 V be an n × m matrix whose vector columns are the vectors v_a in v_a = f_i =

Theorem 2

Suppose that (M, g^D) is Einstein and that det $D \neq 0$.

- The projection of $\mathbf{1}_n$ to p^{\perp} lies in the convex cone hull of $F \cap p^{\perp}$.
- If, in addition, $\operatorname{Tr} D \neq 0$, then up to scaling,

 $p = \mathbf{1}_n - V(V^t V)^{-1} \mathbf{1}_m.$

In particular, up to scaling, all the p_i are integers. Moreover, for every dimension n, there is only a finite number of the eigenvalue types of the operator D, with det $D \neq 0$ and $\operatorname{Tr} D \neq 0$.

D.Alekseevsky, Y. Nikolayevsky Einstein extensions of Riemannian manifolds

Rⁿ a Euclidean space with an orthonormal basis {f_i}ⁿ_{i=1};
 F = {f_i + f_j - f_k : i ≠ j, k ≠ i, j} ⊂ Rⁿ;
 p = (p₁,..., p_n)^t and 1_n = (1,...,1)^t (n ones) vectors in Rⁿ;
 F_p = {v₁,..., v_m} maximal linearly independent subset of F ∩ p[⊥];
 V be an n × m matrix whose vector columns are the vectors v_a

Theorem 2

Suppose that (M, g^D) is Einstein and that det $D \neq 0$.

- The projection of $\mathbf{1}_n$ to p^{\perp} lies in the convex cone hull of $F \cap p^{\perp}$.
- If, in addition, $\operatorname{Tr} D \neq 0$, then up to scaling,

 $p = \mathbf{1}_n - V(V^t V)^{-1} \mathbf{1}_m.$

In particular, up to scaling, all the p_i are integers. Moreover, for every dimension n, there is only a finite number of the eigenvalue types of the operator D, with det $D \neq 0$ and $\operatorname{Tr} D \neq 0$.

D.Alekseevsky, Y. Nikolayevsky Einstein extensions of Riemannian manifolds

Rⁿ a Euclidean space with an orthonormal basis {f_i}ⁿ_{i=1};
 F = {f_i + f_j - f_k : i ≠ j, k ≠ i, j} ⊂ Rⁿ;
 p = (p₁,..., p_n)^t and 1_n = (1,...,1)^t (n ones) vectors in Rⁿ;
 F_p = {v₁,..., v_m} maximal linearly independent subset of F ∩ p[⊥];
 V be an n × m matrix whose vector columns are the vectors v_a (if v_a = f_i + f_j - f_k ∈ F_p, then the *a*-th column of V has 1 in rows i and j, -1 in row k, and zeros elsewhere).

Theorem 2

Suppose that (M, g^D) is Einstein and that det $D \neq 0$.

- The projection of $\mathbf{1}_n$ to p^{\perp} lies in the convex cone hull of $F \cap p^{\perp}$.
- If, in addition, $\operatorname{Tr} D \neq 0$, then up to scaling,

 $p = \mathbf{1}_n - V(V^t V)^{-1} \mathbf{1}_m$

In particular, up to scaling, all the p_i are integers. Moreover, for every dimension n, there is only a finite number of the eigenvalue types of the operator D, with det $D \neq 0$ and $\operatorname{Tr} D \neq 0$.

Rⁿ a Euclidean space with an orthonormal basis {f_i}ⁿ_{i=1};
 F = {f_i + f_j - f_k : i ≠ j, k ≠ i, j} ⊂ Rⁿ;
 p = (p₁,..., p_n)^t and 1_n = (1,...,1)^t (n ones) vectors in Rⁿ;
 F_p = {v₁,..., v_m} maximal linearly independent subset of F ∩ p[⊥];
 V be an n × m matrix whose vector columns are the vectors v_a (if v_a = f_i + f_j - f_k ∈ F_p, then the *a*-th column of V has 1 in rows i and j, -1 in row k, and zeros elsewhere).

Theorem 2

Suppose that (M, g^D) is Einstein and that det $D \neq 0$.

- The projection of $\mathbf{1}_n$ to p^{\perp} lies in the convex cone hull of $F \cap p^{\perp}$.
- If, in addition, $\operatorname{Tr} D \neq 0$, then up to scaling,

 $p = \mathbf{1}_n - V(V^t V)^{-1} \mathbf{1}_m$

In particular, up to scaling, all the p_i are integers. Moreover, for every dimension n, there is only a finite number of the eigenvalue types of the operator D, with det $D \neq 0$ and $\operatorname{Tr} D \neq 0$.

Rⁿ a Euclidean space with an orthonormal basis {f_i}ⁿ_{i=1};
 F = {f_i + f_j - f_k : i ≠ j, k ≠ i, j} ⊂ Rⁿ;
 p = (p₁,..., p_n)^t and 1_n = (1,...,1)^t (n ones) vectors in Rⁿ;
 F_p = {v₁,..., v_m} maximal linearly independent subset of F ∩ p[⊥];
 V be an n × m matrix whose vector columns are the vectors v_a (if v_a = f_i + f_j - f_k ∈ F_p, then the a-th column of V has 1 in rows i and j, -1 in row k, and zeros elsewhere).

Theorem 2

Suppose that (M, g^D) is Einstein and that det $D \neq 0$.

- The projection of $\mathbf{1}_n$ to p^{\perp} lies in the convex cone hull of $F \cap p^{\perp}$.
- If, in addition, $\operatorname{Tr} D \neq 0$, then up to scaling,

 $p = \mathbf{1}_n - V(V^t V)^{-1} \mathbf{1}_m.$

In particular, up to scaling, all the p_i are integers. Moreover, for every dimension n, there is only a finite number of the eigenvalue types of the operator D, with det $D \neq 0$ and $\operatorname{Tr} D \neq 0$.

D.Alekseevsky, Y. Nikolayevsky Einstein extensions of Riemannian manifolds

Rⁿ a Euclidean space with an orthonormal basis {f_i}ⁿ_{i=1};
 F = {f_i + f_j - f_k : i ≠ j, k ≠ i, j} ⊂ Rⁿ;
 p = (p₁,..., p_n)^t and 1_n = (1,...,1)^t (n ones) vectors in Rⁿ;
 F_p = {v₁,..., v_m} maximal linearly independent subset of F ∩ p[⊥];
 V be an n × m matrix whose vector columns are the vectors v_a (if v_a = f_i + f_j - f_k ∈ F_p, then the *a*-th column of V has 1 in rows i and j, -1 in row k, and zeros elsewhere).

Theorem 2

Suppose that (M, g^D) is Einstein and that det $D \neq 0$.

- The projection of $\mathbf{1}_n$ to p^{\perp} lies in the convex cone hull of $F \cap p^{\perp}$.
- ⓐ If, in addition, $\operatorname{Tr} D \neq 0$, then up to scaling,

$$p = \mathbf{1}_n - V(V^t V)^{-1} \mathbf{1}_m.$$

In particular, up to scaling, all the p_i are integers. Moreover, for every dimension n, there is only a finite number of the eigenvalue types of the operator D, with det $D \neq 0$ and $\operatorname{Tr} D \neq 0$.

Rⁿ a Euclidean space with an orthonormal basis {f_i}ⁿ_{i=1};
 F = {f_i + f_j - f_k : i ≠ j, k ≠ i, j} ⊂ Rⁿ;
 p = (p₁,..., p_n)^t and 1_n = (1,...,1)^t (n ones) vectors in Rⁿ;
 F_p = {v₁,..., v_m} maximal linearly independent subset of F ∩ p[⊥];
 V be an n × m matrix whose vector columns are the vectors v_a (if v_a = f_i + f_j - f_k ∈ F_p, then the *a*-th column of V has 1 in rows i and j, -1 in row k, and zeros elsewhere).

Theorem 2

Suppose that (M, g^D) is Einstein and that det $D \neq 0$.

- The projection of $\mathbf{1}_n$ to p^{\perp} lies in the convex cone hull of $F \cap p^{\perp}$.
- **2** If, in addition, $\operatorname{Tr} D \neq 0$, then up to scaling,

$$p = \mathbf{1}_n - V(V^t V)^{-1} \mathbf{1}_m.$$

In particular, up to scaling, all the p_i are integers. Moreover, for every dimension n, there is only a finite number of the eigenvalue types of the operator D, with det $D \neq 0$ and $\operatorname{Tr} D \neq 0$.

D.Alekseevsky, Y. Nikolayevsky

Einstein extensions of Riemannian manifolds

Rⁿ a Euclidean space with an orthonormal basis {f_i}ⁿ_{i=1};
 F = {f_i + f_j - f_k : i ≠ j, k ≠ i, j} ⊂ Rⁿ;
 p = (p₁,..., p_n)^t and 1_n = (1,...,1)^t (n ones) vectors in Rⁿ;
 F_p = {v₁,..., v_m} maximal linearly independent subset of F ∩ p[⊥];
 V be an n × m matrix whose vector columns are the vectors v_a (if v_a = f_i + f_j - f_k ∈ F_p, then the *a*-th column of V has 1 in rows i and j, -1 in row k, and zeros elsewhere).

Theorem 2

Suppose that (M, g^D) is Einstein and that det $D \neq 0$.

- The projection of $\mathbf{1}_n$ to p^{\perp} lies in the convex cone hull of $F \cap p^{\perp}$.
- **2** If, in addition, $\operatorname{Tr} D \neq 0$, then up to scaling,

$$p = \mathbf{1}_n - V(V^t V)^{-1} \mathbf{1}_m.$$

In particular, up to scaling, all the p_i are integers. Moreover, for every dimension n, there is only a finite number of the eigenvalue types of the operator D, with det $D \neq 0$ and $\operatorname{Tr} D \neq 0$.

D.Alekseevsky, Y. Nikolayevsky

Einstein extensions of Riemannian manifolds

Rⁿ a Euclidean space with an orthonormal basis {f_i}ⁿ_{i=1};
 F = {f_i + f_j - f_k : i ≠ j, k ≠ i, j} ⊂ Rⁿ;
 p = (p₁,..., p_n)^t and 1_n = (1,...,1)^t (n ones) vectors in Rⁿ;
 F_p = {v₁,..., v_m} maximal linearly independent subset of F ∩ p[⊥];
 V be an n × m matrix whose vector columns are the vectors v_a (if v_a = f_i + f_j - f_k ∈ F_p, then the a-th column of V has 1 in rows i and j, -1 in row k, and zeros elsewhere).

Theorem 2

Suppose that (M, g^D) is Einstein and that det $D \neq 0$.

- The projection of $\mathbf{1}_n$ to p^{\perp} lies in the convex cone hull of $F \cap p^{\perp}$.
- **2** If, in addition, $\operatorname{Tr} D \neq 0$, then up to scaling,

$$p = \mathbf{1}_n - V(V^t V)^{-1} \mathbf{1}_m.$$

In particular, up to scaling, all the p_i are integers. Moreover, for every dimension n, there is only a finite number of the eigenvalue types of the operator D, with det $D \neq 0$ and $\operatorname{Tr} D \neq 0$.

D.Alekseevsky, Y. Nikolayevsky Einstein extensions of Riemannian manifolds

- If D has two eigenvalues, both nonzero, then the eigenvalue type is $(1, \ldots, 1, 2, \ldots, 2)$.
- If n = 3 and det $D \neq 0$, then (1, 1, 2) and (1, 1, 1) (so that D = id) are the only possible eigenvalue structures, up to scaling.
- ▶ Similarly, If n = 4 and det $D \neq 0$, then all the eigenvalue types, up to scaling, are

- ▶ If D has two eigenvalues, both nonzero, then the eigenvalue type is (1,...,1,2,...,2).
- If n = 3 and det $D \neq 0$, then (1, 1, 2) and (1, 1, 1) (so that D = id) are the only possible eigenvalue structures, up to scaling
- ▶ Similarly, If n = 4 and det $D \neq 0$, then all the eigenvalue types, up to scaling, are

- ▶ If D has two eigenvalues, both nonzero, then the eigenvalue type is (1,...,1,2,...,2).
- If n = 3 and det $D \neq 0$, then (1, 1, 2) and (1, 1, 1) (so that D = id) are the only possible eigenvalue structures, up to scaling
- ▶ Similarly, If n = 4 and det $D \neq 0$, then all the eigenvalue types, up to scaling, are

- ▶ If D has two eigenvalues, both nonzero, then the eigenvalue type is (1, ..., 1, 2, ..., 2).
- If n = 3 and det D ≠ 0, then (1, 1, 2) and (1, 1, 1) (so that D = id) are the only possible eigenvalue structures, up to scaling
- ▶ Similarly, If n = 4 and det $D \neq 0$, then all the eigenvalue types, up to scaling, are

- ▶ If D has two eigenvalues, both nonzero, then the eigenvalue type is (1, ..., 1, 2, ..., 2).
- If n = 3 and det D ≠ 0, then (1, 1, 2) and (1, 1, 1) (so that D = id) are the only possible eigenvalue structures, up to scaling.
- ▶ Similarly, If n = 4 and det $D \neq 0$, then all the eigenvalue types, up to scaling, are

- If D has two eigenvalues, both nonzero, then the eigenvalue type is $(1, \ldots, 1, 2, \ldots, 2)$.
- If n = 3 and det D ≠ 0, then (1,1,2) and (1,1,1) (so that D = id) are the only possible eigenvalue structures, up to scaling.
- ▶ Similarly, If n = 4 and det $D \neq 0$, then all the eigenvalue types, up to scaling, are

- If D has two eigenvalues, both nonzero, then the eigenvalue type is $(1, \ldots, 1, 2, \ldots, 2)$.
- If n = 3 and det D ≠ 0, then (1,1,2) and (1,1,1) (so that D = id) are the only possible eigenvalue structures, up to scaling.
- ▶ Similarly, If n = 4 and det $D \neq 0$, then all the eigenvalue types, up to scaling, are

- ▶ If D has two eigenvalues, both nonzero, then the eigenvalue type is (1, ..., 1, 2, ..., 2).
- If n = 3 and det D ≠ 0, then (1, 1, 2) and (1, 1, 1) (so that D = id) are the only possible eigenvalue structures, up to scaling.
- ▶ Similarly, If n = 4 and det $D \neq 0$, then all the eigenvalue types, up to scaling, are

Two eigenvalues

If the operator D is non-scalar, the simplest possible case to consider is when it has an eigenvalue of multiplicity n-1, so that $p_1 = \cdots = p_{n-1} = \lambda$, $p_n = \nu$, $\lambda \neq \nu$. Up to scaling, we can have $(\lambda, \nu) = (0, 1), (1, 0), \text{ or } (1, 2)$ (from above).

Theorem 3

Suppose that (M, g^D) is Einstein and that D has eigenvalues 0 and 1 whose multiplicities are n-1 and 1 respectively. Then (N, g) is locally isometric to the Riemannian product of the real line and an Einstein manifold N' of dimension n-1 with the Einstein constant -1. The manifold (M, g^D) is locally isometric to the Riemannian product of the hyperbolic plane of curvature -1 and N'.

If D has eigenvalues 1 and 0 with multiplicities n-1 and 1 respectively, then (M, g^D) is a warped product with a two-dimensional base, and it can be obtained as a "double extension", by two commuting extensions, of a Ricci flat manifold N'.

Two eigenvalues

If the operator D is non-scalar, the simplest possible case to consider is when it has an eigenvalue of multiplicity n-1, so that $p_1 = \cdots = p_{n-1} = \lambda$, $p_n = \nu$, $\lambda \neq \nu$. Up to scaling, we can have $(\lambda, \nu) = (0, 1), (1, 0), \text{ or } (1, 2)$ (from above).

Theorem 3

Suppose that (M, g^D) is Einstein and that D has eigenvalues 0 and 1 whose multiplicities are n-1 and 1 respectively. Then (N, g) is locally isometric to the Riemannian product of the real line and an Einstein manifold N' of dimension n-1 with the Einstein constant -1. The manifold (M, g^D) is locally isometric to the Riemannian product of the hyperbolic plane of curvature -1 and N'.

If D has eigenvalues 1 and 0 with multiplicities n-1 and 1 respectively, then (M, g^D) is a warped product with a two-dimensional base, and it can be obtained as a "double extension", by two commuting extensions, of a Ricci flat manifold N'.

Two eigenvalues

If the operator D is non-scalar, the simplest possible case to consider is when it has an eigenvalue of multiplicity n-1, so that $p_1 = \cdots = p_{n-1} = \lambda$, $p_n = \nu$, $\lambda \neq \nu$. Up to scaling, we can have $(\lambda, \nu) = (0, 1), (1, 0), \text{ or } (1, 2)$ (from above).

Theorem 3

Suppose that (M, g^D) is Einstein and that D has eigenvalues 0 and 1 whose multiplicities are n-1 and 1 respectively. Then (N, g) is locally isometric to the Riemannian product of the real line and an Einstein manifold N' of dimension n-1 with the Einstein constant -1. The manifold (M, g^D) is locally isometric to the Riemannian product of the hyperbolic plane of curvature -1 and N'.

If D has eigenvalues 1 and 0 with multiplicities n-1 and 1 respectively, then (M, g^D) is a warped product with a two-dimensional base, and it can be obtained as a "double extension", by two commuting extensions, of a Ricci flat manifold N'.

In the (1,2) case, we prove the following Theorem.

Theorem 4

Suppose that (M, g^D) is the extension of (N, g) such that D has eigenvalues 1 and 2 whose multiplicities are n - 1 and 1 respectively If (M, g^D) is Einstein, then there exists an almost Kähler, Ricci flat manifold (N', ds'^2) with the fundamental form $\frac{1}{2}d\theta'$, such that the metric g on N is locally given by $\overline{ds^2} = ds'^2 + (dx^n + \theta')^2$, and the Einstein metric g^D on M is locally given by $ds^2 = du^2 + e^{2u}ds'^2 + e^{4u}(dx^n + \theta')^2$.

The manifold (N, g) is contact. The resulting metric g^D on M is a particular case of the Page metric (which proves the converse).

In the (1,2) case, we prove the following Theorem.

Theorem 4

Suppose that (M, g^D) is the extension of (N, g) such that D has eigenvalues 1 and 2 whose multiplicities are n - 1 and 1 respectively. If (M, g^D) is Einstein, then there exists an almost Kähler, Ricci flat manifold (N', ds'^2) with the fundamental form $\frac{1}{2}d\theta'$, such that the metric g on N is locally given by $\overline{ds^2} = ds'^2 + (dx^n + \theta')^2$, and the Einstein metric g^D on M is locally given by $ds^2 = du^2 + e^{2u}ds'^2 + e^{4u}(dx^n + \theta')^2$.

The manifold (N, g) is contact. The resulting metric g^D on M is a particular case of the Page metric (which proves the converse).

Theorem 5

Suppose that dim N = 3 and that the extension (M, g^D) is Einstein. Then both (N, g) and (M, g^D) are locally isometric to Lie groups with left-invariant metrics; N is a nilmanifold or a solvmanifold, D is a derivation, and (M, g^D) is an Einstein solvmanifold. All the possible cases, up to scaling, are listed in the table:

p_i	n	(M, g^D)	ds^2
0, 0, 0		\mathbb{R}^4	$du^2 + dx_1^2 + dx_2^2 + dx_3^2$
1, 1, 1		$H^{4}(-1)$	$du^2 + e^{2u}(dx_1^2 + dx_2^2 + dx_3^2)$
1, 1, 2	$\begin{array}{l} Heisenberg, \\ [\overline{e}_1, \overline{e}_2] = \overline{e}_3 \end{array}$	$\mathbb{C}H^2(-4)$	$ \begin{aligned} du^2 + e^{2u} (dx_1^2 + dx_2^2) \\ + e^{4u} (dx_3 + x_1 dx_2)^2 \end{aligned} $
1, p, 0	Solvable, $[\overline{e}_3, \overline{e}_1] = p\overline{e}_1,$ $[\overline{e}_3, \overline{e}_2] = -\overline{e}_2$	$ \begin{array}{c} H^2(-(p^2+1)) \\ \times H^2(-(p^2+1)) \end{array} $	$ du^2 + dx_3^2 + e^{2(u-px_3)} dx_1^2 \\ + e^{2(pu+x_3)} dx_2^2 $

Theorem 5

Suppose that dim N = 3 and that the extension (M, g^D) is Einstein.

Then both (N,g) and (M,g^D) are locally isometric to Lie groups with left-invariant metrics; N is a nilmanifold or a solvmanifold, D is a derivation, and (M,g^D) is an Einstein solvmanifold. All the possible cases, up to scaling, are listed in the table:

Theorem 5

Suppose that dim N = 3 and that the extension (M, g^D) is Einstein. Then both (N, g) and (M, g^D) are locally isometric to Lie groups with left-invariant metrics; N is a nilmanifold or a solvmanifold, D is a derivation, and (M, g^D) is an Einstein solvmanifold. All the possible cases, up to scaling, are listed in the table:

Theorem 5

Suppose that dim N = 3 and that the extension (M, g^D) is Einstein. Then both (N, g) and (M, g^D) are locally isometric to Lie groups with left-invariant metrics; N is a nilmanifold or a solvmanifold, D is a derivation, and (M, g^D) is an Einstein solvmanifold. All the possible cases, up to scaling, are listed in the table:

D.Alekseevsky, Y. Nikolayevsky Einstein extensions of Riemannian manifolds

Theorem 5

Suppose that dim N = 3 and that the extension (M, g^D) is Einstein. Then both (N, g) and (M, g^D) are locally isometric to Lie groups with left-invariant metrics; N is a nilmanifold or a solvmanifold, D is a derivation, and (M, g^D) is an Einstein solvmanifold. All the possible cases, up to scaling, are listed in the table:

p_i	n	(M, g^D)	ds^2
0,0,0	abelian	\mathbb{R}^4	$du^2 + dx_1^2 + dx_2^2 + dx_3^2$
1, 1, 1	abelian	$H^{4}(-1)$	$du^2 + e^{2u}(dx_1^2 + dx_2^2 + dx_3^2)$
1, 1, 2	$\begin{array}{l} Heisenberg,\\ [\overline{e}_1,\overline{e}_2]=\overline{e}_3 \end{array}$	$\mathbb{C}H^2(-4)$	$ \frac{du^2 + e^{2u}(dx_1^2 + dx_2^2)}{+e^{4u}(dx_3 + x_1 dx_2)^2} $
1, p, 0	Solvable, $[\overline{e}_3, \overline{e}_1] = p\overline{e}_1,$ $[\overline{e}_3, \overline{e}_2] = -\overline{e}_2$	$ \begin{array}{c} H^2(-(p^2+1)) \\ \times H^2(-(p^2+1)) \end{array} $	$\frac{du^2 + dx_3^2 + e^{2(u-px_3)}dx_1^2}{+e^{2(pu+x_3)}dx_2^2}$

Let N be a Lie group with a left-invariant metric g and let D be left-invariant.

Is it true that if (M, g^D) is Einstein, then it is an Einstein solvmanifold? We answer this question in positive in two cases

Theorem 6

Suppose the extension (M, g^D) of a Lie group (N, g) by D is Einstein, and both g and D are left-invariant. Denote \mathfrak{n} the Lie algebra of N.

 If the Killing form of the Lie algebra n is nonnegative, then D is a derivation of n.

• Suppose the Lie algebra \mathbf{n} contains a codimension one abelian ideal \mathbf{a} . Then there exists a metric solvable Lie group (N', g') and an isometry $\phi : (N, g) \to (N', g')$ such that $D' = (d\phi)D$ is left-invariant relative to N' and is a derivation of the Lie algebra \mathbf{n}' of N'.

Let N be a Lie group with a left-invariant metric g and let D be left-invariant.

Is it true that if (M, g^D) is Einstein, then it is an Einstein solvmanifold? We answer this question in positive in two cases.

Theorem 6

Suppose the extension (M, g^D) of a Lie group (N, g) by D is Einstein, and both g and D are left-invariant. Denote \mathfrak{n} the Lie algebra of N.

 If the Killing form of the Lie algebra n is nonnegative, then D is a derivation of n.

• Suppose the Lie algebra \mathfrak{n} contains a codimension one abelian ideal \mathfrak{a} . Then there exists a metric solvable Lie group (N',g') and an isometry $\phi: (N,g) \to (N',g')$ such that $D' = (d\phi)D$ is left-invariant relative to N' and is a derivation of the Lie algebra \mathfrak{n}' of N'.

Let N be a Lie group with a left-invariant metric g and let D be left-invariant.

Is it true that if (M, g^D) is Einstein, then it is an Einstein solvmanifold?

We answer this question in positive in two cases.

Theorem 6

Suppose the extension (M, g^D) of a Lie group (N, g) by D is Einstein, and both g and D are left-invariant. Denote \mathfrak{n} the Lie algebra of N.

 If the Killing form of the Lie algebra n is nonnegative, then D is a derivation of n.

• Suppose the Lie algebra \mathfrak{n} contains a codimension one abelian ideal \mathfrak{a} . Then there exists a metric solvable Lie group (N',g') and an isometry $\phi: (N,g) \to (N',g')$ such that $D' = (d\phi)D$ is left-invariant relative to N' and is a derivation of the Lie algebra \mathfrak{n}' of N'.

Let N be a Lie group with a left-invariant metric g and let D be left-invariant.

Is it true that if (M, g^D) is Einstein, then it is an Einstein solvmanifold? We answer this question in positive in two cases.

Theorem 6

Suppose the extension (M, g^D) of a Lie group (N, g) by D is Einstein, and both g and D are left-invariant. Denote \mathfrak{n} the Lie algebra of N.

 If the Killing form of the Lie algebra n is nonnegative, then D is a derivation of n.

• Suppose the Lie algebra \mathfrak{n} contains a codimension one abelian ideal \mathfrak{a} . Then there exists a metric solvable Lie group (N',g') and an isometry $\phi: (N,g) \to (N',g')$ such that $D' = (d\phi)D$ is left-invariant relative to N' and is a derivation of the Lie algebra \mathfrak{n}' of N'.

Let N be a Lie group with a left-invariant metric g and let D be left-invariant.

Is it true that if (M, g^D) is Einstein, then it is an Einstein solvmanifold? We approve this question in positive in two pages

We answer this question in positive in two cases.

Theorem 6

Suppose the extension (M, g^D) of a Lie group (N, g) by D is Einstein, and both g and D are left-invariant. Denote \mathfrak{n} the Lie algebra of N.

- If the Killing form of the Lie algebra n is nonnegative, then D is a derivation of n.
- Suppose the Lie algebra π contains a codimension one abelian ideal α. Then there exists a metric solvable Lie group (N', g') and an isometry φ : (N, g) → (N', g') such that D' = (dφ)D is left-invariant relative to N' and is a derivation of the Lie algebra π' of N'.

Let N be a Lie group with a left-invariant metric g and let D be left-invariant.

Is it true that if (M, g^D) is Einstein, then it is an Einstein solvmanifold?

We answer this question in positive in two cases.

Theorem 6

Suppose the extension (M, g^D) of a Lie group (N, g) by D is Einstein, and both g and D are left-invariant. Denote \mathfrak{n} the Lie algebra of N.

 If the Killing form of the Lie algebra n is nonnegative, then D is a derivation of n.

Suppose the Lie algebra \mathfrak{n} contains a codimension one abelian ideal \mathfrak{a} . Then there exists a metric solvable Lie group (N',g') and an isometry $\phi: (N,g) \to (N',g')$ such that $D' = (d\phi)D$ is left-invariant relative to N' and is a derivation of the Lie algebra \mathfrak{n}' of N'.

Let N be a Lie group with a left-invariant metric g and let D be left-invariant.

Is it true that if (M, g^D) is Einstein, then it is an Einstein solvmanifold?

We answer this question in positive in two cases.

Theorem 6

Suppose the extension (M, g^D) of a Lie group (N, g) by D is Einstein, and both g and D are left-invariant. Denote \mathfrak{n} the Lie algebra of N.

- If the Killing form of the Lie algebra n is nonnegative, then D is a derivation of n.
- Suppose the Lie algebra n contains a codimension one abelian ideal a. Then there exists a metric solvable Lie group (N', g') and an isometry φ : (N, g) → (N', g') such that D' = (dφ)D is left-invariant relative to N' and is a derivation of the Lie algebra n' of N'.

Let N be a Lie group with a left-invariant metric g and let D be left-invariant.

Is it true that if (M, g^D) is Einstein, then it is an Einstein solvmanifold?

We answer this question in positive in two cases.

Theorem 6

Suppose the extension (M, g^D) of a Lie group (N, g) by D is Einstein, and both g and D are left-invariant. Denote \mathfrak{n} the Lie algebra of N.

- If the Killing form of the Lie algebra n is nonnegative, then D is a derivation of n.
- Suppose the Lie algebra n contains a codimension one abelian ideal a. Then there exists a metric solvable Lie group (N', g') and an isometry φ : (N, g) → (N', g') such that D' = (dφ)D is left-invariant relative to N' and is a derivation of the Lie algebra n' of N'.

Let N be a Lie group with a left-invariant metric g and let D be left-invariant.

Is it true that if (M, g^D) is Einstein, then it is an Einstein solvmanifold?

We answer this question in positive in two cases.

Theorem 6

Suppose the extension (M, g^D) of a Lie group (N, g) by D is Einstein, and both g and D are left-invariant. Denote \mathfrak{n} the Lie algebra of N.

- If the Killing form of the Lie algebra n is nonnegative, then D is a derivation of n.
- Suppose the Lie algebra n contains a codimension one abelian ideal a. Then there exists a metric solvable Lie group (N', g') and an isometry φ : (N, g) → (N', g') such that D' = (dφ)D is left-invariant relative to N' and is a derivation of the Lie algebra n' of N'.