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Motivation

Suppose we are given

I a Lie group N with the Lie algebra n,
I an inner product 〈·, ·〉 on n, and
I a symmetric derivation η of n.

Then 〈·, ·〉 generates a left-invariant metric g on N .
Now consider the one-dimensional extension m of n by D:

I m := RA⊕ n as a linear space;
I Lie bracket: for X,Y ∈ n, [X,Y ]m := [X,Y ]n, [A,X]m := η(X);
I Inner product: for X,Y ∈ n,
〈X,Y 〉m := 〈X,Y 〉, 〈A,X〉m := 0, ‖A‖m := 1.

The inner product 〈·, ·〉m generates a left-invariant Riemannian metric
on the group M = N oR which can explicitly be represented by the
following ansatz.
Suppose D is the left invariant operator field on M such that
D(e) = η. Then the metric gD on M is given by
gD = du2 + (exp(uD))∗g.
Equivalently, for t1A+X1, t2A+X2 ∈ T(u,x)M ,

gD(t1A+X1, t2A+X2) = t1t2 + g(euDX1, e
uDX2).
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Important case:

n is nilpotent and 〈·, ·〉 is a nilsoliton inner product. Then if we choose
η “in the correct way”, the resulting metric Lie group (M, gD) is an
Einstein solvmanifold. (And if the conjecture of the first named
author is true, any non-compact Einstein homogeneous space is
isometric to a one of those).

Properties:

I Ricn = (Tr η) η − Tr(η2) id;

I n is naturally graded by η (so that all the eigenvalues of η are
integer [rational], up to scaling);

I The eigenvalues satisfy certain linear relations, and for every n,
there is only a finite number of the eigenvalue types of η of
dimension n, up to scaling.
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Definition and Theorem

Idea: drop the homogeneity assumption and look at what is left . . .

Definition

Let (N, g) be a Riemannian manifold of dimension n > 1, and D be a
field of symmetric operators on (N, g). For every u ∈ R, define the
D-deformation of the metric g on N by gu := (exp(uD))∗g, and the
D-extension, by

(M := R×N, gD := du2 + gu).

If locally D has pairwise distinct eigenvalues q1, . . . , qk, with the
corresponding eigendistributions V (qi), then the D-deformation gu

and the D-extension gD are locally given by

gu = e2q1ug1 + · · ·+ e2qkugk, gD = du2 + e2q1ug1 + · · ·+ e2qkugk,

where gi := g|V (qi). D-extensions can also be viewed as
I a particular case of codimension one Riemannian submersions;
I a generalisation of the warped product metric (but we make no

assumptions on the integrability of the eigendistributions).
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The manifold (N, g) is called

I Ricci D-stable if the Ricci operator Ricu := Ricgu does not
depend on u;

I D-Einstein if the extension gD is Einstein.

Question:

When the extension (M, gD) is Einstein?

Theorem 1

The extension (M, gD) is Einstein if and only if

1 The operator D has constant eigenvalues and

divD = 0,

where (divD)X := Tr(Y 7→ (∇YD)X); and

2 The manifold (N, g) is Ricci D-stable and

Ricu = (TrD)D − Tr(D2) id.

Then the Einstein constant of gD is −Tr(D2).
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Examples

1 A Ricci flat manifold (Nn, g) is id-Einstein, that is, the metric
gid = du2 + e2ug is Einstein with Einstein constant −n. The
converse (any id-Einstein manifold is Ricci flat) follows from (2).

2 A direct product (N1 ×N2, g1 + g2) of Ricci Di-stable manifolds
(Ni, gi), i = 1, 2, is Ricci D = (D1 ⊕D2)-stable.

3 Suppose (N, g) is a Lie group with a left-invariant metric, D is
also left invariant and is defined by a symmetric derivation of the
Lie algebra of N . Then (N, g) is D-stable.

4 Let (N, g, ξ) be an η-Einstein K-contact manifold (in particular,
η-Einstein Sasaki manifold) with the Ricci tensor
ric = −2g + (n+ 1)η ⊗ η, where ξ is a unit Killing vector which
defines the contact 1-form η = g ◦ ξ, and D is the canonical
endomorphism given by D = idKer η ⊕ 2idRξ. Then (N, g) is
D-Einstein manifold.
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Eigenvalue structure of D

I Rn a Euclidean space with an orthonormal basis {fi}ni=1;
I F = {fi + fj − fk : i 6= j, k 6= i, j} ⊂ Rn;
I p = (p1, . . . , pn)t and 1n = (1, . . . , 1)t (n ones) vectors in Rn;
I Fp = {v1, . . . , vm} maximal linearly independent subset of F ∩ p⊥;
I V be an n×m matrix whose vector columns are the vectors va

(if va = fi + fj − fk ∈ Fp, then the a-th column of V has 1 in
rows i and j, −1 in row k, and zeros elsewhere).

Theorem 2

Suppose that (M, gD) is Einstein and that detD 6= 0.

1 The projection of 1n to p⊥ lies in the convex cone hull of F ∩ p⊥.

2 If, in addition, TrD 6= 0, then up to scaling,

p = 1n − V (V tV )−11m.

In particular, up to scaling, all the pi are integers. Moreover, for
every dimension n, there is only a finite number of the eigenvalue
types of the operator D, with detD 6= 0 and TrD 6= 0.
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The conditions imposed by Theorem 2(1) on the eigenvalue structure
of D are quite restrictive (although somewhat implicit). For example,

I If D has two eigenvalues, both nonzero, then the eigenvalue type
is (1, . . . , 1, 2, . . . , 2).

I If n = 3 and detD 6= 0, then (1, 1, 2) and (1, 1, 1) (so that
D = id) are the only possible eigenvalue structures, up to scaling.

I Similarly, If n = 4 and detD 6= 0, then all the eigenvalue types,
up to scaling, are

(1, 1, 1, 1), (2, 2, 3, 4), (3, 4, 4, 7), (1, 2, 3, 4), (1, 1, 2, 2),

(1, 1, 1, 2), (1, 1, 2, 3), (−1, 1, 1, 2), (−1, 1, 2, 3).
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I Similarly, If n = 4 and detD 6= 0, then all the eigenvalue types,
up to scaling, are

(1, 1, 1, 1), (2, 2, 3, 4), (3, 4, 4, 7), (1, 2, 3, 4), (1, 1, 2, 2),

(1, 1, 1, 2), (1, 1, 2, 3), (−1, 1, 1, 2), (−1, 1, 2, 3).
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Two eigenvalues

If the operator D is non-scalar, the simplest possible case to consider
is when it has an eigenvalue of multiplicity n− 1, so that
p1 = · · · = pn−1 = λ, pn = ν, λ 6= ν. Up to scaling, we can have
(λ, ν) = (0, 1), (1, 0), or (1, 2) (from above).

Theorem 3

Suppose that (M, gD) is Einstein and that D has eigenvalues 0 and 1
whose multiplicities are n− 1 and 1 respectively. Then (N, g) is
locally isometric to the Riemannian product of the real line and an
Einstein manifold N ′ of dimension n− 1 with the Einstein constant
−1. The manifold (M, gD) is locally isometric to the Riemannian
product of the hyperbolic plane of curvature −1 and N ′.

If D has eigenvalues 1 and 0 with multiplicities n− 1 and 1
respectively, then (M, gD) is a warped product with a
two-dimensional base, and it can be obtained as a “double extension”,
by two commuting extensions, of a Ricci flat manifold N ′.
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In the (1, 2) case, we prove the following Theorem.

Theorem 4

Suppose that (M, gD) is the extension of (N, g) such that D has
eigenvalues 1 and 2 whose multiplicities are n− 1 and 1 respectively.
If (M, gD) is Einstein, then there exists an almost Kähler, Ricci flat
manifold (N ′, ds′2) with the fundamental form 1

2dθ
′, such that the

metric g on N is locally given by ds2 = ds′2 + (dxn + θ′)2, and the
Einstein metric gD on M is locally given by
ds2 = du2 + e2uds′2 + e4u(dxn + θ′)2.

The manifold (N, g) is contact. The resulting metric gD on M is a
particular case of the Page metric (which proves the converse).
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Four-dimensional Einstein extensions

Theorem 5

Suppose that dimN = 3 and that the extension (M, gD) is Einstein.
Then both (N, g) and (M, gD) are locally isometric to Lie groups with
left-invariant metrics; N is a nilmanifold or a solvmanifold, D is a
derivation, and (M, gD) is an Einstein solvmanifold. All the possible
cases, up to scaling, are listed in the table:

pi n (M, gD) ds2

0, 0, 0 abelian R4 du2 + dx2
1 + dx2

2 + dx2
3

1, 1, 1 abelian H4(−1) du2 + e2u(dx2
1 + dx2

2 + dx2
3)

1, 1, 2
Heisenberg,
[e1, e2] = e3

CH2(−4)
du2 + e2u(dx2

1 + dx2
2)

+e4u(dx3 + x1dx2)2

1, p, 0
Solvable,
[e3, e1] = pe1,
[e3, e2] = −e2

H2(−(p2 + 1))
×H2(−(p2 + 1))

du2 + dx2
3 + e2(u−px3)dx2

1

+e2(pu+x3)dx2
2
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Extension of a Lie group

Let N be a Lie group with a left-invariant metric g and let D be
left-invariant.
Is it true that if (M, gD) is Einstein, then it is an Einstein
solvmanifold?
We answer this question in positive in two cases.

Theorem 6

Suppose the extension (M, gD) of a Lie group (N, g) by D is Einstein,
and both g and D are left-invariant. Denote n the Lie algebra of N .

1 If the Killing form of the Lie algebra n is nonnegative, then D is
a derivation of n.

2 Suppose the Lie algebra n contains a codimension one abelian
ideal a. Then there exists a metric solvable Lie group (N ′, g′) and
an isometry φ : (N, g)→ (N ′, g′) such that D′ = (dφ)D is
left-invariant relative to N ′ and is a derivation of the Lie algebra
n′ of N ′.

In the both cases the manifold (M, gD) is an Einstein solvmanifold.
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