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A pseudo-Riemannian nilmanifold is a pseudo-Riemannian manifold (M, 〈 , 〉)
admitting a transitive action by isometries of a nilpotent Lie group.

In the Riemannian situation WOLF’62:
• Let N ⊆ Iso(M) be a connected nilpotent Lie group acting transitively on M,
then

• N is unique: it is the nilradical of Iso(M),

• the action is simple.

So M is identified with (N, 〈 , 〉) with a metric invariant by translations on the
left. Moreover

Iso(M) = N o H,

where H denotes the isotropy subgroup at the identity and it coincides with

H = Aut(N) ∩ Iso(N)
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How is the situation for homogeneous pseudo-Riemannian nilmanifolds?

The previous theorem does not hold

Example: We have a 2-step nilpotent Lie group N of dimension four acting
simply and transitively on a Lorentzian manifold M such that

• Iso(M) ∩ Aut(N) ( H

• N ⊂ Iso(M) is not normal

• The action of the nilradical Ñ ⊂ Iso(M) is not transitive.

Iso(N) = N · H

The isotropy subgroup H is not connected.

The subgroup of isometric automorphisms is not connected.
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The example

Take M = R4 together with the following metric

g = dt(dz +
1

2
ydx − 1

2
xdy) + dx2 + dy2,

where (t, x , y , z) are usual coordinates for R4. Consider the maps

LN
(t1,v1,z1)

(t2, v2, z2) = (t1 + t2, v1 + v2, z1 + z2 +
1

2
v t
1Jv2)

LG
(t1,v1,z1)

(t2, v2, z2) = (t1 + t2, v1 + R(t1)v2, z1 + z2 +
1

2
v t
1JR(t1)v2)

where J and R(t) are the linear maps on R2 given by

J =

(
0 1
−1 0

)
R(t) =

(
cos t − sin t
sin t cos t

)
t ∈ R.

For all (t1, v1, z1) ∈ R4 the sets

{LN
(t1,v1,z1)

} := N and {LG
(t1,v1,z1)

} := G
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build Lie groups acting simply and transitively on (R4, g) so that M can be
represented

M ' G or M ' N

G is a solvable Lie group known as the oscillator group and N = R× H3.

By inducing the metrics to G and N respectively we get that g is bi-invariant on
G but only left-invariant on N and

(N, g) ' (G , g) isometric

and we have Iso(M) = H · N and Iso(M) = H · G where

H ' ({1,−1} × O(2)) nR2 G is symmetric

and

LG
(t1,v1,z1)

= LN
(t1,v1,z1)

◦ χ(t1,0,0) = χ(t1,0,0) ◦ LN
(t1,R(−t1)v1,z1)

where χ(t,v ,z) denotes the map representing the conjugation in G by the
element (t, v , z).
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The nilradical has dimension five and its action is not transitive.

Notice that the connected component of the group of isometric automorphisms
of N is given by

Haut
0 (N) = {χ(s,0,0) : s ∈ R}

where χ(s,0,0)(t, v , z) = (t,R(s)v , z). It has dimension ONE and so

Haut(N) ⊆ H

Moreover

• Haut(N) has two connect components.

• N acts transitively on M but it is not a normal subgroup of Iso0(M).
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At the Lie algebra level.

Let n denote the Lie algebra of N, equipped with the Lorentzian metric g . Here
dim z = 2 and it is non-degenerate so that

n = z⊕ v where v = z⊥

This defines a distribution on TN by

TN = vN ⊕ zN

In the Riemannian situation, at every n ∈ N

• vN is the subspace of TnN generated by the eigenvectors of the Ricci operator
corresponding to negative eigenvalues;

• zN is the subspace of TnN generated by the eigenvectors of the Ricci operator
corresponding to non-negative eigenvalues.
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In the pseudo-Riemannian case: This is NOT TRUE.

The translations on the left preserve the distributions. So it is interesting to
determine which isometries fixing e preserve the splitting n = v⊕ z. Denote by

Hsplit(N) = { isometries of N fixing e}.
In the example above the eigenvalue 0 has eigenspace intersecting both v and z.

Lemma

Del Barco - O. ’14 Let (N, 〈 , 〉) be a 2-step nilpotent Lie group such that
〈 , 〉 is a pseudo-Riemannian left-invariant metric for which the center is
non-degenerate. Assume

vC = Vλ1 ⊕ . . .⊕ Vλj , zC = Vλj+1 ⊕ . . .⊕ Vλs

for the different eigenvalues λ1, λ2, . . . λs of the Ricci operator with
corresponding eigenspace Vλi . Then every isometry of N preserves the splitting
TN = vN ⊕ zN.

In the general case for NON-DEGENERATE CENTER it holds

Hspl(N) = Haut(N)
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In the Riemannian situation

H = Haut(N) = Hspl(N) Kaplan’81

Define H-type Lie groups analogously to the Riemannian case

j(u)2 = −〈u, u〉Id ∀u ∈ z

Theorem

Let denote a pseudo-H-type Lie group. Then

• Haut(N) = Hspl(N) = H

• the scalar curvature of (N, 〈 , 〉) is negative.
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For 2-step nilpotent Lie algebras with DEGENERATE CENTER the situation is
complicated:
There exists a 2-step nilpotent Lie group with a left-invariant
pseudo-Riemannian metric, degenerate center such that

• It admits an isometric automorphism which does not preserve any
decomposition n = v⊕ z (for any v!).

• It is no relationship between Hspl(N) and Haut(N).

Example:ad-invariant metrics on 2-step nilpotent Lie algebras.

If z = C (n) then
n = z⊕ v with dim z = dim v

both isotropic. Then for the ad-invariant metric of neutral signature (n, n):

H(N) = O(n, n).

OPEN QUESTION

HOW TO DESCRIBE THE ISOMETRY GROUP OF (N, 〈 , 〉) IN ANY CASE.

At least, the case of non-degenerate center.
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Dimension four Work with Justin Ryan

N is isomorphic to H3 × R whose Lie algebra is

n = h3 ⊕ R = span{e1, e2, e3, e4} and

[e1, e2] = e3

To study the left-invariant metrics on N, we reduce to n. And we have the cases

• non-degenerate center or

• degenerate center

Non degenerate center

g0 =


ε1 0 0 0
0 ε2 0 0
0 0 0 1
0 0 1 0

 g1 =


ε1 0 0 0
0 ε2 0 0
0 0 µ 0
0 0 0 ε4

 .

where εi = ±1 independently and µ 6= 0.
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So the Ricci operator for g1 has the form

Rc =
ϕ

2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ϕ = ε1ε2µ.

See the eigenspaces... Not scalar flat...

For g0 we have null commutator and the Ricci operator follows

Rc =


0 0 0 0
0 0 0 0
0 0 0 1

2ε1ε2
0 0 0 0

 ,

which are scalar flat.
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Degenerate center

g2 =


ε1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 ε4

 g3 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 g4 =


0 0 0 1
0 ε2 0 0
0 0 ε3 0
1 0 0

 .

- g2 corresponds to the trivial extension of the flat metric on H3, so is flat.

- g3 is flat since the center is completely null (Cordero and Parker).

- For g4 the Ricci operator is

Rc =


0 0 0 0
0 0 0 0
0 0 0 0

− 1
2ε1ε2 0 0 0

 .

we have
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Metric Signature H
g0 (1, 3) R R ({−1, 1} ×O(2)) nR2

(2, 2) R R ({−1, 1} ×O(1, 1)) nR2

g1 all R R R
g2 (1, 3) 0 R2 O(1, 3)

(2, 2) 0 R2 O(2, 2)
g3 (2, 2) N2 N3 O(2, 2)
g4 (1, 3) 0 R R2

(2, 2) 0 R R2

Figura: Isotropy subgroups of each possible metric on N. The groups N2 and N3 are 2- and
3-dimensional solvable groups.

Cordero - Parker’ 09, del Barco - O. ’14, N. Bokan, T. Šukilović, and S.

Vukmirović’14, Šukilović’16.

• The Lemma holds only for g1

• It holds “if and only if”

• Moreover, it holds “if and only if” and “if and only if scalar flat”.
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Questions:

(1) Does the kernel of the Ricci operator play a role?

(2) What about the “if and only if” in the Lemma?

(3) What about the relationship:

scalar flat if and only if big isometry group ( H > Haut )?

Answers in dimension five?
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Dimension five

Study 2-step nilpotent Lie groups with Lie algebras:

h5 and h3 ⊕ R2.

• Case h5: Generated by e1, e2, e3, e4, e5 with the non-trivial Lie brackets:

[e1, e2] = [e3, e4] = e5

On H5 take the left-invariant pseudo-Riemannian metrics induced by the
following metrics on h5:

gλ,µ =


ε1 0 0 0 0
0 ε2 0 0 0
0 0 ε3 0 0
0 0 0 λ 0
0 0 0 0 µ

 ,

where εi = ±1 independently and λ, µ 6= 0.
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The Ricci operator follows

Rcλ,µ =
1

2
µ


−ε1ε2 0 0 0 0

0 −ε1ε2 0 0 0
0 0 − ε3λ 0 0
0 0 0 − ε3λ 0
0 0 0 0 (ε1ε2 + ε3

λ )


The scalar curvature

Sλ,µ = −µ(ε1ε2 + ε3
λ ),

In particular, the metric gλ,µ is scalar-flat when

λ = −ε1ε2ε3.

Moreover, the Lemma applies to the metric gλ,µ and H = Haut .

For λ = −ε1ε2ε3 we have
• a metric for which the assumptions of Lemma hold, but

• the metric is scalar-flat.

Question (3) is false!
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Study other metrics ( =⇒ Lots of computations )
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THANK YOU!
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