VI Workshop on Differential Geometry La Falda, Sierras de Córdoba, Argentina

ISOMETRIES ON PSEUDO-RIEMANNIAN NILMANIFOLDS

Gabriela P. Ovando

CONICET - Universidad Nacional de Rosario

1 - 5 August 2016

Introduction	The example	Dimension four, all cases	Dimension five

A pseudo-Riemannian nilmanifold is a pseudo-Riemannian manifold (M, \langle , \rangle) admitting a transitive action by isometries of a nilpotent Lie group.

In the Riemannian situation WOLF'62:

• Let $N \subseteq Iso(M)$ be a connected nilpotent Lie group acting transitively on M, then

- N is unique: it is the nilradical of Iso(M),
- the action is simple.

So *M* is identified with (N, \langle , \rangle) with a metric invariant by translations on the left. Moreover

$$Iso(M) = N \rtimes H$$
,

where H denotes the isotropy subgroup at the identity and it coincides with

 $H = Aut(N) \cap Iso(N)$

How is the situation for homogeneous pseudo-Riemannian nilmanifolds?

The previous theorem does not hold

Example: We have a 2-step nilpotent Lie group N of dimension four acting simply and transitively on a Lorentzian manifold M such that

- $Iso(M) \cap Aut(N) \subsetneq H$
- $N \subset Iso(M)$ is not normal
- The action of the nilradical $\tilde{N} \subset Iso(M)$ is not transitive.

$$Iso(N) = N \cdot H$$

The isotropy subgroup H is not connected.

The subgroup of isometric automorphisms is not connected.

The example

Take $M = \mathbb{R}^4$ together with the following metric

$$g = dt(dz + \frac{1}{2}ydx - \frac{1}{2}xdy) + dx^2 + dy^2,$$

where (t, x, y, z) are usual coordinates for \mathbb{R}^4 . Consider the maps

$$L^{N}_{(t_{1},v_{1},z_{1})}(t_{2},v_{2},z_{2}) = (t_{1}+t_{2},v_{1}+v_{2},z_{1}+z_{2}+\frac{1}{2}v_{1}^{t}Jv_{2})$$

$$L^{G}_{(t_{1},v_{1},z_{1})}(t_{2},v_{2},z_{2}) = (t_{1}+t_{2},v_{1}+R(t_{1})v_{2},z_{1}+z_{2}+\frac{1}{2}v_{1}^{t}JR(t_{1})v_{2})$$

where J and R(t) are the linear maps on \mathbb{R}^2 given by

$$J = egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix} \qquad R(t) = egin{pmatrix} \cos t & -\sin t \ \sin t & \cos t \end{pmatrix} t \in \mathbb{R}.$$

For all $(t_1, v_1, z_1) \in \mathbb{R}^4$ the sets

$$\{L^N_{(t_1,v_1,z_1)}\} := N$$
 and $\{L^G_{(t_1,v_1,z_1)}\} := G$

build Lie groups acting simply and transitively on (\mathbb{R}^4, g) so that M can be represented
$M\simeq G$ or $M\simeq N$

Dimension four, all cases

G is a solvable Lie group known as the oscillator group and $N = \mathbb{R} \times H_3$.

By inducing the metrics to G and N respectively we get that g is bi-invariant on G but only left-invariant on N and

 $(N,g) \simeq (G,g)$ isometric

and we have $Iso(M) = H \cdot N$ and $Iso(M) = H \cdot G$ where

The example

 $H \simeq (\{1, -1\} \times O(2)) \ltimes \mathbb{R}^2$ G is symmetric

and

Introduction

$$L^{G}_{(t_{1},v_{1},z_{1})} = L^{N}_{(t_{1},v_{1},z_{1})} \circ \chi_{(t_{1},0,0)} = \chi_{(t_{1},0,0)} \circ L^{N}_{(t_{1},R(-t_{1})v_{1},z_{1})}$$

where $\chi_{(t,v,z)}$ denotes the map representing the conjugation in G by the element (t, v, z).

Isometries on pseudo-Riemannian nilmanifolds

Dimension five

ntroduction The example				Dimension four, all cases					Dimension five					
-			 		<i>c</i> :	1.1.								

The nilradical has dimension five and its action is not transitive.

Notice that the connected component of the group of isometric automorphisms of N is given by

$$H_0^{aut}(\mathsf{N}) = \{\chi_{(s,0,0)} : s \in \mathbb{R}\}$$

where $\chi_{(s,0,0)}(t,v,z) = (t, R(s)v, z)$. It has dimension ONE and so

 $H^{aut}(N) \subseteq H$

Moreover

- $H^{aut}(N)$ has two connect components.
- N acts transitively on M but it is not a normal subgroup of $Iso_0(M)$.

Introduction	The example	Dimension four, all cases	Dimension five
At the Lie algebra le	evel.		

Let n denote the Lie algebra of N, equipped with the Lorentzian metric g. Here dim $\mathfrak{z} = 2$ and it is non-degenerate so that

 $\mathfrak{n} = \mathfrak{z} \oplus \mathfrak{v}$ where $\mathfrak{v} = \mathfrak{z}^{\perp}$

This defines a distribution on TN by

 $TN = \mathfrak{v}N \oplus \mathfrak{z}N$

In the Riemannian situation, at every $n \in N$

- vN is the subspace of T_nN generated by the eigenvectors of the Ricci operator corresponding to negative eigenvalues;
- $_{\mathfrak{Z}}N$ is the subspace of T_nN generated by the eigenvectors of the Ricci operator corresponding to non-negative eigenvalues.

In the pseudo-Riemannian case: This is NOT TRUE.

The translations on the left preserve the distributions. So it is interesting to determine which isometries fixing *e* preserve the splitting $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$. Denote by

 $H^{split}(N) = \{ \text{ isometries of } N \text{ fixing } e \}.$

In the example above the eigenvalue 0 has eigenspace intersecting both v and z.

Lemma

DEL BARCO - O. '14 Let (N, \langle , \rangle) be a 2-step nilpotent Lie group such that \langle , \rangle is a pseudo-Riemannian left-invariant metric for which the center is non-degenerate. Assume

$$\mathfrak{v}^{\mathbb{C}} = V_{\lambda_1} \oplus \ldots \oplus V_{\lambda_j}, \quad \mathfrak{z}^{\mathbb{C}} = V_{\lambda_{j+1}} \oplus \ldots \oplus V_{\lambda_s}$$

for the different eigenvalues $\lambda_1, \lambda_2, ..., \lambda_s$ of the Ricci operator with corresponding eigenspace V_{λ_i} . Then every isometry of N preserves the splitting $TN = \mathfrak{v}N \oplus \mathfrak{z}N$.

In the general case for NON-DEGENERATE CENTER it holds

$$H^{spl}(N) = H^{aut}(N)$$

Introduction	The example	Dimension four, all cases	Dimension five
In the Riema	nnian situation		

$$H = H^{aut}(N) = H^{spl}(N)$$
 KAPLAN'81

Define H-type Lie groups analogously to the Riemannian case

$$j(u)^2 = -\langle u, u \rangle Id \quad \forall u \in \mathfrak{z}$$

Theorem

Let denote a pseudo-H-type Lie group. Then

- $H^{aut}(N) = H^{spl}(N) = H$
- the scalar curvature of (N, ⟨ , ⟩) is negative.

For 2-step nilpotent Lie algebras with DEGENERATE CENTER the situation is complicated:

There exists a 2-step nilpotent Lie group with a left-invariant pseudo-Riemannian metric, degenerate center such that

- It admits an isometric automorphism which does not preserve any decomposition n = v ⊕ j (for any v!).
- It is no relationship between $H^{spl}(N)$ and $H^{aut}(N)$.

Example: ad-invariant metrics on 2-step nilpotent Lie algebras. If $\mathfrak{z} = C(\mathfrak{n})$ then

 $\mathfrak{n} = \mathfrak{z} \oplus \mathfrak{v}$ with $\dim \mathfrak{z} = \dim \mathfrak{v}$

both isotropic. Then for the ad-invariant metric of neutral signature (n, n):

$$H(N)=O(n,n).$$

OPEN QUESTION HOW TO DESCRIBE THE ISOMETRY GROUP OF (N, \langle, \rangle) IN ANY CASE. At least, the case of non-degenerate center.

introduction	The example		Differition five
Dimension four	Work with	Justin Ryan	
N is isomorphic to F	$H_3 imes \mathbb{R}$ whose	e Lie algebra is	
$\mathfrak{n}=\mathfrak{h}_{3}\oplus\mathbb{R}=\textit{span}\{$	$e_1, e_2, e_3, e_4\}$	and	
		$[e_1,e_2]=e_3$	

Dimension form all seen

To study the left-invariant metrics on N, we reduce to n. And we have the cases

- non-degenerate center or
- degenerate center

Non degenerate center

$$g_0 = \begin{pmatrix} \varepsilon_1 & 0 & 0 & 0 \\ 0 & \varepsilon_2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad g_1 = \begin{pmatrix} \varepsilon_1 & 0 & 0 & 0 \\ 0 & \varepsilon_2 & 0 & 0 \\ 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & \varepsilon_4 \end{pmatrix}$$

where $\varepsilon_i = \pm 1$ independently and $\mu \neq 0$.

The example

٠

Dimension fine

So the Ricci operator for g_1 has the form

$$\operatorname{Rc} = \frac{\varphi}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \varphi = \varepsilon_1 \varepsilon_2 \mu.$$

See the eigenspaces... Not scalar flat...

For g_0 we have null commutator and the Ricci operator follows

which are scalar flat.

Introduction	The example	Dimension four, all cases	Dimension five
Degenerate center			

$$g_2 = \begin{pmatrix} \varepsilon_1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \varepsilon_4 \end{pmatrix} \quad g_3 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \quad g_4 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & \varepsilon_2 & 0 & 0 \\ 0 & 0 & \varepsilon_3 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

- g_2 corresponds to the trivial extension of the flat metric on H_3 , so is flat.

- g_3 is flat since the center is completely null (Cordero and Parker).

- For g_4 the Ricci operator is

we have

Metric	Signature			Н
g 0	(1,3)	\mathbb{R}	\mathbb{R}	$(\{-1,1\} imes { m O}(2))\ltimes \mathbb{R}^2$
	(2,2)	\mathbb{R}	\mathbb{R}	$(\{-1,1\} imes \mathrm{O}(1,1))\ltimes \mathbb{R}^2$
g_1	all	\mathbb{R}	\mathbb{R}	R
g ₂	(1,3)	0	\mathbb{R}^2	O(1,3)
	(2,2)	0	\mathbb{R}^2	O(2,2)
g ₃	(2,2)	N^2	N ³	O(2,2)
g4	(1,3)	0	\mathbb{R}	\mathbb{R}^2
	(2,2)	0	\mathbb{R}	\mathbb{R}^2

FIGURA: Isotropy subgroups of each possible metric on N. The groups N^2 and N^3 are 2- and 3-dimensional solvable groups.

Cordero - Parker' 09, del Barco - O. '14, N. Bokan, T. Šukilović, and S. Vukmirović'14, Šukilović'16.

- The Lemma holds only for g_1
- It holds "if and only if"
- Moreover, it holds "if and only if" and "if and only if scalar flat".

Introduction	The example	Dimension four, all cases	Dimension five
Questions:			

(1) Does the kernel of the Ricci operator play a role?

(2) What about the "if and only if" in the Lemma?

(3) What about the relationship:

scalar flat if and only if big isometry group ($H > H^{aut}$)?

Answers in dimension five?

Introduction	The example	Dimension four, an cases	Dimension live
Dimension five			
Study 2-step nilpoter	nt Lie groups v	with Lie algebras:	

 \mathfrak{h}_5 and $\mathfrak{h}_3 \oplus \mathbb{R}^2$.

 $[e_1, e_2] = [e_3, e_4] = e_5$

On H_5 take the left-invariant pseudo-Riemannian metrics induced by the following metrics on \mathfrak{h}_5 :

• Case h_5 : Generated by e_1, e_2, e_3, e_4, e_5 with the non-trivial Lie brackets:

$$g_{\lambda,\mu}=egin{pmatrix}arepsilon_1&0&0&0&0\0&arepsilon_2&0&0&0\0&0&arepsilon_3&0&0\0&0&0&\lambda&0\0&0&0&0&\mu\end{pmatrix},$$

where $\varepsilon_i = \pm 1$ independently and $\lambda, \mu \neq 0$.

The Ricci operator follows							
	$(-\varepsilon_1\varepsilon_2)$	0	0	0	0)		
	0102	U U	õ	õ			
1	0	$-\varepsilon_1\varepsilon_2$	0	0	0		
$\operatorname{R}_{C_{\lambda}} \mu = -\mu$	0	0	$-\frac{\varepsilon_3}{2}$	0	0		
2^{μ}	0	0	λ	- F 2			
	0	0	0	$-\frac{c_3}{\lambda}$	0		
	0	0	0	Ô	$\left(\varepsilon_1\varepsilon_2+\frac{\varepsilon_3}{2}\right)$		
	\ J	5	5	5	$(222 + \lambda)$		

Dimension four, all cases

The scalar curvature

Introduction

$$S_{\lambda,\mu} = -\mu(\varepsilon_1\varepsilon_2 + \frac{\varepsilon_3}{\lambda}),$$

In particular, the metric $g_{\lambda,\mu}$ is scalar-flat when

The example

$$\lambda = -\varepsilon_1 \varepsilon_2 \varepsilon_3.$$

Moreover, the Lemma applies to the metric $g_{\lambda,\mu}$ and $H = H^{aut}$.

For $\lambda = -\varepsilon_1 \varepsilon_2 \varepsilon_3$ we have

- a metric for which the assumptions of Lemma hold, but
- the metric is scalar-flat.

Question (3) is false!

Isometries on pseudo-Riemannian nilmanifolds

Dimension five

Study other metrics (\Longrightarrow Lots of computations)

- V. del Barco, G. P. Ovando, Isometric actions on pseudo-Riemannian nilmanifolds, Ann. Glob. Anal. Geom. 45 (2), (2014) 95–110.
- N. Bokan, T. Šukilović, and S. Vukmirović, Lorentz geometry of
 4-dimensional nilpotent Lie groups. Geom. Dedicata 177, (2015) 83–102.
- L. A. Cordero and P. E. Parker, Isometry Groups of PseudoRiemannian 2-Step Nilpotent Lie Groups. Houston J. Math 35, (2009) 49–72.
- A. Kaplan, Riemannian nilmanifolds attached to Clifford modules. Geom. Dedicata 11(2), (1981) 127–136.
- T. Šukilović, Geometric properties of neutral signature metrics on 4-dimensional nilpotent Lie groups, Rev. Un. Mat. Arg. **57**, (2016) 23–47.
- J. Wolf J, On Locally Symmetric Spaces of Non-negative Curvature and certain other Locally Homogeneous Spaces, Comment. Math. Helv. 37, 266–295 (1962–63).

THANK YOU!

Isometries on pseudo-Riemannian nilmanifolds