Effective separability of lattices in nilpotent Lie groups

Mark Pengitore mpengito@purdue.edu

Purdue University

August 1, 2016

A 3 b

Motivation

Let *M* be a connected, smooth manifold, and let *c* be a non-trivial closed curve based at *x*.

Motivation

Let *M* be a connected, smooth manifold, and let *c* be a non-trivial closed curve based at *x*.

• Can we find a finite normal cover $\rho : \widetilde{M} \to M$ where *c* does not lift?

Motivation

Let *M* be a connected, smooth manifold, and let *c* be a non-trivial closed curve based at *x*.

- Can we find a finite normal cover $\rho : M \to M$ where *c* does not lift?
- Can we bound the minimal index of a finite normal cover where c does not lift?

Connection to group theory

• Finding a finite normal cover where c does not lift is equivalent to finding a normal finite index subgroup $\Delta \leq \pi_1(M, x)$ such that $[c] \notin \Delta$.

A 3 b

Connection to group theory

• Finding a finite normal cover where c does not lift is equivalent to finding a normal finite index subgroup $\Delta \leq \pi_1(M, x)$ such that $[c] \notin \Delta$.

Definition

Let Γ be a finitely presentable group. We say that Γ is *residually finite* if for each non-trivial element $\gamma \in \Gamma$, there exists a finite index normal subgroup $\Delta \leq \Gamma$ such that $\gamma \notin \Delta$.

Connection to group theory

• Finding a finite normal cover where c does not lift is equivalent to finding a normal finite index subgroup $\Delta \leq \pi_1(M, x)$ such that $[c] \notin \Delta$.

Definition

Let Γ be a finitely presentable group. We say that Γ is *residually finite* if for each non-trivial element $\gamma \in \Gamma$, there exists a finite index normal subgroup $\Delta \leq \Gamma$ such that $\gamma \notin \Delta$.

When π₁(M,x) is residually finite, then there exists an algorithm that can tell in finite time whether a based loop c is null-homotopic or not (Mal'tsev 1958).

- 4 同 6 4 日 6 4 日 6

Manifolds with residually finite fundamental groups

Some examples include

Surfaces and hyperbolic 3-manifolds

Manifolds with residually finite fundamental groups

Some examples include

- Surfaces and hyperbolic 3-manifolds
- Solvmanifolds and infra-solvmanifolds

Manifolds with residually finite fundamental groups

Some examples include

- Surfaces and hyperbolic 3-manifolds
- Solvmanifolds and infra-solvmanifolds
- Any manifold whose fundamental group is linear

Manifolds with residually finite fundamental groups

Some examples include

- Surfaces and hyperbolic 3-manifolds
- Solvmanifolds and infra-solvmanifolds
- Any manifold whose fundamental group is linear

Our main interest are compact nilmanifolds which can be realized as $\Gamma \setminus G$ where G is a connected, simply connected nilpotent Lie group and $\Gamma \subset G$ is a cocompact lattice.

Lifting closed curves

Suppose that $\pi_1(M, x)$ is residually finite.

 Difficulty can vary based on manifold and homotopy class of based closed loop.

- A - E - M

Lifting closed curves

Suppose that $\pi_1(M, x)$ is residually finite.

 Difficulty can vary based on manifold and homotopy class of based closed loop.

Figure: Based closed loop where it is easy to find a normal finite cover where it doesn't lift

Lifting closed curves

Suppose that $\pi_1(M, x)$ is residually finite.

 Difficulty can vary based on manifold and homotopy class of based closed loop.

Figure: Based closed loop where it is difficult to find a normal finite cover where it doesn't lift

Complexity of lifting closed curves

Can we quantify the complexity of lifting based closed curves?

Complexity of lifting closed curves

Can we quantify the complexity of lifting based closed curves?

Definition

Let *M* be a connected, smooth manifold with $x \in M$, and let $\Gamma = \pi_1(M, x)$. Let *c* a closed curve based at *x*. Following Bou-Rabee 2010, we define

$$\mathsf{D}_{\mathsf{\Gamma}}([c]) = \min_{[\Gamma:\Delta|<\infty} \{|\Gamma:\Delta|:\Delta \trianglelefteq \Gamma \text{ and } [c] \notin \Delta \}.$$

Complexity of lifting closed curves

Figure: A topological interpretation of $D_{\Gamma}([c])$

Complexity function

Definition

Let Γ be a finitely presentable residually finite group with finite generating subset S. We define the function $F_{\Gamma,S} : \mathbb{N} \to \mathbb{N}$ as

$$\mathsf{F}_{\Gamma,S}(n) = \max\{D_{\Gamma}(\gamma) : \|\gamma\|_{S} \leq n\}.$$

- **→** → **→**

Complexity function

Definition

Let Γ be a finitely presentable residually finite group with finite generating subset S. We define the function $F_{\Gamma,S} : \mathbb{N} \to \mathbb{N}$ as

$$\mathsf{F}_{\Gamma,S}(n) = \max\{D_{\Gamma}(\gamma) : \|\gamma\|_{S} \leq n\}.$$

Suppose S_1 and S_2 are two different finite generating subsets for Γ . Then there exists $C_1, C_2 \in \mathbb{N}$ such that

$$C_1 \mathsf{F}_{\Gamma,S_1}(n) \leq \mathsf{F}_{\Gamma,S_2}(n) \leq C_2 \mathsf{F}_{\Gamma,S_2}(n)$$

Survey of Results

- Nilmanifolds Bou-Rabee 10
- Surfaces with punctures Bou-Rabee 10, Kassabov-Matucci 11, Thom 15
- Linear groups Bou-Rabee–McReynolds 15, Franz 16

伺 ト イ ヨ ト イ ヨ

Main Result

Theorem (P. 2016)

Let G be a connected, simply connected nilpotent Lie group, and let $\Gamma \subset G$ be a cocompact lattice with a finite generating subset S. There exists an effectively computable $\psi(G) \in \mathbb{N}$ such that $F_{\Gamma,S}(n) \approx (\log(n))^{\psi(G)}$.

- A 🗄 🕨

What is $\psi(G)$?

Let *G* be a connected, simply connected nilpotent Lie group and let \mathfrak{g} be its Lie algebra. Suppose that \mathfrak{g} admits a basis $\{X_i\}_{i=1}^{d(\mathfrak{g})}$ with rational structure constants, and suppose that $\{X_i\}_{i=1}^{d(Z(\mathfrak{g}))}$ is a basis for $Z(\mathfrak{g})$.

What is $\psi(G)$?

Let G be a connected, simply connected nilpotent Lie group and let g be its Lie algebra. Suppose that g admits a basis $\{X_i\}_{i=1}^{d(g)}$ with rational structure constants, and suppose that $\{X_i\}_{i=1}^{d(Z(g))}$ is a basis for Z(g).

For each $1 \le i \le d(Z(\mathfrak{g}))$, there exists a Lie ideal $\mathfrak{h}_i \subseteq \mathfrak{g}$ such that $Z(\mathfrak{g}/\mathfrak{h}_i) = \pi(\mathbb{R}X_i)$.

What is $\psi(G)$?

Let *G* be a connected, simply connected nilpotent Lie group and let \mathfrak{g} be its Lie algebra. Suppose that \mathfrak{g} admits a basis $\{X_i\}_{i=1}^{d(\mathfrak{g})}$ with rational structure constants, and suppose that $\{X_i\}_{i=1}^{d(Z(\mathfrak{g}))}$ is a basis for $Z(\mathfrak{g})$.

- For each $1 \le i \le d(Z(\mathfrak{g}))$, there exists a Lie ideal $\mathfrak{h}_i \subseteq \mathfrak{g}$ such that $Z(\mathfrak{g}/\mathfrak{h}_i) = \pi(\mathbb{R}X_i)$.
- $\psi(G) = \max\{d(\mathfrak{g}/\mathfrak{h}_i) : 1 \le i \le d(Z(\mathfrak{g}))\}.$

Corollaries

Corollary

Let G be a connected, simply connected nilpotent Lie group, and let $\Gamma \subset G$ be a cocompact lattice with a finite generating subset S. Then $F_{\Gamma,S}(n) \approx (\log(n))^{\dim(G)}$ if and only if $\dim(Z(G)) = 1$.

◆ 同 ▶ → (目)▶

Corollaries

Corollary

Let G be a connected, simply connected nilpotent Lie group, and let $\Gamma \subset G$ be a cocompact lattice with a finite generating subset S. Then $F_{\Gamma,S}(n) \approx (\log(n))^{\dim(G)}$ if and only if $\dim(Z(G)) = 1$.

Corollary

Let G be a connected, simply connected nilpotent Lie group, and let $\Gamma \subset G$ be a cocompact lattice with finite generating subset S. Then $\Gamma \setminus G$ is a torus if and only if $F_{\Gamma,S}(n) \precsim (\log(n))^3$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Thank you!

Mark Pengitore Effective separability of lattices in nilpotent Lie groups

P

э