
Covering Spaces and closed curves
Complexity

Main Result

Effective separability of lattices in nilpotent Lie
groups

Mark Pengitore
mpengito@purdue.edu

Purdue University

August 1, 2016

Mark Pengitore Effective separability of lattices in nilpotent Lie groups



Covering Spaces and closed curves
Complexity

Main Result

Motivation

Let M be a connected, smooth manifold, and let c be a
non-trivial closed curve based at x .

Can we find a finite normal cover ρ : M̃ →M where c does
not lift?

Can we bound the minimal index of a finite normal cover
where c does not lift?
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Connection to group theory

Finding a finite normal cover where c does not lift is
equivalent to finding a normal finite index subgroup
∆ E π1(M,x) such that [c] /∈∆.

Definition

Let Γ be a finitely presentable group. We say that Γ is residually
finite if for each non-trivial element γ ∈ Γ, there exists a finite
index normal subgroup ∆ E Γ such that γ /∈∆.

When π1(M,x) is residually finite, then there exists an
algorithm that can tell in finite time whether a based loop c is
null-homotopic or not (Mal’tsev 1958).
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Manifolds with residually finite fundamental groups

Some examples include

Surfaces and hyperbolic 3-manifolds

Solvmanifolds and infra-solvmanifolds

Any manifold whose fundamental group is linear

Our main interest are compact nilmanifolds which can be realized
as Γ\G where G is a connected, simply connected nilpotent Lie
group and Γ⊂ G is a cocompact lattice.
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Lifting closed curves

Suppose that π1(M,x) is residually finite.

Difficulty can vary based on manifold and homotopy class of
based closed loop.

Figure: Based closed loop where it is easy to find a normal finite cover
where it doesn’t lift
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Lifting closed curves

Suppose that π1(M,x) is residually finite.

Difficulty can vary based on manifold and homotopy class of
based closed loop.

Figure: Based closed loop where it is difficult to find a normal finite cover
where it doesn’t lift
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Complexity of lifting closed curves

Can we quantify the complexity of lifting based closed curves?

Definition

Let M be a connected, smooth manifold with x ∈M, and let
Γ = π1(M,x). Let c a closed curve based at x . Following
Bou-Rabee 2010, we define

DΓ([c]) = min
[Γ:∆|<∞

{|Γ : ∆| : ∆ E Γ and [c] /∈∆}.
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Complexity of lifting closed curves

Figure: A topological interpretation of DΓ([c])

Mark Pengitore Effective separability of lattices in nilpotent Lie groups



Covering Spaces and closed curves
Complexity

Main Result

Complexity function

Definition

Let Γ be a finitely presentable residually finite group with finite
generating subset S . We define the function FΓ,S : N→ N as

FΓ,S(n) = max{DΓ(γ) : ‖γ‖S ≤ n}.

Suppose S1 and S2 are two different finite generating subsets for Γ.
Then there exists C1,C2 ∈ N such that

C1 FΓ,S1(n)≤ FΓ,S2(n)≤ C2 FΓ,S2(n)
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Survey of Results

Nilmanifolds - Bou-Rabee 10

Surfaces with punctures - Bou-Rabee 10, Kassabov–Matucci
11, Thom 15

Linear groups - Bou-Rabee–McReynolds 15, Franz 16
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Theorem (P. 2016)

Let G be a connected, simply connected nilpotent Lie group, and
let Γ⊂ G be a cocompact lattice with a finite generating subset S .
There exists an effectively computable ψ(G ) ∈ N such that

FΓ,S(n)≈ (log(n))ψ(G).
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What is ψ(G )?

Let G be a connected, simply connected nilpotent Lie group and

let g be its Lie algebra. Suppose that g admits a basis {Xi}
d(g)
i=1

with rational structure constants, and suppose that {Xi}
d(Z(g))
i=1 is a

basis for Z (g).

For each 1≤ i ≤ d(Z (g)), there exists a Lie ideal hi ⊆ g such
that Z (g/hi ) = π(RXi ).

ψ(G ) = max{d(g/hi ) : 1≤ i ≤ d(Z (g))}.
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Corollaries

Corollary

Let G be a connected, simply connected nilpotent Lie group, and
let Γ⊂ G be a cocompact lattice with a finite generating subset S .
Then FΓ,S(n)≈ (log (n))dim(G) if and only if dim(Z (G )) = 1.

Corollary

Let G be a connected, simply connected nilpotent Lie group, and
let Γ⊂ G be a cocompact lattice with finite generating subset S .
Then Γ\G is a torus if and only if FΓ,S(n)� (log(n))3.
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Thank you!
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