The Steklov Problem on Orbifolds EGEO 2016

Allie Ray Trinity College

Joint Work with T. Arias-Marco, E. Dryden, C.S. Gordon, A. Hassannezhad, E. Stanhope

August 1, 2016

Orbifolds

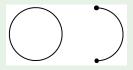
Roughly speaking, an **orbifold (with boundary)** is a space locally modeled on \mathbb{R}^n/Γ (or \mathbb{R}^n_+/Γ), where Γ is a discrete group acting properly discontinuously on \mathbb{R}^n or on \mathbb{R}^n_+ .

Orbifolds

Roughly speaking, an **orbifold (with boundary)** is a space locally modeled on \mathbb{R}^n/Γ (or \mathbb{R}^n_+/Γ), where Γ is a discrete group acting properly discontinuously on \mathbb{R}^n or on \mathbb{R}^n_+ .

Example

• One-dimensional closed orbifolds (Type I and Type II, respectively)



• Two-dimensional orbifolds (Orbisurfaces)

The Steklov problem

Definition

The **Dirichlet-to-Neumann operator** $\mathcal{D} : C^{\infty}(\partial \mathcal{O}) \to C^{\infty}(\partial \mathcal{O})$ is defined as follows.

- Take $u \in C^{\infty}(\mathcal{O})$.
- Let \tilde{u} be the harmonic extension of u to \mathcal{O} .
- $\mathcal{D}(u) = (\partial_{\nu} \tilde{u})|_{\partial \mathcal{O}}.$

The Steklov problem

Definition

The **Dirichlet-to-Neumann operator** $\mathcal{D} : C^{\infty}(\partial \mathcal{O}) \to C^{\infty}(\partial \mathcal{O})$ is defined as follows.

- Take $u \in C^{\infty}(\mathcal{O})$.
- Let \tilde{u} be the harmonic extension of u to \mathcal{O} .
- $\mathcal{D}(u) = (\partial_{\nu} \tilde{u})|_{\partial \mathcal{O}}.$

Definition

The **Steklov spectrum** of \mathcal{O} , denoted $Stek(\mathcal{O})$ is the set of all σ such that $(\partial_{\nu}\tilde{u}) = \sigma \tilde{u}$ on $\partial \mathcal{O}$.

$$0 = \sigma_0 \leq \sigma_1 \leq \sigma_2 \leq \cdots \nearrow \infty$$

• Let \mathbb{D}_r be a Euclidean disk of radius r in \mathbb{R}^2 . The Steklov eigenvalues are

$$0,\frac{1}{r},\frac{1}{r},\frac{2}{r},\frac{2}{r},\frac{3}{r},\frac{3}{r},\cdots$$

The eigenfunctions corresponding to $\frac{m}{r}$ are $\cos\left(\frac{m}{r}\theta\right)$ and $\sin\left(\frac{m}{r}\theta\right)$.

• Let \mathbb{D}_r be a Euclidean disk of radius r in \mathbb{R}^2 . The Steklov eigenvalues are

$$0,\frac{1}{r},\frac{1}{r},\frac{2}{r},\frac{2}{r},\frac{3}{r},\frac{3}{r},\cdots$$

The eigenfunctions corresponding to $\frac{m}{r}$ are $\cos\left(\frac{m}{r}\theta\right)$ and $\sin\left(\frac{m}{r}\theta\right)$.

Let O = D_r/Z₂. Z₂ acts isometrically on D_r by a reflection across a diameter, creating a "half disc" orbifold. The Steklov eigenvlaues are

$$0, \frac{1}{r}, \frac{2}{r}, \frac{3}{r}, \dots$$

The eigenfunctions corresponding to $\frac{m}{r}$ are $\cos\left(\frac{m}{r}\theta\right)$.

• From before, we see $Stek(\mathbb{D}_{kr}) = 0, \frac{1}{kr}, \frac{1}{kr}, \frac{2}{kr}, \frac{2}{kr}, \cdots, \frac{k}{kr}, \frac{k}{kr}, \cdots$ The eigenfunctions corresponding to $\frac{m}{kr}$ are $\cos(\frac{m}{kr}\theta)$ and $\sin(\frac{m}{kr}\theta)$.

- From before, we see $Stek(\mathbb{D}_{kr}) = 0, \frac{1}{kr}, \frac{1}{kr}, \frac{2}{kr}, \frac{2}{kr}, \cdots, \frac{k}{kr}, \frac{k}{kr}, \cdots$ The eigenfunctions corresponding to $\frac{m}{kr}$ are $\cos(\frac{m}{kr}\theta)$ and $\sin(\frac{m}{kr}\theta)$.
- Let $\mathcal{O} = \mathbb{D}_{kr}/\mathbb{Z}_k$ be a cone, where \mathbb{Z}_k acts isometrically on \mathbb{D}_{rk} by a rotation of angle $\frac{2\pi}{k}$. The Steklov eigenvalues are

$$0, \frac{1}{kr}, \frac{1}{kr}, \frac{2}{kr}, \frac{2}{kr}, \cdots, \frac{k}{kr}, \frac{k}{kr}, \cdots$$

- From before, we see $Stek(\mathbb{D}_{kr}) = 0, \frac{1}{kr}, \frac{1}{kr}, \frac{2}{kr}, \frac{2}{kr}, \cdots, \frac{k}{kr}, \frac{k}{kr}, \cdots$ The eigenfunctions corresponding to $\frac{m}{kr}$ are $\cos(\frac{m}{kr}\theta)$ and $\sin(\frac{m}{kr}\theta)$.
- Let $\mathcal{O} = \mathbb{D}_{kr}/\mathbb{Z}_k$ be a cone, where \mathbb{Z}_k acts isometrically on \mathbb{D}_{rk} by a rotation of angle $\frac{2\pi}{k}$. The Steklov eigenvalues are

$$0, \frac{1}{kr}, \frac{1}{kr}, \frac{2}{kr}, \frac{2}{kr}, \frac{2}{kr}, \cdots, \frac{k}{kr}, \frac{k}{kr}, \cdots$$
$$= 0, \frac{1}{r}, \frac{1}{r}, \frac{2}{r}, \frac{2}{r}, \frac{3}{r}, \frac{3}{r}, \cdots$$

- From before, we see $Stek(\mathbb{D}_{kr}) = 0, \frac{1}{kr}, \frac{1}{kr}, \frac{2}{kr}, \frac{2}{kr}, \cdots, \frac{k}{kr}, \frac{k}{kr}, \cdots$ The eigenfunctions corresponding to $\frac{m}{kr}$ are $\cos(\frac{m}{kr}\theta)$ and $\sin(\frac{m}{kr}\theta)$.
- Let $\mathcal{O} = \mathbb{D}_{kr}/\mathbb{Z}_k$ be a cone, where \mathbb{Z}_k acts isometrically on \mathbb{D}_{rk} by a rotation of angle $\frac{2\pi}{k}$. The Steklov eigenvalues are

$$0, \frac{1}{kr}, \frac{1}{kr}, \frac{2}{kr}, \frac{2}{kr}, \frac{2}{kr}, \cdots, \frac{k}{kr}, \frac{k}{kr}, \cdots$$

$$=0, \frac{1}{r}, \frac{1}{r}, \frac{2}{r}, \frac{2}{r}, \frac{3}{r}, \frac{3}{r}, \frac{3}{r}, \cdots$$

So a disc of radius r and a cone of radius kr with angle $2\pi/k$ are Steklov isospectral.

Theorem

For 2-dimensional Riemannian manifolds, the Laplace spectrum determines the Euler characteristic.

Theorem

For 2-dimensional Riemannian manifolds, the Laplace spectrum determines the Euler characteristic.

Is this true for Steklov spectrum on orbifolds?

Theorem

For 2-dimensional Riemannian manifolds, the Laplace spectrum determines the Euler characteristic.

Is this true for Steklov spectrum on orbifolds?

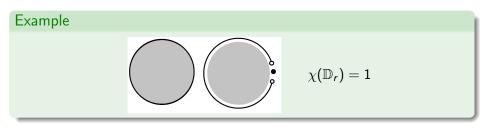
NO! Disc vs. Cone

Definition (Euler characteristic of an orbifold)

Let $\{c_i\}$ be a cell division of orbisurface \mathcal{O} for which the isotropy group associated to the interior points of each cell is constant. The Euler characteristic of \mathcal{O} is defined by

$$\chi(\mathcal{O}) := \sum_i (-1)^{\dim c_i} rac{1}{|Iso(c_i)|}$$

where $|Iso(c_i)|$ is the order of the isotropy type associated to the cell c_i .



Allie Ray (Trinity)

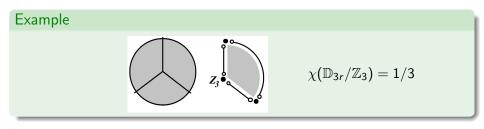
Steklov Problem on Orbifolds

Definition (Euler characteristic of an orbifold)

Let $\{c_i\}$ be a cell division of orbisurface \mathcal{O} for which the isotropy group associated to the interior points of each cell is constant. The Euler characteristic of \mathcal{O} is defined by

$$\chi(\mathcal{O}) := \sum_i (-1)^{\dim c_i} rac{1}{|\mathit{Iso}(c_i)|}$$

where $|Iso(c_i)|$ is the order of the isotropy type associated to the cell c_i .



Theorem

For 2-dimensional Riemannian **manifolds**, the **Laplace** spectrum determines the Euler characteristic.

Theorem

For 2-dimensional Riemannian **manifolds***, the* **Laplace** *spectrum determines the Euler characteristic.*

Proposition (ADGH-S)

For 2-dimensional Riemannian **orbifolds**, the **Steklov** spectrum does **not** determine the Euler characteristic.

Theorem

For 2-dimensional Riemannian **manifolds***, the* **Laplace** *spectrum determines the Euler characteristic.*

Proposition (ADGH-S)

For 2-dimensional Riemannian **orbifolds**, the **Steklov** spectrum does **not** determine the Euler characteristic.

Proposition (ADGH-S)

For 2-dimensional Riemannian **orbifolds**, the **Steklov** spectrum does **not** detect the presence of singularities in the interior of an orbifold.

Theorem (Girouard, Parnovski, Polterovich and Sher, 2014)

• Let *M* be a smooth compact Riemannian surface with t boundary components of lengths ℓ_1, \ldots, ℓ_t . Set $C = \{\ell_1, \ldots, \ell_t\}$. Then

$$\sigma_j = \gamma_j^{(I)}(C) + O(j^{-\infty}),$$

where $\gamma^{(I)}(C)$ is the Steklov spectrum of a disjoint union of t disks with radii $\frac{\ell_i}{2\pi}$, i = 1, ..., t.

Theorem (Girouard, Parnovski, Polterovich and Sher, 2014)

• Let *M* be a smooth compact Riemannian surface with t boundary components of lengths ℓ_1, \ldots, ℓ_t . Set $C = \{\ell_1, \ldots, \ell_t\}$. Then

$$\sigma_j = \gamma_j^{(I)}(C) + O(j^{-\infty}),$$

where $\gamma^{(I)}(C)$ is the Steklov spectrum of a disjoint union of t disks with radii $\frac{\ell_i}{2\pi}$, i = 1, ..., t.

• The Steklov spectrum determines the number and the lengths of boundary components of a smooth compact Riemannian surface.

Theorem (Girouard, Parnovski, Polterovich and Sher, 2014)

• Let *M* be a smooth compact Riemannian surface with t boundary components of lengths ℓ_1, \ldots, ℓ_t . Set $C = \{\ell_1, \ldots, \ell_t\}$. Then

$$\sigma_j = \gamma_j^{(I)}(C) + O(j^{-\infty}),$$

where $\gamma^{(I)}(C)$ is the Steklov spectrum of a disjoint union of t disks with radii $\frac{\ell_i}{2\pi}$, i = 1, ..., t.

• The Steklov spectrum determines the number and the lengths of boundary components of a smooth compact Riemannian surface.

Is this true for Steklov spectrum on orbifolds?

No...,

No...,

Example

 $\textit{Stek} \left(\mathbb{D}_r \sqcup \mathbb{D}_R / \mathbb{Z}_2 \sqcup \mathbb{D}_R / \mathbb{Z}_2 \right) = \textit{Stek} \left(\mathbb{D}_R \sqcup \mathbb{D}_r / \mathbb{Z}_2 \sqcup \mathbb{D}_r / \mathbb{Z}_2 \right)$

$$\begin{array}{lll} Stek(\mathbb{D}_r) &= 0, \frac{1}{r}, \frac{1}{r}, \frac{2}{r}, \frac{2}{r}, \dots \\ Stek(\mathbb{D}_R/\mathbb{Z}_2) &= 0, \frac{1}{R}, \frac{2}{R}, \frac{2}{R}, \dots \\ Stek(\mathbb{D}_R/\mathbb{Z}_2) &= 0, \frac{1}{R}, \frac{2}{R}, \dots \\ Stek(\mathbb{D}_r/\mathbb{Z}_2) &= 0, \frac{1}{r}, \frac{2}{r}, \dots \\ \end{array} \qquad \qquad \begin{array}{ll} Stek(\mathbb{D}_r/\mathbb{Z}_2) &= 0, \frac{1}{r}, \frac{2}{r}, \dots \\ Stek(\mathbb{D}_r/\mathbb{Z}_2) &= 0, \frac{1}{r}, \frac{2}{r}, \dots \end{array}$$

However,

Theorem (ADGH-S)

Let (\mathcal{O}, g) be a compact Riemannian orbisurface with boundary consisting of t type I boundary components of lengths ℓ_1, \ldots, ℓ_t and s type II boundary components of lengths $\bar{\ell_1}, \ldots, \bar{\ell_s}$. Then,

$$\sigma_j = \gamma_j(C; \bar{C}) + O(j^{-\infty}),$$

where $\gamma(C; \overline{C})$ is the Steklov spectrum of a disjoint union of t disks with boundaries of length ℓ_1, \ldots, ℓ_t , and s "half-disc" orbifolds with boundaries of length $\overline{\ell_1}, \ldots, \overline{\ell_s}$.

Corollary (ADGH-S)

Knowing the Steklov spectrum of a compact Riemannian orbisurface up to $O(j^{-\infty})$ determines the **number** of Type I and Type II boundary components.

Corollary (ADGH-S)

Knowing the Steklov spectrum of a compact Riemannian orbisurface up to $O(j^{-\infty})$ determines the **number** of Type I and Type II boundary components.

Corollary (ADGH-S)

Knowing the Steklov spectrum of a compact Riemannian orbisurface up to $O(j^{-\infty})$ determines the number **AND lengths** of Type I and Type II boundary components up to an **equivalence relation** defined by the example switching

$(\mathbb{D}_r \sqcup \mathbb{D}_R / \mathbb{Z}_2 \sqcup \mathbb{D}_R / \mathbb{Z}_2)$ with $(\mathbb{D}_R \sqcup \mathbb{D}_r / \mathbb{Z}_2 \sqcup \mathbb{D}_r / \mathbb{Z}_2)$

Counterexample in 3-dimensions

The results of this theorem do not hold in dimension 3.

Example

The Klein 4 group $\Gamma = \{1, \sigma, \tau, \sigma\tau\}$ acts isometrically on M := B(0, 1)where σ =rotation of π about the x-axis, τ =rotation of π about the y-axis, and $\sigma\tau$ =rotation of π about the z-axis. Take the subgroups $H_1 = \{1, \sigma\}, H_2 = \{1, \tau\}, H_3 = \{1, \sigma\tau\}$, and $K_1 = \{1\}, K_2 = \Gamma, K_3 = \Gamma$. By Parzanchevski's generalization of the Sunada theorem, $\mathcal{O}_1 := \sqcup_{i=1}^3 (M/H_i)$ is Steklov isospectral to $\mathcal{O}_2 := \sqcup_{i=1}^3 (M/K_i)$.

Thank you!