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Orbifolds
Roughly speaking, an orbifold (with boundary) is a space locally
modeled on Rn/Γ (or Rn

+/Γ), where Γ is a discrete group acting properly
discontinuously on Rn or on Rn

+.

Example

One-dimensional closed orbifolds (Type I and Type II, respectively)

Two-dimensional orbifolds (Orbisurfaces)
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The Steklov problem

Definition

The Dirichlet-to-Neumann operator D : C∞(∂O)→ C∞(∂O) is
defined as follows.

Take u ∈ C∞(O).

Let ũ be the harmonic extension of u to O.

D(u) = (∂ν ũ)|∂O.

Definition

The Steklov spectrum of O, denoted Stek(O) is the set of all σ such
that (∂ν ũ) = σũ on ∂O.

0 = σ0 ≤ σ1 ≤ σ2 ≤ · · · ↗ ∞
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Steklov Spectrum (Examples)

Let Dr be a Euclidean disk of radius r in R2. The Steklov eigenvalues
are

0,
1

r
,

1

r
,

2

r
,

2

r
,

3

r
,

3

r
, · · ·

The eigenfunctions corresponding to m
r are cos

(
m
r θ
)

and sin
(
m
r θ
)
.

Let O = Dr/Z2. Z2 acts isometrically on Dr by a reflection across a
diameter, creating a “half disc” orbifold. The Steklov eigenvlaues are

0,
1

r
,

2

r
,

3

r
, . . .

The eigenfunctions corresponding to m
r are cos

(
m
r θ
)
.
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Steklov Spectrum (Examples)

From before, we see Stek(Dkr ) = 0, 1
kr ,

1
kr ,

2
kr ,

2
kr , · · · ,

k
kr ,

k
kr , · · ·

The eigenfunctions corresponding to m
kr are cos

(
m
kr θ
)

and sin
(
m
kr θ
)
.

Let O = Dkr/Zk be a cone, where Zk acts isometrically on Drk by a
rotation of angle 2π

k . The Steklov eigenvalues are

0,
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1
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So a disc of radius r and a cone of radius kr with angle 2π/k are Steklov
isospectral.
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Prior Results vs. New Setting

Theorem

For 2-dimensional Riemannian manifolds, the Laplace spectrum determines
the Euler characteristic.

Is this true for Steklov spectrum on orbifolds?

NO! Disc vs. Cone
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Prior Results vs. New Setting

Definition (Euler characteristic of an orbifold)

Let {ci} be a cell division of orbisurface O for which the isotropy group
associated to the interior points of each cell is constant. The Euler
characteristic of O is defined by

χ(O) :=
∑
i

(−1)dim ci
1

|Iso(ci )|

where |Iso(ci )| is the order of the isotropy type associated to the cell ci .

Example

χ(Dr ) = 1
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χ(O) :=
∑
i

(−1)dim ci
1

|Iso(ci )|

where |Iso(ci )| is the order of the isotropy type associated to the cell ci .

Example

χ(D3r/Z3) = 1/3
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Prior Results vs. New Setting

Theorem

For 2-dimensional Riemannian manifolds, the Laplace spectrum
determines the Euler characteristic.

Proposition (ADGH-S)

For 2-dimensional Riemannian orbifolds, the Steklov spectrum does not
determine the Euler characteristic.

Proposition (ADGH-S)

For 2-dimensional Riemannian orbifolds, the Steklov spectrum does not
detect the presence of singularities in the interior of an orbifold.
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Prior Results vs. New Setting

Theorem (Girouard, Parnovski, Polterovich and Sher, 2014)

Let M be a smooth compact Riemannian surface with t boundary
components of lengths `1, . . . , `t . Set C = {`1, . . . , `t}. Then

σj = γ
(I )
j (C ) + O(j−∞),

where γ(I )(C ) is the Steklov spectrum of a disjoint union of t disks
with radii `i

2π , i = 1, . . . , t.

The Steklov spectrum determines the number and the lengths of
boundary components of a smooth compact Riemannian surface.

Is this true for Steklov spectrum on orbifolds?
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Prior Results vs. New Setting

No. . . ,

Example

Stek (Dr t DR/Z2 t DR/Z2) = Stek (DR t Dr/Z2 t Dr/Z2)
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Prior Results vs. New Setting

However,

Theorem (ADGH-S)

Let (O, g) be a compact Riemannian orbisurface with boundary consisting
of t type I boundary components of lengths `1, . . . , `t and s type II
boundary components of lengths ¯̀

1, . . . , ¯̀
s . Then,

σj = γj(C ; C̄ ) + O(j−∞),

where γ(C ; C̄ ) is the Steklov spectrum of a disjoint union of t disks with
boundaries of length `1, . . . , `t , and s “half-disc” orbifolds with boundaries
of length ¯̀

1, . . . , ¯̀
s .
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Prior Results vs. New Setting

Corollary (ADGH-S)

Knowing the Steklov spectrum of a compact Riemannian orbisurface up to
O(j−∞) determines the number of Type I and Type II boundary
components.

Corollary (ADGH-S)

Knowing the Steklov spectrum of a compact Riemannian orbisurface up to
O(j−∞) determines the number AND lengths of Type I and Type II
boundary components up to an equivalence relation defined by the
example switching

(Dr t DR/Z2 t DR/Z2) with (DR t Dr/Z2 t Dr/Z2)
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Counterexample in 3-dimensions

The results of this theorem do not hold in dimension 3.

Example

The Klein 4 group Γ = {1, σ, τ, στ} acts isometrically on M := B(0, 1)
where σ =rotation of π about the x-axis, τ =rotation of π about the
y -axis, and στ =rotation of π about the z-axis. Take the subgroups
H1 = {1, σ}, H2 = {1, τ}, H3 = {1, στ}, and K1 = {1}, K2 = Γ, K3 = Γ.
By Parzanchevski’s generalization of the Sunada theorem,
O1 := t3i=1 (M/Hi ) is Steklov isospectral to O2 := t3i=1 (M/Ki ).
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Thank you!
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