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Leaf Spaces Singular Riemannian Foliations

Definition

A singular Riemannian foliation on a manifold M is a partition F of M by
connected immersed submanifolds (known as the leaves) that satisfy the
following two conditions:

1 The module ΞF of smooth vector fields that are tangent to the leaves
is transitive on each leaf in the sense that there exist a collection of
smooth vector fields {Xi} on M such that for each x ∈ M the
tangent space to the leaf Lx through x is spanned by the vectors Xi .
Note that the dimension of the leaves may vary over the manifold.

2 There exists a Riemannian metric g on M that is adapted to F in the
sense that every geodesic that is perpendicular at one point to a leaf
remains perpendicular to every leaf that it meets. In other words, the
normal distribution to the leaves is totally geodesic.

We will call M/F the leaf space of the singular Riemannian foliation.
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Leaf Spaces Singular Riemannian Foliations

Examples of SRF with closed leaves:

1 Trivial products Q × L, where Q and L are closed manifolds (with or
without boundary for Q) and the leaves are of the form {q} × L for
q ∈ Q. SRFs of these types are said to be trivial.

2 A regular Riemannian foliation is always a SRF, but its leaves may
not be closed. The partition defined by the leaf closures defines a
SRF. Note: it is typically no longer regular as the dimension of the
leaf closures may vary.

3 Any isometric action on M by a closed group G with the orbits as the
(closed) leaves. These are said to be homogenous.

4 If one has a proper Lie groupoid G , one can define a transversally
invariant Riemannian metric on the space of objects G0 of G . If the
orbits are closed we then have an SRF with closed leaves. (Pflaum, et
al.)
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Leaf Spaces Singular Riemannian Foliations

Definition

A smooth function f on a SRF (M,F) is said to be basic if f is constant
on the leaves.

Definition

A smooth structure on M/F is the algebra C∞(M/F) consisting of
functions f : M/F → R whose pullback via π : M → M/F is a smooth
basic function on M in the above sense.
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Leaf Spaces Singular Riemannian Foliations

Definition

A map ϕ : M1/F1 → M2/F2 is called smooth if the pullback of every
smooth function f ∈ C∞(M2/F2) by ϕ is a smooth function in
C∞(M1/F1). If, in addition, ϕ is a metric space isometry between the leaf
spaces above and has a smooth inverse, then it is a smooth SRF leaf space
isometry.

In the case of manifolds this definition reduces to the usual notion of
smooth isometry between manifolds, and similarly for orbifolds.
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Isometries of SRF Leaf Spaces and Spectral Properties

Definition

The basic Laplacian on an SRF is defined as the the restriction of the
ordinary Laplacian on functions to the basic functions.

Examples:

If (M = Q,F = points) is a trivial SRF, then the basic spectrum is
just the ordinary spectrum of Q, and similarly for trivial products
M = Q × L, where Q is either a manifold or an orbifold.

If (M,F) is a homogenous SRF where F partitions the space into
orbits of G , then the basic spectrum is the G -invariant spectrum.

If (M,F) is a regular Riemannian foliation, then the basic spectrum is
the basic spectrum of a regular Riemannian foliation*.
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Isometries of SRF Leaf Spaces and Spectral Properties

Theorem [Adelstein-S.] If ϕ : M1/F1 → M2/F2 is a smooth SRF leaf
space isometry, then the F1-basic spectrum on M1 is equivalent to
F2-basic spectrum on M2.

Immediate consequence: The smooth SRF leaf space isometry is the
correct equivalence relation for spectral problems.

So let’s look at the equivalence classes.
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Isometries of SRF Leaf Spaces and Spectral Properties

Let Q be the leaf space of a singular Riemannian foliation with closed
leaves. We define the isometry class of Q to be the following:

[Q] = {Q ′ = M/F | (M,F) is an SRF with closed leaves and

∃ϕ : Q → Q ′, a smooth SRF leaf space isometry}.

If (M,F) is a singular Riemannian foliation whose leaf space M/F belongs
to [Q], then we shall call M/F a representation of [Q].
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Isometries of SRF Leaf Spaces and Spectral Properties

Let’s identify some particular types of classes.

We will say that [Q] is a manifold class, respectively, orbifold class, if
[Q] contains a trivial singular Riemannian foliation by points of a
manifold, respectively, an orbifold.

We will say that [Q] is an orbit space class if the class contains no
manifold or orbifold representations, but there does exist a
homogenous quotient M/G in [Q] such that M is a smooth manifold
being acted upon by a group of isometries, G .

If an isometry class contains only trivial (singular) Riemannian
foliations, we will call it a trivial class.
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Isometries of SRF Leaf Spaces and Spectral Properties

Note: Not every ambient manifold M admits a non-trivial SRF. For
example, no compact M with negative curvature admits a singular
Riemannian foliation that is non-trivial, vias the work of A. Lytchak.
Further, no complete, simply connected manifold without conjugate points
can admit a singular Riemannian foliation, again via the work of A.
Lytchak. This includes closed domains with non-convex boundary, for
example.

For compact leaf spaces, we can choose an ambient space M that is
compact.
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Isometries of SRF Leaf Spaces and Spectral Properties

Other properties of smooth SRF leaf space isometries:

Every SRF on M induces a stratification of M where each stratum is
defined to be the union of leaves of a particular dimension. The regular
stratum, Mreg , consists of the leaves of maximal dimension, and is open
and dense in M; the remaining strata are called singular strata.

Definition

The dimension of M/F = dim(Mreg )−maximal dimension of the leaves.

Definition

If Σ is a stratum, then the quotient codimension of Σ is defined to be:

qcodim(Σ) = dim
(
π(Mreg )

)
− dim

(
π(Σ)

)
.
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Isometries of SRF Leaf Spaces and Spectral Properties

Lemma

If Q and Q ′ belong to the same isometry class, then dim(Q) = dim(Q ′)
and the quotient codimensions of the strata of Q are equal to the quotient
codimensions of the corresponding strata in Q ′.

Definition

The boundary of Q = M/F is defined to be the closure of set of strata
that have quotient codimenion equal to one. This corresponds to the
notion of boundary for Aleksandrov spaces. Note: the boundary need not
be smooth. Conversely, Q = M/F has no boundary if every singular
stratum Σ has qcodim(Σ) > 1.

Corollary

The property of having boundary in the above sense is preserved under
smooth SRF isometries.
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Isometries of SRF Leaf Spaces and Spectral Properties

When does an SRF leaf space class contain an orbifold?

By A. Lytchak and G. Thorbergsson we know exactly when this occurs:

Definition

(M,F) is said to be polar if for every x ∈ M there exists a smooth
immersed submanifold N ⊂ M through x that intersects all the leaves of
F orthogonally. N is known as a (horizontal) section.

Definition

(M,F) is said to be infinitesimally polar at x if the induced foliation
(TxM,TxF) is polar. If F is infinitesimally polar at all x ∈ M then F is
inifinitesimally polar. Polar SRFs are always infinitesimally polar.

Theorem (Lytchak, Thorbergsson)

Q is a manifold or an orbifold, if and only if every SRF in the class of [Q]
is infinitesimally polar.
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Results and Implications for Spectral Geometry

Implications for Spectral Geometry

Every example of isospectral but non isometric manifolds or orbifolds now
extends to the entire equivalence class. So every audibility/inaudibility
result now extends to equivalence classes.

As we know from Ian Adelstein’s talk earlier this week, we have a pair of
isometry classes which demonstrate that an orbifold class may be
isospectral to an orbit space class, and also that constant sectional
curvature is not audible.
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Results and Implications for Spectral Geometry

We also gain some insight into spectral invariants/audible properties:

Really simple remark: Any property that does not hold across the
equivalence class cannot be an audible property.

For example, cardinality of the isotropy subgroups is not preserved
throughout the equivalence class.
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Results and Implications for Spectral Geometry

Results from the literature: the work of M. Alexandrino, A. Lytchak, and
M. Radeschi, can be combined into the following:

Theorem (Alexandrino, Lytchak, Radeschi)

If Q satisfies any of the conditions below, then every metric space isometry
ϕ : M/F → Q is a smooth SRF leaf space isometry:

1 Q is a manifold (Classical result due to Myers-Steenrod)

2 Q is an orbifold,

3 Q is has dim ≤ 3

4 Q has no boundary.

The question of whether or not a metric space isometry is smooth is a
significant open question.
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Results and Implications for Spectral Geometry

Corollary

In the previous cases, we have that the metric space structure of Q
determines the basic spectrum.

Another Simple Remark : As a consequence of the previous, we note that
if two leaf spaces differ by some property but have the same metric space
structure, then that property will not be audible for the classes listed in
the last theorem.

Let’s look at an application of this remark...
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Results and Implications for Spectral Geometry

Theorem (Adelstein, S.)

If G1 acts on M by isometries, and the action is orbit equivalent to an
isometric action by G2 on M, then the orbit equivalence is a smooth SRF
leaf space isometry, and hence the quotients M/G1 and M/G2 have
equivalent invariant Laplace spectra. In particular, the orbit space of an
isometric group action on a manifold is always isospectral to the orbit
space of the effectivization of the group action on the original manifold.

Corollary

The property of effectiveness of an action on an orbit space is inaudible to
the spectrum. Similarly, an ineffective orbifold will be isometric, and hence
isospectral, to its effectivization.
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Remark: There are also many examples in the literature of polar actions
with infinite principal isotropy subgroups, which produce singular
Riemannian foliations that are polar, and hence, infinitesimally polar, thus
the quotients of these actions are orbifolds. We deduce that the finiteness
of isotropy is also inaudible to the spectrum.

Application: If Q is a bad orbifold, one may analyze its spectrum via any
representative in its SRF isometry class. The lack of the existence of a
smooth cover is not an obstacle to the analysis of its spectrum.
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Another nice result from the literature regarding smooth leaf space
isometries:

Theorem (Alexandrino, Radeschi)

Let M1 and M2 be complete Riemannian manifolds and suppose (M1,F1),
(M2,F2) are singular Riemannian foliations with closed leaves. Assume
that there exists a metric space isometry ϕ : M1/F1 → M2/F2 that
preserves the codimension of the leaves. Then ϕ is a smooth SRF leaf
space isometry.
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Orbit spaces and Reductions of Actions

An action by a group G1 on a manifold M1 can often be exchanged for a
typically simpler group action by G2 on a possibly different manifold M2

via a reduction of the action.

There are several different reductions of this type, including the principal
isotropy reduction, the minimal reduction, the effectivization of an action,
and so forth, that induce metric space isometries on the leaf space. Many
of these reductions are, in fact, smooth SRF leaf space isometries either
because they preserve leaf codimension or because they are covered by the
four cases when such isometries are known to be smooth.
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Leaf spaces that arise from regular Riemannian foliations:

Theorem

[Q] is an orbit space class if and only if [Q] contains a representation as
the leaf-closure space of a regular Riemannian foliation.

It is essentially this fact that has allowed the derivation of the heat trace
formula for orbit spaces (K. Richardson) and the derivation of wave trace
formula for the same (Sandoval).
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Leaf spaces with boundary

Theorem

If Q has smooth boundary, then its eigenfunctions satisfy the Neumann
boundary condition (vanishing normal derivative) and thus the spectrum of
Q is the Neumann spectrum. If the boundary is not smooth, then the
eigenfunctions satisfy the Neumann boundary condition on an open dense
set of the boundary. On the complement of this set, the boundary
condition is more complicated and depends on the geometry of the
singular strata on the boundary set.
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Nice boundary geometry:

Observation: If Q has boundary and has non-trivial representations, then
there are no geodesic of mixed type.
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Conjecture: There is a notion of a Laplacian and a spectrum for
Aleksandrov spaces, via the work of K. Kuwae, Y. Machigashira, and T.
Shioya. When Q is an Aleksandrov space, we conjecture that the
Aleksandrov spectrum is the basic spectrum, or closely related to it, at
least in the cases covered by the Theorem due to Alexandrino, Lytchak,
and Radeschi.
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Thank you!
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