Parabolic geometries and H-type Lie algebras

Mauro Subils

CONICET / Universidad Nacional de Rosario

VI workshop on differential geometry, EGEO August, 2016

Joint work with A. Kaplan

Mauro Subils (CONICET / UNR)

Parabolic geometries and H-type

A special family of distributions

2 Parabolic subalgebras with H-type nilradical

- 3 Tanaka's prolongation
- Parabolic geometries

A special family of distributions

 \mathcal{D} vector distribution on a smooth $M / [\mathcal{D}, \mathcal{D}] = TM$. For every never vanishing 1-form λ on M such that $\lambda(\mathcal{D}) = 0$ define a 2-form ω_{λ} on \mathcal{D} by:

$$\omega_{\lambda}(X, Y) = \lambda([X, Y]) \text{ for } X, Y \in \mathcal{D}$$

The distribution is called **fat** if ω_{λ} is non-degenerate for every λ .

A fat distribution admits a **compatible subconformal structure** if there is a subconformal metric g on D that induces a metric compatible with ω_{λ} for every λ .

A special family of distributions

 \mathcal{D} vector distribution on a smooth $M / [\mathcal{D}, \mathcal{D}] = TM$. For every never vanishing 1-form λ on M such that $\lambda(\mathcal{D}) = 0$ define a 2-form ω_{λ} on \mathcal{D} by:

$$\omega_{\lambda}(X, Y) = \lambda([X, Y]) \text{ for } X, Y \in \mathcal{D}$$

The distribution is called **fat** if ω_{λ} is non-degenerate for every λ .

A fat distribution admits a **compatible subconformal structure** if there is a subconformal metric g on D that induces a metric compatible with ω_{λ} for every λ . Generally, a distribution \mathcal{D} is called **regular** if there exists a family of distributions $\{\mathcal{D}^{p}\}_{p<0}$ such that:

•
$$\mathcal{D} = \mathcal{D}^{-1} \subset \cdots \subset \mathcal{D}^p \subset \mathcal{D}^{p-1} \subset \cdots$$

•
$$\mathcal{D}^{p-1} = \mathcal{D}^p + [\mathcal{D}^{-1}, \mathcal{D}^p]$$
 for all $p < 0$.

We assume that \mathcal{D} is **bracket-generating**, i.e. there exists $\mu \in \mathbb{N}$ such that $\mathcal{D}^{-\mu} = TM$.

Generally, a distribution \mathcal{D} is called **regular** if there exists a family of distributions $\{\mathcal{D}^{p}\}_{p<0}$ such that:

•
$$\mathcal{D} = \mathcal{D}^{-1} \subset \cdots \subset \mathcal{D}^p \subset \mathcal{D}^{p-1} \subset \cdots$$

• $\mathcal{D}^{p-1} = \mathcal{D}^p + [\mathcal{D}^{-1}, \mathcal{D}^p]$ for all $p < 0$.

No assume that
$$\mathcal{D}$$
 is **bracket-denorating** is there exist

We assume that \mathcal{D} is **bracket-generating**, i.e. there exists $\mu \in \mathbb{N}$ such that $\mathcal{D}^{-\mu} = TM$.

For every $x \in M$ the vector space

$$\mathfrak{n}(x) = \bigoplus_{i=-1}^{-\mu} \frac{\mathcal{D}^i(x)}{\mathcal{D}^{i+1}(x)} = \bigoplus_{i=-1}^{-\mu} \mathfrak{g}^i(x)$$

is endowed naturally with the structure of a graded nilpotent Lie algebra ($[\mathfrak{g}^{i}(x), \mathfrak{g}^{j}(x)] \subset \mathfrak{g}^{i+j}(x)$).

The Lie algebra n(x) is called the **symbol** of \mathcal{D} at *x*.

n(x) is generated by $g^{-1}(x)$, a graded Lie algebra satisfying this property is called **fundamental**.

Fix a Lie algebra $\mathfrak{n} = \bigoplus_{i=-1}^{-\mu} \mathfrak{g}^i$, a distribution *D* is said **of constant type** \mathfrak{n} if for any *x* the symbol $\mathfrak{n}(x)$ is isomorphic to \mathfrak{n} . For every $x \in M$ the vector space

$$\mathfrak{n}(x) = \bigoplus_{i=-1}^{-\mu} \frac{\mathcal{D}^i(x)}{\mathcal{D}^{i+1}(x)} = \bigoplus_{i=-1}^{-\mu} \mathfrak{g}^i(x)$$

is endowed naturally with the structure of a graded nilpotent Lie algebra ($[\mathfrak{g}^{i}(x), \mathfrak{g}^{j}(x)] \subset \mathfrak{g}^{i+j}(x)$).

The Lie algebra n(x) is called the **symbol** of \mathcal{D} at *x*.

 $\mathfrak{n}(x)$ is generated by $\mathfrak{g}^{-1}(x)$, a graded Lie algebra satisfying this property is called **fundamental**.

Fix a Lie algebra $\mathfrak{n} = \bigoplus_{i=-1}^{-\mu} \mathfrak{g}^i$, a distribution *D* is said of constant type \mathfrak{n} if for any *x* the symbol $\mathfrak{n}(x)$ is isomorphic to \mathfrak{n} .

For every $x \in M$ the vector space

$$\mathfrak{n}(x) = \bigoplus_{i=-1}^{-\mu} \frac{\mathcal{D}^i(x)}{\mathcal{D}^{i+1}(x)} = \bigoplus_{i=-1}^{-\mu} \mathfrak{g}^i(x)$$

is endowed naturally with the structure of a graded nilpotent Lie algebra ($[\mathfrak{g}^{i}(x), \mathfrak{g}^{j}(x)] \subset \mathfrak{g}^{i+j}(x)$).

The Lie algebra $\mathfrak{n}(x)$ is called the **symbol** of \mathcal{D} at *x*.

 $\mathfrak{n}(x)$ is generated by $\mathfrak{g}^{-1}(x)$, a graded Lie algebra satisfying this property is called **fundamental**.

Fix a Lie algebra $\mathfrak{n} = \bigoplus_{i=-1}^{-\mu} \mathfrak{g}^i$, a distribution *D* is said of constant type \mathfrak{n} if for any *x* the symbol $\mathfrak{n}(x)$ is isomorphic to \mathfrak{n} .

Let $\mathfrak{n}=\mathfrak{g}^{-1}\oplus\mathfrak{g}^{-2}$ be a 2-graded nilpotent Lie algebra.

Definition

- \mathfrak{g} is **non-singular** if $ad X : \mathfrak{g}^{-1} \to \mathfrak{g}^{-2}$ is onto for every $X \in \mathfrak{g}^{-1}$.
- g is of Heisenberg type (or H-type) if there is a graded positive inner product such that g⁻¹ is a non-trivial real unitary module over the Clifford algebra C(g⁻²) and the bracket is given by

$$<$$
 [x, y], $z >_{\mathfrak{g}^{-2}} = < J_z x, y >_{\mathfrak{g}^{-1}}$

Remark

- A distribution is Fat if and only if its symbol in each point is nonsingular.
- A distribution admits a compatible subconformal structure if and only if its symbol in each point is of Heisenberg type.

Parabolic subalgebras with H-type nilradical

The real division algebras $\mathbb{F} = \mathbb{C}, \mathbb{H}, \mathbb{O}$ define naturally two classes of H-type Lie algebras:

$$\mathfrak{h}_n(\mathbb{F}) = \mathbb{F}^{2n} \oplus \mathbb{F}$$
 (1)
 $[(a,b), (c,d)] = a^t d - c^t b,$

for $a, b, c, d \in \mathbb{F}^n$, $\forall n \ge 1$ if $\mathbb{F} = \mathbb{C}, \mathbb{H}$, n = 1 if $\mathbb{F} = \mathbb{O}$.

$$\mathfrak{h}_{p,q}'(\mathbb{F}) = \mathbb{F}^{p+q} \oplus \mathfrak{F}(\mathbb{F})$$

$$[(a,b),(c,d)] = a^t \overline{c} - c^t \overline{a} + \overline{b}^t d - \overline{d}^t b,$$

$$(2)$$

 $\begin{array}{l} \text{for } a, \ c \in \mathbb{F}^{\rho}, \ b, \ d \in \mathbb{F}^{q} \\ \forall \rho, q \geq 1 \ \text{if } \mathbb{F} = \mathbb{C}, \mathbb{H}, \quad (\rho, q) = (1, 0) \ \text{if } \mathbb{F} = \mathbb{O}. \\ \text{Actually } h'_{\rho, q}(\mathbb{C}) = h'_{\rho+q, 0}(\mathbb{C}). \end{array}$

Parabolic subalgebras with H-type nilradical

The real division algebras $\mathbb{F}=\mathbb{C},\mathbb{H},\mathbb{O}$ define naturally two classes of H-type Lie algebras:

$$\mathfrak{h}_n(\mathbb{F}) = \mathbb{F}^{2n} \oplus \mathbb{F}$$
 (1)
 $[(a,b), (c,d)] = a^t d - c^t b,$

for
$$a, b, c, d \in \mathbb{F}^{n}$$
,
 $\forall n \ge 1$ if $\mathbb{F} = \mathbb{C}, \mathbb{H}, \quad n = 1$ if $\mathbb{F} = \mathbb{O}$.
 $\mathfrak{h}'_{p,q}(\mathbb{F}) = \mathbb{F}^{p+q} \oplus \Im(\mathbb{F})$
 $[(a, b), (c, d)] = a^{t}\overline{c} - c^{t}\overline{a} + \overline{b}^{t}d - \overline{d}^{t}b,$
(2)

for
$$a, c \in \mathbb{F}^p$$
, $b, d \in \mathbb{F}^q$
 $\forall p, q \ge 1$ if $\mathbb{F} = \mathbb{C}, \mathbb{H}, (p, q) = (1, 0)$ if $\mathbb{F} = \mathbb{O}$.
Actually $h'_{p,q}(\mathbb{C}) = h'_{p+q,0}(\mathbb{C})$.

Theorem

Every real simple non-compact Lie algebra not isomorphic to $\mathfrak{so}(n, 1)$ has a unique conjugacy class of parabolic subalgebras whose nilradical is isomorphic to

$$\mathfrak{h}_n(\mathbb{F}) = \mathbb{F}^{2n} \oplus \mathbb{F}, \qquad \mathfrak{h}'_{p,q}(\mathbb{F}) = \mathbb{F}^{p,q} \oplus \Im(\mathbb{F})$$

with $\mathbb{F} = \mathbb{C}, \mathbb{H}, \mathbb{O}$. Correspondingly, $\mathfrak{so}(n, 1)$ has unique conjugacy class of parabolics with abelian nilradical, and is the unique simple algebra with this property.

Theorem

Every real simple non-compact Lie algebra not isomorphic to $\mathfrak{so}(n, 1)$ has a unique conjugacy class of parabolic subalgebras whose nilradical is of H-type.

Theorem

Every real simple non-compact Lie algebra not isomorphic to $\mathfrak{so}(n, 1)$ has a unique conjugacy class of parabolic subalgebras whose nilradical is non-singular.

$\mathfrak{h}'_n(\mathbb{C})$	$\mathfrak{sl}(n+2,\mathbb{R}),\mathfrak{su}(p,n+2-p),\mathfrak{sp}(2n+2,\mathbb{R}),$
	$\mathfrak{so}(q,n+4-q)$
	$\mathfrak{so}^*(2n+4)$ for even <i>n</i> , <i>EI</i> , <i>EII</i> , <i>EIII</i> for $n=10$
	EV, EVI, EVII for $n = 16$, EVIII, EIX for $n = 28$
	<i>FI</i> for $n = 7$, <i>G</i> for $n = 2$
$\mathfrak{h}_n(\mathbb{C})$	$\mathfrak{sl}(n+2,\mathbb{C}),\mathfrak{so}(n+4),\mathfrak{sp}(2n+2,\mathbb{C}),$
	E_6 for $n=10$, E_7 for $n=16, E_8$ for $n=28$
	F_4 for $n = 7$, G_2 for $n = 2$
$\mathfrak{h}_{p,q}'(\mathbb{H})$	$\mathfrak{sp}(p+1,q+1)$
$\mathfrak{h}_n(\mathbb{H})$	$\mathfrak{sl}(n+2,\mathbb{H})$
$\mathfrak{h}_{1,0}^{\prime}(\mathbb{O})$	FII
$\mathfrak{h}_1(\mathbb{O})$	EIV

Tanaka's prolongation

Let $\mathfrak{m} = \bigoplus_{i < 0} \mathfrak{g}^i$ be a fundamental Lie algebra. The **Tanaka's** prolongation of \mathfrak{m} is a graded Lie algebra

$$\mathfrak{g}=igoplus_{i\in\mathbb{Z}}\mathfrak{g}^{i}(\mathfrak{m})=igoplus_{i\in\mathbb{Z}}\mathfrak{g}^{i},$$

satisfying:

- 2 if $X \in \mathfrak{g}^i(\mathfrak{m})$ with i > 0 satisfies $[X, \mathfrak{g}_{-1}] = 0$, then X = 0;
- \mathfrak{g} is the maximal graded lie algebra, satisfying 1 y 2.

\mathfrak{m} is **of finite type** if \mathfrak{g} is of finite dimension.

Theorem [Tanaka, 70]

Let \mathcal{D} a distribution of constant type \mathfrak{m} . Assume that \mathfrak{m} is of finite type then the Lie algebra of all infinitesimal automorphisms of a \mathcal{D} is finite dimensional and of dimension $\leq \dim \mathfrak{g}$.

 \mathfrak{m} is **of finite type** if \mathfrak{g} is of finite dimension.

Theorem [Tanaka, 70]

Let \mathcal{D} a distribution of constant type \mathfrak{m} . Assume that \mathfrak{m} is of finite type then the Lie algebra of all infinitesimal automorphisms of a \mathcal{D} is finite dimensional and of dimension $\leq \dim \mathfrak{g}$.

Proposition

For every non-singular Lie algebra whose automorphism group acts irreducibly on g/3, the following conditions are equivalent:

- to be the nilradical of a parabolic subalgebra of a simple Lie algebra;
- to have non-trivial Tanaka prolongation;
- to be isomorphic to one of the Lie algebras $\mathfrak{h}_n(\mathbb{C})$, $\mathfrak{h}'_n(\mathbb{C})$, $\mathfrak{h}_n(\mathbb{H})$, $\mathfrak{h}'_{p,q}(\mathbb{H})$, $\mathfrak{h}_1(\mathbb{O})$ and $\mathfrak{h}'_{1,0}(\mathbb{O})$.

Parabolic geometries

Definition

Let $H \subset G$ Lie subgroup, $\mathfrak{h} = Lie(H)$, $\mathfrak{g} = Lie(G)$. A Cartan geometry of type (G, H) on M is

- an *H*-principal fiber bundle $p: \mathcal{P} \to M$,
- **2** a g-valued 1-form $\omega \in \Omega^1(\mathcal{P}, \mathfrak{g})$, called *Cartan connection*, that verifies:

$$(R_h)^* \omega = h^{-1} \cdot \omega \text{ for all } h \in H,$$

2
$$\omega(X^{\dagger}(\lambda)) = x$$
 for all $x \in \mathfrak{h}, \lambda \in \mathcal{P}$,

3 $\omega(\lambda) : T_{\lambda}\mathcal{P} \to \mathfrak{g}$ is an isomorphism for every $\lambda \in \mathcal{P}$.

A *parabolic geometry* is a Cartan geometry of type (G, P) where G is a semisimple Lie group and P a parabolic subgroup.

So we associate to every real simple non-compact Lie algebra a parabolic geometry with an underlying fat distribution that admits a compatible subconformal structure.

For example, $G = \mathfrak{sl}(n+2,\mathbb{R})$ Lagrangean contact structures, $G = \mathfrak{su}(p+1,q+1)$, non-degenerate partially integrable hypersurface type almost CR-structures of signature (p, q), $G = \mathfrak{sp}(2n+2,\mathbb{R})$, contact projective structures, $G = \mathfrak{sp}(p+1,q+1)$, quaternionic contact structures of signature (p,q). So we associate to every real simple non-compact Lie algebra a parabolic geometry with an underlying fat distribution that admits a compatible subconformal structure.

For example,

 $G = \mathfrak{sl}(n+2,\mathbb{R})$ Lagrangean contact structures,

 $G = \mathfrak{su}(p+1, q+1)$, non-degenerate partially integrable hypersurface type almost CR-structures of signature (p, q),

 $G = \mathfrak{sp}(2n + 2, \mathbb{R})$, contact projective structures,

 $G = \mathfrak{sp}(p + 1, q + 1)$, quaternionic contact structures of signature (p, q).

- A. Cap and J. Slovák, Parabolic Geometries I: Background and General Theory, Mathematical Survey and Monographs, vol. 154, 2009.
- A. Kaplan, M. Subils, On the equivalence problem for bracket-generating distributions, Hodge Theory, Complex Geometry, and Representation Theory, Contemporary Mathematics, vol. 608, Amer. Math. Soc., Providence, RI, (2014), 157-171.
 - N. Tanaka, *On differential systems, graded Lie algebras and pseudogroups*, J. Math. Kyoto Univ. 10, 1-82 (1970).
 - K. Yamaguchi, *Differential systems associated with simple graded Lie algebras*, Advanced Studies in Pure Math. **22** (1993) 413-494.

GRACIAS!