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NOTATION

Let (M, J) be a 2n-dimensional smooth manifold with an acs J
(J ∈ End(TM), J2 = −Id).

A symplectic form Ω on M

I tames J if Ω(J·, ·) > 0;

I is compatible with J if g(·, ·) = Ω(J·, ·) is an Hermtian metric.

J is integrable if it is induced by a holomorphic atlas or (equivalently
by the Newlander-Nirenberg theorem) if

NJ(X,Y) := [JX, JY]− J[JX,Y]− J[X, JY]− [X,Y]

vanishes.

In this setting a Kähler structure is a pair (Ω, J) where Ω is compatible
with J and J is integrable.
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THE CALABI-YAU THEOREM

Given a Kähler structure (Ω, J) we define

CΩ :=
{
ω ∈ [Ω] , s.t. ω is compatible with J

}

ddc-lemma. Let dc := J−1dJ, then

CΩ :=
{

Ω + ddcu > 0 , s.t. u ∈ C∞(M,R)
}

Let Ric be the Ricci tensor of the metric g induced by (Ω, J). Then
Ric(J·, J·) = Ric(·, ·) and ρ(·, ·) = Ric(J·, ·) is the Ricci form of (Ω, J).

dρ = 0 , [ρ] = 2πc1(M, J).

Calabi-Yau’s Theorem. Let (M2n, J,Ω) be a compact Kähler manifold and
let ρ̃ ∈ Λ1,1

R be a closed form such that [ρ̃] = 2πc1(M, J). Then there exists a
unique ω̃ ∈ CΩ such that ρ̃ is the Ricci form of (ω̃, J).



CY EQUATION SOME KNOWN RESULTS THE CY EQUATION ON T2 -BUNDLES THE CY IN S1 -FIBRATIONS WORKS IN PROGRESS

THE CALABI-YAU THEOREM

Given a Kähler structure (Ω, J) we define

CΩ :=
{
ω ∈ [Ω] , s.t. ω is compatible with J

}
ddc-lemma. Let dc := J−1dJ, then

CΩ :=
{

Ω + ddcu > 0 , s.t. u ∈ C∞(M,R)
}

Let Ric be the Ricci tensor of the metric g induced by (Ω, J). Then
Ric(J·, J·) = Ric(·, ·) and ρ(·, ·) = Ric(J·, ·) is the Ricci form of (Ω, J).

dρ = 0 , [ρ] = 2πc1(M, J).

Calabi-Yau’s Theorem. Let (M2n, J,Ω) be a compact Kähler manifold and
let ρ̃ ∈ Λ1,1

R be a closed form such that [ρ̃] = 2πc1(M, J). Then there exists a
unique ω̃ ∈ CΩ such that ρ̃ is the Ricci form of (ω̃, J).



CY EQUATION SOME KNOWN RESULTS THE CY EQUATION ON T2 -BUNDLES THE CY IN S1 -FIBRATIONS WORKS IN PROGRESS

THE CALABI-YAU THEOREM

Given a Kähler structure (Ω, J) we define

CΩ :=
{
ω ∈ [Ω] , s.t. ω is compatible with J

}
ddc-lemma. Let dc := J−1dJ, then

CΩ :=
{

Ω + ddcu > 0 , s.t. u ∈ C∞(M,R)
}

Let Ric be the Ricci tensor of the metric g induced by (Ω, J). Then
Ric(J·, J·) = Ric(·, ·) and ρ(·, ·) = Ric(J·, ·) is the Ricci form of (Ω, J).

dρ = 0 , [ρ] = 2πc1(M, J).

Calabi-Yau’s Theorem. Let (M2n, J,Ω) be a compact Kähler manifold and
let ρ̃ ∈ Λ1,1

R be a closed form such that [ρ̃] = 2πc1(M, J). Then there exists a
unique ω̃ ∈ CΩ such that ρ̃ is the Ricci form of (ω̃, J).



CY EQUATION SOME KNOWN RESULTS THE CY EQUATION ON T2 -BUNDLES THE CY IN S1 -FIBRATIONS WORKS IN PROGRESS

THE CALABI-YAU THEOREM

Given a Kähler structure (Ω, J) we define

CΩ :=
{
ω ∈ [Ω] , s.t. ω is compatible with J

}
ddc-lemma. Let dc := J−1dJ, then

CΩ :=
{

Ω + ddcu > 0 , s.t. u ∈ C∞(M,R)
}

Let Ric be the Ricci tensor of the metric g induced by (Ω, J). Then
Ric(J·, J·) = Ric(·, ·) and ρ(·, ·) = Ric(J·, ·) is the Ricci form of (Ω, J).

dρ = 0 , [ρ] = 2πc1(M, J).

Calabi-Yau’s Theorem. Let (M2n, J,Ω) be a compact Kähler manifold and
let ρ̃ ∈ Λ1,1

R be a closed form such that [ρ̃] = 2πc1(M, J). Then there exists a
unique ω̃ ∈ CΩ such that ρ̃ is the Ricci form of (ω̃, J).



CY EQUATION SOME KNOWN RESULTS THE CY EQUATION ON T2 -BUNDLES THE CY IN S1 -FIBRATIONS WORKS IN PROGRESS

THE ALMOST-KÄHLER CASE (DONALDSON/WEINKOVE)

Calabi-Yau’s Theorem [Symplectic version]. Let (M2n, J,Ω) be a
compact Kähler manifold and let σ be a volume form satisfying∫

M Ωn =
∫

M σ. Then there exists a unique ω̃ ∈ CΩ such that

ω̃n = σ

We can write σ = eF Ωn, where F satisfies∫
M

eFΩn =

∫
M

Ωn .

Then

ω̃n = σ ←→

{
(Ω + dα)n = eFΩn

Jdα = dα
←→ (Ω + ddcu)n = eFΩn

(Ω + ddcu)n = eFΩn is a complex Monge-Ampère equation.
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THE ALMOST-KÄHLER CASE (DONALDSON/WEINKOVE)

Calabi-Yau’s Theorem [Symplectic version]. Let (M2n, J,Ω) be a
compact Kähler manifold and let σ be a volume form satisfying∫

M Ωn =
∫

M σ. Then there exists a unique ω̃ ∈ CΩ such that

ω̃n = σ

The same problem still makes sense on an almost Kähler (AK)
manifold when J is non-integrable.

The classical case{
ωn = σ

[ω] = [Ω] .
−→

{
(Ω + dα)n = eF Ωn

Jdα = dα .
−→

{
(Ω + ddcu)n = eF Ωn

dα = ddcu .

The case with torsion{
ωn = σ

[ω] = [Ω] .
−→

{
(Ω + dα)n = eF Ωn

Jdα = dα .



CY EQUATION SOME KNOWN RESULTS THE CY EQUATION ON T2 -BUNDLES THE CY IN S1 -FIBRATIONS WORKS IN PROGRESS
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manifold when J is non-integrable.
Then

CY Equation←→


(Ω + dα)n = eFΩn

Jdα = dα

d∗α = 0
(∗)

(∗) is not overdetermined for n = 2 and it is overdetermined for
n > 2.

Question: Can the Calabi-Yau Theorem be generalized to AK
4-manifolds? (At least in the special case b+ = 1)
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UNIQUENESS

Proposition. In dimension 4 solutions to the CY equation are unique.

Proof. Let ω1 and ω2 be two solutions to the CY equation.
Then {

ω2
1 = ω2

2 ,

ω2 = ω1 + dα
=⇒ dα2 + 2ω1 ∧ dα = 0 .

Consider ω̄ = ω1 + ω2. ω̄ is a symplectic form.

ω̄ ∧ dα = 0 =⇒ ∗ω̄dα = −dα =⇒ ‖dα‖ω̄ = 0 . q.e.d.

S.K. Donaldson, in Inspired by S.S. Chern, World Sci. (2006)
B. Weinkove, J.D.G. (2006).
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EXISTENCE OF A SOLUTION

Donaldson’s Conjecture. Let (M,Ω, J, σ) be a compact symplectic
4-manifold with an acs J tamed by Ω and a normailized volume form σ.
If ω̃ ∈ [Ω] is a symplectic form on M which is compatible with J and solving
the CY equation

ω̃2 = σ

then there are C∞ a priori bounds on ω̃ depending only on Ω, J and σ.

Applications:

I Calabi-Yau’s theorem holds on compact 4-dimensional AK
manifolds with b+ = 1.

I If b+ = 1 and there exists Ω taming J, then there exists ω̃ which is
compatible with J.

S.K. Donaldson, in Inspired by S.S. Chern, World Sci. 2006
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AK POTENTIAL (WEINKOVE)

Let (M,Ω, J) be a 4-dim. AK manifold and let ω̃ be a J-compatible
symplectic form such that [Ω] = [ω̃]. Then there exits u ∈ C∞(M) (AK
potential) and a ∈ Ω1(M) s.t.

(ω̃ − Ω) ∧ ω̃ = ddcu ∧ ω̃ , ω̃ = Ω + ddcu + da , d∗ω̃a = 0 ,

Theorem. [Weinkove]. In order to show the solvability of the CY equation
on 4-dimensional AK manifolds its enough to prove a C0 a priori bound on
the AK potential.
That can be done if the L1-norm of NJ is small enough.

B. Weinkove, J.D.G. (2006).
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THE CASE OF POSITIVE CURVATURE (TOSATTI-WEINKOVE-YAU)

Given an almost-Hermitian manifold (M, g, J), there exists a unique
connection∇C (Chen connection) satisfying

∇CJ = 0 , ∇Cg = 0 , Tor1,1 = 0 .

Let
Rijkl = Rj

ikl
+ 4Nr

lj
Ni

rk

Theorem. [Tosatti,Weinkove,Yau] Let (M,Ω, J) be a compact AK
manifold. AssumeR > 0, then Donaldson’s conjecture holds.

V. Tosatti, B. Weinkove, S.T. Yau, Proc. London Math. Soc., 2008
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THE CY EQUATION ON THE KODAIRA-THRUSTON MANIFOLD

(TOSATTI-WEINKOVE)

The Kodaira-Thurston manifold is defined as M = Γ\Nil3 × S1, where

Nil3 =
{[ 1 x z

0 1 y
0 0 1

]
: x, y, z ∈ R

}
, Γ =

{[ 1 x z
0 1 y
0 0 1

]
: x, y, z ∈ Z

}

M has a global left-invariant coframe {e1, e2, e3, e4}

dei = 0 , i = 1, 2, 3 , de4 = e1 ∧ e2 , (0, 0, 0, 12) .

M has the almost-Kähler structure

Ω0 = e1 ∧ e3 + e4 ∧ e2 , g0 =
∑

ei ⊗ ei , J0 .

b1(M) = 3 and M has no Kähler structures

[K] K.Kodaira, Amer. J. Math., 1964
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M is a T2-bundle over a T2

S1×S1 � � // Γ\Nil3×S1 = M

��
T2

xy .

The symplectic form Ω0 is Lagrangian w.r.t. this fibration, i.e. Ω0
vanishes on the fibers.

Theorem [Tosatti,Weinkove] The CY equation on (M,Ω0, J0) can be
solved for every T2-invariant volume form σ.

Argument of the proof:

I Writing σ = eF Ω2
0, then every solution ω̃ = Ω0 + dα of the CY

equation satisfies trg0 g̃ ≤MinM∆ F

I The continuity method gives the result.

[TV] V. Tosatti, B. Weinkove, J. Inst. Math. Jussieu, 2011.



CY EQUATION SOME KNOWN RESULTS THE CY EQUATION ON T2 -BUNDLES THE CY IN S1 -FIBRATIONS WORKS IN PROGRESS

M is a T2-bundle over a T2

S1×S1 � � // Γ\Nil3×S1 = M

��
T2

xy .

The symplectic form Ω0 is Lagrangian w.r.t. this fibration, i.e. Ω0
vanishes on the fibers.

Theorem [Tosatti,Weinkove] The CY equation on (M,Ω0, J0) can be
solved for every T2-invariant volume form σ.

Argument of the proof:

I Writing σ = eF Ω2
0, then every solution ω̃ = Ω0 + dα of the CY

equation satisfies trg0 g̃ ≤MinM∆ F

I The continuity method gives the result.

[TV] V. Tosatti, B. Weinkove, J. Inst. Math. Jussieu, 2011.



CY EQUATION SOME KNOWN RESULTS THE CY EQUATION ON T2 -BUNDLES THE CY IN S1 -FIBRATIONS WORKS IN PROGRESS

M is a T2-bundle over a T2

S1×S1 � � // Γ\Nil3×S1 = M

��
T2

xy .

The symplectic form Ω0 is Lagrangian w.r.t. this fibration, i.e. Ω0
vanishes on the fibers.

Theorem [Tosatti,Weinkove] The CY equation on (M,Ω0, J0) can be
solved for every T2-invariant volume form σ.

Argument of the proof:

I Writing σ = eF Ω2
0, then every solution ω̃ = Ω0 + dα of the CY

equation satisfies trg0 g̃ ≤MinM∆ F

I The continuity method gives the result.

[TV] V. Tosatti, B. Weinkove, J. Inst. Math. Jussieu, 2011.



CY EQUATION SOME KNOWN RESULTS THE CY EQUATION ON T2 -BUNDLES THE CY IN S1 -FIBRATIONS WORKS IN PROGRESS

M is a T2-bundle over a T2

S1×S1 � � // Γ\Nil3×S1 = M

��
T2

xy .

The symplectic form Ω0 is Lagrangian w.r.t. this fibration, i.e. Ω0
vanishes on the fibers.

Theorem [Tosatti,Weinkove] The CY equation on (M,Ω0, J0) can be
solved for every T2-invariant volume form σ.

Argument of the proof:

I Writing σ = eF Ω2
0, then every solution ω̃ = Ω0 + dα of the CY

equation satisfies trg0 g̃ ≤MinM∆ F

I The continuity method gives the result.

[TV] V. Tosatti, B. Weinkove, J. Inst. Math. Jussieu, 2011.



CY EQUATION SOME KNOWN RESULTS THE CY EQUATION ON T2 -BUNDLES THE CY IN S1 -FIBRATIONS WORKS IN PROGRESS

CY EQUATION ON THE KODAIRA-THURSTON MANIFOLD II

Consider the Calabi-Yau equation (Ω0 + dα)2 = e F Ω2
0.

Let

α = dcv− ve1 = v e1 + vx e3 + vy e4 , v ∈ C∞(T2) .

Then
dα = vxx e13 + vxye23 + vxy e14 + vyy e24 ∈ Λ1,1

R

and the CY equation becomes the Monge-Ampère equation

(1 + vxx)(1 + vyy)− v2
xy = eF

Theorem. [Li]. The Monge-Ampère equation on the standard torus Tn has
always a solution.
[Li] Y.Y. Li, Comm. Pure Appl. Math., 1990.
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CHANGING THE FIBRATION IN THE PREVIOUS CASE

Consider (M = Γ\Nil3 × S1, J0,Ω0) the T2-fibration

S1 × S1 � � // Γ\Nil3×S1 = M

��
S1

x × S1
t .

Here we can use the ansatz

α = dcv− ve1 = (−vt − v)e1 − vxe4 , v ∈ C∞(T2
xt) .

which implies

dα = −vtxe12 + (vtt + vt)e13 − vxxe24 + (−vtx)e34 ∈ Λ1,1
R

and the CY equation becomes the Monge-Ampère equation

(1 + vxx)(1 + vtt + vt)− v2
xt = eF
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CY EQUATION ON T2-BUNDLES OVER T2

Theorem [Fino, Li, Salamon, V/ Buzano, Fino, V] Let M be a T2-bundle
over a T2 equipped with an invariant AK structure (Ω, J). Then for every
T2-invariant normalized volume form σ = e F Ω2 with F ∈ C∞(T2), the
corresponding CY equation has a unique solution.

Remarks:
1. Every orientable T2-bundle over a T2 is an infra-solvmanifold, i.e. a
finite quotient of a solvmanifold. ([Ue])
2. If M = G is a 4-dimensional infra-solvmanifold equipped with an
invariant AK structure (Ω, J). Then conditionR > 0 holds if and only
if J is integrable. In particular the Tosatti-Weinkove-Yau theorem
cannot be applied to the case of a T2-bundle over a T2.

[Ue] M. Ue, J. Math. Soc. Japan, 2009.
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CY EQUATION ON T2-BUNDLES OVER T2

Theorem [Fino, Li, Salamon, –/ Buzano, Fino, –]. Let M be a T2-bundle
over a T2 equipped with an invariant AK structure (Ω, J). Then for every
T2-invariant normalized volume form σ = e F Ω2 with F ∈ C∞(T2), the
corresponding CY equation has a unique solution.

Layout of the proof:

I Using the classification of orientable T2-bundles over T2;

I Classifying in each case invariant Lagrangian AK structures and
invariant Symplectic AK structures;

I Rewriting the problem in terms of a Monge-Ampère equation;

I Showing that such an equation has solution.
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The classification of T2-bundles over T2

G Structure equations
i, ii R4 (0, 0, 0, 0)

iii Nil3 × R (0, 0, 0, 12)
iv, v Sol3 × R (0, 0, 13, 41)

vi, vii, viii Nil3 × R (0, 0, 0, 12)
ix Nil4 (0, 13, 0, 12)

- The Lie group G is called the geometry type. M has Kähler
structures only in the cases i, ii [G];

- in the cases iv, v M has no complex structures [FG].

[G] H. Geiges, Duke Math. J., 1992.
[FG] M. Fernandez, A. Gray, Geom. Dedicata, 1990.
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Geometry type G = Nil3 × R

G Structure equations
i, ii R4 (0, 0, 0, 0)

iii Nil3 × R (0, 0, 0, 12)
iv, v Sol3 × R (0, 0, 13, 41)

vi, vii, viii Nil3 × R (0, 0, 0, 12)
ix Nil4 (0, 13, 0, 12)
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Geometry type G = Nil3 × R

G Structure equations
i, ii R4 (0, 0, 0, 0)

iii Nil3 × R (0, 0, 0, 12)
iv, v Sol3 × R (0, 0, 13, 41)

vi, vii, viii Nil3 × R (0, 0, 0, 12)
ix Nil4 (0, 13, 0, 12)

In this case all the total spaces are nilmanifolds, all the invariant AK
structures are Lagrangian and we can work as in the
Kodaira-Thurston manifold.
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Geometry type G = Nil3 × R

G Structure equations
i, ii R4 (0, 0, 0, 0)

iii Nil3 × R (0, 0, 0, 12)
iv, v Sol3 × R (0, 0, 13, 41)

vi, vii, viii Nil3 × R (0, 0, 0, 12)
ix Nil4 (0, 13, 0, 12)

In this case the total spaces could be infra-nilmanifolds, invariant AK
structures could be either Lagrangian or non-Lagrangian and the
argument used in the Kodaira-Thurston case has to be modified.
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Geometry type G = Sol3 × R

G Structure equations
i, ii R4 (0, 0, 0, 0)

iii Nil3 × R (0, 0, 0, 12)
iv, v Sol3 × R (0, 0, 13, 41)

vi, vii, viii Nil3 × R (0, 0, 0, 12)
ix Nil4 (0, 13, 0, 12)

In this case the total space could be an infra-solvmanifold, all invariant
AK structures are non-Lagrangian and the CY equation reduces to a
Monge-Ampère equation.
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Geometry type G = Nil4

G Structure equations
i, ii R4 (0, 0, 0, 0)

iii Nil3 × R (0, 0, 0, 12)
iv, v Sol3 × R (0, 0, 13, 41)

vi, vii, viii Nil3 × R (0, 0, 0, 12)
ix Nil4 (0, 13, 0, 12)

In this case all total spaces are nilmanifolds, all invariant AK structures
are Lagrangian and the CY reduces to the same Monge-Ampère
equation for Lagrangian AK structures in the families vi), vii), viii)
associated to Nil3 × R.



CY EQUATION SOME KNOWN RESULTS THE CY EQUATION ON T2 -BUNDLES THE CY IN S1 -FIBRATIONS WORKS IN PROGRESS

The Monge-Ampère equation

The following equation covers all the cases

A11[u]A22[u]−
(
A12[u]

)2
= E1 + E2 eF

where

A11[u] = uxx + B11uy + C11 + Du,
A12[u] = uxy + B12uy + C12,

A22[u] = uyy + B22uy + C22,

and Bij, Cij, D, Ei are constants.

In the Lagrangian case D = 0



CY EQUATION SOME KNOWN RESULTS THE CY EQUATION ON T2 -BUNDLES THE CY IN S1 -FIBRATIONS WORKS IN PROGRESS

The Monge-Ampère equation

The following equation covers all the cases

A11[u]A22[u]−
(
A12[u]

)2
= E1 + E2 eF

where

A11[u] = uxx + B11uy + C11 + Du,
A12[u] = uxy + B12uy + C12,

A22[u] = uyy + B22uy + C22,

and Bij, Cij, D, Ei are constants.

In the Lagrangian case D = 0



CY EQUATION SOME KNOWN RESULTS THE CY EQUATION ON T2 -BUNDLES THE CY IN S1 -FIBRATIONS WORKS IN PROGRESS

Solutions to the Monge-Ampère equation

Goal: Show that A11[u]A22[u]−
(
A12[u]

)2
= E1 + E2 eF has a solution

on T2.

We apply the continuity method to

A11[u]A22[u]−
(
A12[u]

)2
= E1 + (1− t)E2 + tE2 eF (∗t).

by defining S := {t ∈ [0, 1] : (∗t) has a solution u ∈ C2,α
0 (T2)} and

showing that S is open and closed in [0, 1].

In this way we show the existence of a C2,α solution u and a theorem
of Nirenberg implies that u is C∞.

L. Nirenberg, Comm. Pure Appl. Math. 1953.



CY EQUATION SOME KNOWN RESULTS THE CY EQUATION ON T2 -BUNDLES THE CY IN S1 -FIBRATIONS WORKS IN PROGRESS

Solutions to the Monge-Ampère equation

We apply the continuity method to

A11[u]A22[u]−
(
A12[u]

)2
= E1 + (1− t)E2 + tE2 eF (∗t).

by defining S := {t ∈ [0, 1] : (∗t) has a solution u ∈ C2,α
0 (T2)} and

showing that S is open and closed in [0, 1].

I S is open by the implicit function theorem.

I in order to show that S is closed it’s enough to give an priori
bound on the first derivatives of the solutions to (∗t) in view of
an interior estimates proved by Heinz.

E. Heinz, in Proc. Sympos. Pure Math., 1961.
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CY EQUATION ON S1-FIBRATIONS OVER A T3

The Kodaira-Thurston manifold has a natural structure of principal
S1-bundle over a T3

S1 � � // Γ\Nil3×S1 = M

��
T2×S1 = T3

xyt .

We can study the CY problem for S1-invariant volume forms (instead
that T2-invariant).

Theorem [Buzano-Fino- V]. The CY equation on (M, J0,Ω0) can be solved
for every S1-invariant normlized volume form σ.
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PROOF OF THE THEOREM

Step 1. The system reduces to a single equation

Let u ∈ C∞0 (T3). If
α = dcu− ue1

then
Jdα = dα (i.e. dα is (1, 1))

and the CY equation reduces to

(uxx + 1)(uyy + utt + ut + 1)− u2
xy − u2

xt = eF.
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PROOF OF THE THEOREM

Step 2. C0-a priori estimates

Let u ∈ C2
0(T3) be such that (uxx + 1)(uyy + utt + ut + 1)− u2

xy− u2
xt = eF

- |ux| < 1

-
∥∥∇ |u|p/2∥∥2

L2 ≤
p2

16 ‖u‖
p
Lp +

5p3

16 ‖1 + eF‖C0 ‖u‖p−1
Lp[

In Yau’s proof:
∥∥∇ |ϕ|p/2∥∥2

L2 ≤
np2

4p−1

(
‖1− eF‖C0

)
‖ϕ‖p−1

Lp

]
- ‖u‖L2 ≤ ‖1 + eF‖C0 ,

Finally:

- ‖u‖C0 ≤ C, where C = C(‖F‖C0).
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PROOF OF THE THEOREM

Step 3. First order estimates

Let u ∈ C4
0(T3) solving (uxx + 1)(uyy + utt + ut + 1)−u2

xy−u2
xt = eF, then

- ‖∆u‖C0 ≤ C1
(
1 + ‖u‖C1

)
, where C1 = C1(‖F‖C2)

- ‖u‖C1 ≤ C2, where C2 = C2(‖F‖C2).
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PROOF OF THE THEOREM

Step 4. C2,ρ estimates

Theorem [Tosatti-Wang-Weinkove-Yang]. Let Ω̃ be be the solution of the
Calabi-Yau equation. Assume there are two constants C̃0 > 0 and
0 < ρ0 < 1 such that F ∈ Cρ0(M2n) and

tr g̃ ≤ C̃0,

Then there exist two constants C̃ > 0 and 0 < ρ < 1, depending only on
M2n, Ω, J, C0 and ‖F‖Cρ0 , such that ‖g̃‖Cρ ≤ C̃.

Proposition. Let u ∈ C4
0(T3) solving

(uxx + 1)(uyy + utt + ut + 1)− u2
xy − u2

xt = eF. Then there exist constants
C3 > 0 and ρ > 0, both depending only on ‖F‖C2 , such that

‖u‖C2,ρ ≤ C3.
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PROOF OF THE THEOREM

Step 5. Continuity Method

Let S be the set of τ ∈ [0, 1] such that

(uyy + utt + ut + 1)(uxx + 1)− u2
xy − u2

xt = 1− τ + τ eF

has a solution in C∞0 (T3).

S is non-empty, open and closed in [0, 1].

Then 1 ∈ S and the claim follows. �
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A NEW PROOF OF OUR THEOREM (TOSATTI-WEINKOVE)

Recently Tosatti and Weinkove have provided a simplified proof of
the C0-a priori estimate for solution to

(uxx + 1)(uyy + utt + ut + 1)− u2
xy − u2

xt = eF

on T3 based on the Aleksandrov-Bakelman-Pucci estimate.

Proposition [Székelyhidi]. Let v : B̄r(0)→ R be a smooth map satisfying

v(0) + ε ≤ inf
∂Br(0)

v

for some ε > 0. Then

εn ≤ C0

∫
P

det(D2v)

where
P = {x ∈ Br(0) : |Dv(x)| < ε/2, v(y) > v(x) + Dv(x)(y−x)∀y ∈ Br(0)}
and C0 = C0(n).

Székelyhidi, preprint 2015. Tosatti and Weinkove, preprint 2016.
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A NEW PROOF OF OUR THEOREM (TOSATTI-WEINKOVE)

Let u ∈ C∞(T3) be such that

(uxx + 1)(uyy + utt + ut + 1)− u2
xy − u2

xt = eF u ≤ 0 , min u < −1 .

Let x0 ∈M be such that minM u = u(x0) and regard u as a map
u : Br(0)→ R with 0 ≡ x0.

Define v = u + ε
r2 (x2 + y2 + t2). Then

εn ≤ C0

∫
P

det(D2v) and det(D2v(x)) ≤ C , ∀x ∈ P

for a uniform C. Therefore εn ≤ C|P| and

‖u‖C0 ≤ C1/p

εn/p ‖u‖Lp + 1 .

On the other hand, ∆u + ut > −2 which implies that ‖u‖Lp is
uniformally buonded.
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A NEW PROOF OF OUR THEOREM (TOSATTI-WEINKOVE)

Theorem [Tosatti-Weinkove]. Let (Ω, J) be an invariant AK structure on
the Kodaira-Thurston manifold M inducing the standard metric. Then the
CY equation on (M, J,Ω) can be solved for every S1-invariant normlized
volume form σ.

Problem. Generalize the previous theorem to every invariant AK on M.

Proposition. It is possible to generalize the theorem if we assume
〈e1, e2, e3〉 orthogonal to e4.
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THE GENERAL CASE ON THE KODAIRA-THURSTON MANIFOLD

(WORK IN PROGRESS WITH E. BUZANO, A. FINO AND Y.Y. LI)

Now we consider the CY problem on the Kodaira-Thurston manifold
(M,Ω0, J0) when σ is not invariant.

Functions on M can be regarded as functions u : R4 → R satisfying

u(x + j, y + k, z + jy + m, t + n) = u(x, y, z, t),

for all (x, y, z, t) in R4 and (j, k,m,n) in Z4.
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THE EQUATION ON THE HEISENBERG GROUP

(WORK IN PROGRESS WITH E. BUZANO, A. FINO AND Y.Y. LI)

Theorem. Assume σ = eF Ω2
0 be such that F ∈ C∞0 (Nil3/Γ). Assume that

[uy + xux + 1]2(uxx + uzz) + [u2
x + u2

z + eF] [uyy + x2uzz + 2xuyz]

− 2ux[uy + xuz + 1] [uxy + xuxz]− 2uz[uy + xuz + 1] [uyz + xuzz]

− eF[Fy + xFz] [uy + xuz + 1] = 0,

has a solution u. Then there exist v,w ∈ C∞0 (Nil3/Γ) such that

α = v e1 + ∂zw e2 + u e3 − ∂xw e4

solve {
(Ω + dα)2 = eF Ω2

Jdα = dα .
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