Homogeneity for Riemannian Quotient Manifolds

SIXTH WORKSHOP ON DIFFERENTIAL GEOMETRY La Falda, Sierras de Cordoba, Argentina August 1-5, 2016

Joseph A. Wolf

University of California at Berkeley

 (M, ds^2) : connected simply connected Riemannian homogeneous space

- (M, ds^2) : connected simply connected Riemannian homogeneous space
- M = G/K where $G = \mathcal{I}(M, ds^2)$ is the isometry group

- (M, ds^2) : connected simply connected Riemannian homogeneous space
- M = G/K where $G = \mathcal{I}(M, ds^2)$ is the isometry group
- $M \to \Gamma \backslash M \ \text{Riemannian covering}$

- (M, ds^2) : connected simply connected Riemannian homogeneous space
- M = G/K where $G = \mathcal{I}(M, ds^2)$ is the isometry group
- $M \to \Gamma \backslash M$ Riemannian covering
- In other words Γ is a discrete subgroup of G and if $\gamma \in \Gamma$ has a fixed point on M then $\gamma = 1$.

- (M, ds^2) : connected simply connected Riemannian homogeneous space
- M = G/K where $G = \mathcal{I}(M, ds^2)$ is the isometry group
- $M \to \Gamma \backslash M$ Riemannian covering
- In other words Γ is a discrete subgroup of G and if $\gamma \in \Gamma$ has a fixed point on M then $\gamma = 1$.
- **Problem:** when is $\Gamma \setminus M$ homogeneous?

- (M, ds^2) : connected simply connected Riemannian homogeneous space
- M = G/K where $G = \mathcal{I}(M, ds^2)$ is the isometry group
- $M \to \Gamma \backslash M$ Riemannian covering
- In other words Γ is a discrete subgroup of G and if $\gamma \in \Gamma$ has a fixed point on M then $\gamma = 1$.
- **Problem:** when is $\Gamma \setminus M$ homogeneous?
- First step: If $\Gamma \setminus M$ is homogeneous then every $\gamma \in \Gamma$ is an isometry of constant displacement.

- (M, ds^2) : connected simply connected Riemannian homogeneous space
- M = G/K where $G = \mathcal{I}(M, ds^2)$ is the isometry group
- $M \to \Gamma \backslash M$ Riemannian covering
- In other words Γ is a discrete subgroup of G and if $\gamma \in \Gamma$ has a fixed point on M then $\gamma = 1$.
- **Problem:** when is $\Gamma \setminus M$ homogeneous?
- First step: If $\Gamma \setminus M$ is homogeneous then every $\gamma \in \Gamma$ is an isometry of constant displacement.
- Example: if $\Gamma \setminus \mathbb{R}^n$ is homogeneous then Γ consists of pure translations so $\Gamma \setminus \mathbb{R}^n$ is the product of a torus and an euclidean space.

A less trivial example:

- A less trivial example:
- (M, ds^2) has every sectional curvature ≤ 0

- A less trivial example:
- (M, ds^2) has every sectional curvature ≤ 0
- $(M, ds^2) = (M_1, ds_1^2) \times (M_2, ds_2^2)$ (de Rham) where
 - (M_1, ds_1^2) is the flat factor in the de Rham decomposition
 - (M_2, ds_2^2) is the product of the irreducible factors

- A less trivial example:
- (M, ds^2) has every sectional curvature ≤ 0
- $(M, ds^2) = (M_1, ds_1^2) \times (M_2, ds_2^2)$ (de Rham) where
 - (M_1, ds_1^2) is the flat factor in the de Rham decomposition
 - (M_2, ds_2^2) is the product of the irreducible factors
- $M \to \Gamma \backslash M$ universal Riemannian covering

- A less trivial example:
- (M, ds^2) has every sectional curvature ≤ 0
- $(M, ds^2) = (M_1, ds_1^2) \times (M_2, ds_2^2)$ (de Rham) where
 - (M_1, ds_1^2) is the flat factor in the de Rham decomposition
 - (M_2, ds_2^2) is the product of the irreducible factors
- $\textbf{ } M \to \Gamma \backslash M \text{ universal Riemannian covering }$
- Then the following are equivalent.
 - $\Gamma \backslash M$ is homogeneous

 - Every $\gamma \in \Gamma$ is an isometry of bounded displacement
 - Every $\gamma \in \Gamma$ is just a pure translation along the Euclidean factor (M_1, ds_1^2) of (M, ds^2)

A nontrivial example:

A nontrivial example:

• $S^{n-1} \subset \mathbb{R}^n$ usual round sphere of dimension n-1 in \mathbb{R}^n

- A nontrivial example:
- $S^{n-1} \subset \mathbb{R}^n$ usual round sphere of dimension n-1 in \mathbb{R}^n
- Γ finite group of fixed point free isometries of S^{n-1} , in other words $\Gamma \setminus S^{n-1}$ is a spherical space form

- A nontrivial example:
- $S^{n-1} \subset \mathbb{R}^n$ usual round sphere of dimension n-1 in \mathbb{R}^n
- Γ finite group of fixed point free isometries of S^{n-1} , in other words $\Gamma \setminus S^{n-1}$ is a spherical space form
- **•** Suppose that $\Gamma \setminus S^{n-1}$ is Riemannian homogeneous

- A nontrivial example:
- $S^{n-1} \subset \mathbb{R}^n$ usual round sphere of dimension n-1 in \mathbb{R}^n
- Γ finite group of fixed point free isometries of S^{n-1} , in other words $\Gamma \setminus S^{n-1}$ is a spherical space form
- **•** Suppose that $\Gamma \setminus S^{n-1}$ is Riemannian homogeneous
- Let *L* denote the normalizer of Γ in $\mathcal{I}(S^{n-1}) = O(n)$

A nontrivial example:

• $S^{n-1} \subset \mathbb{R}^n$ usual round sphere of dimension n-1 in \mathbb{R}^n

- Γ finite group of fixed point free isometries of S^{n-1} , in other words $\Gamma \setminus S^{n-1}$ is a spherical space form
- **•** Suppose that $\Gamma \setminus S^{n-1}$ is Riemannian homogeneous
- Let *L* denote the normalizer of Γ in $\mathcal{I}(S^{n-1}) = O(n)$
- **•** Then L^0 centralizes Γ and is transitive on S^{n-1}

- A nontrivial example:
- $S^{n-1} \subset \mathbb{R}^n$ usual round sphere of dimension n-1 in \mathbb{R}^n
- Γ finite group of fixed point free isometries of S^{n-1} , in other words $\Gamma \setminus S^{n-1}$ is a spherical space form
- **•** Suppose that $\Gamma \setminus S^{n-1}$ is Riemannian homogeneous
- Let *L* denote the normalizer of Γ in $\mathcal{I}(S^{n-1}) = O(n)$
- **•** Then L^0 centralizes Γ and is transitive on S^{n-1}
- Schur's Lemma: L⁰ is contained in the multiplicative group of a real division algebra $A = \mathbb{R}, \mathbb{C}$ or \mathbb{H} . So

A nontrivial example:

• $S^{n-1} \subset \mathbb{R}^n$ usual round sphere of dimension n-1 in \mathbb{R}^n

- Γ finite group of fixed point free isometries of S^{n-1} , in other words $\Gamma \setminus S^{n-1}$ is a spherical space form
- **•** Suppose that $\Gamma \setminus S^{n-1}$ is Riemannian homogeneous
- Let *L* denote the normalizer of Γ in $\mathcal{I}(S^{n-1}) = O(n)$
- **•** Then L^0 centralizes Γ and is transitive on S^{n-1}
- Schur's Lemma: L⁰ is contained in the multiplicative group of a real division algebra A = ℝ, ℂ or 𝔄. So
- (1) If A = R: Γ ⊂ {±1}
 (2) If A = C: Γ is cyclic of order > 2
 (3) If A = H: Γ is binary dihedral, binary tetrahedral, binary octahedral or binary icosahedral

 \square $M \to \Gamma \backslash M$ universal Riemannian covering

 \blacksquare $M \to \Gamma \backslash M$ universal Riemannian covering

• Theorem. Suppose that M is complete and has constant sectional curvature K. Then $\Gamma \setminus M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement

- \square $M \to \Gamma \backslash M$ universal Riemannian covering
- Theorem. Suppose that M is complete and has constant sectional curvature K. Then $\Gamma \setminus M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement
- For K < 0: the less-trivial example says that $\Gamma \setminus M$ is Riemannian homogeneous if and only if $\Gamma = \{1\}$

- \blacksquare $M \to \Gamma \backslash M$ universal Riemannian covering
- Theorem. Suppose that M is complete and has constant sectional curvature K. Then $\Gamma \setminus M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement
- For K < 0: the less-trivial example says that $\Gamma \setminus M$ is Riemannian homogeneous if and only if $\Gamma = \{1\}$
- **•** For K = 0: this is covered by the trivial example

- $\blacksquare M \to \Gamma \backslash M \text{ universal Riemannian covering}$
- Theorem. Suppose that M is complete and has constant sectional curvature K. Then $\Gamma \setminus M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement
- For K < 0: the less–trivial example says that Γ\M is
 Riemannian homogeneous if and only if Γ = {1}
 </p>
- **•** For K = 0: this is covered by the trivial example
- For K > 0: this involves some nontrivial finite group theory based on (i) $\gamma \neq \pm I$ has constant displacement if and only if it has eigenvalues { $\lambda, \overline{\lambda}; ...; \lambda, \overline{\lambda}$ } and (ii) an induction involving binary polyhedral and $SL(2; \mathbb{Z}_p)$ groups

 \blacksquare $M \to \Gamma \backslash M$ universal Riemannian covering

- $M \to \Gamma \backslash M \text{ universal Riemannian covering}$
- Theorem. Suppose that M is a Riemannian symmetric space. Then $\Gamma \setminus M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement

- $M \to \Gamma \backslash M \text{ universal Riemannian covering}$
- Theorem. Suppose that M is a Riemannian symmetric space. Then $\Gamma \setminus M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement
- \checkmark First reduction: to case where *M* is irreducible

- $M \to \Gamma \backslash M \text{ universal Riemannian covering}$
- Theorem. Suppose that *M* is a Riemannian symmetric space. Then $\Gamma \setminus M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement
- First reduction: to case where M is irreducible
- Second reduction: to case where M is compact irreducible

- $M \to \Gamma \backslash M \text{ universal Riemannian covering}$
- Theorem. Suppose that *M* is a Riemannian symmetric space. Then $\Gamma \setminus M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement
- First reduction: to case where M is irreducible
- Second reduction: to case where M is compact irreducible
- Compact irreducible case 1: M is a group manifold

- $M \to \Gamma \backslash M \text{ universal Riemannian covering}$
- Theorem. Suppose that *M* is a Riemannian symmetric space. Then $\Gamma \setminus M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement
- \checkmark First reduction: to case where *M* is irreducible
- Second reduction: to case where M is compact irreducible
- Compact irreducible case 1: M is a group manifold
- Compact irreducible case 2: M = G/K with G compact simple classical

- $M \to \Gamma \backslash M \text{ universal Riemannian covering}$
- Theorem. Suppose that *M* is a Riemannian symmetric space. Then $\Gamma \setminus M$ is Riemannian homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement
- \checkmark First reduction: to case where *M* is irreducible
- Second reduction: to case where M is compact irreducible
- Compact irreducible case 1: M is a group manifold
- Compact irreducible case 2: M = G/K with G compact simple classical
- Compact irreducible case 3: M = G/K with G compact simple exceptional

Finsler Symmetric

• $M \to \Gamma \backslash M$ universal Finsler covering

Finsler Symmetric

- $M \to \Gamma \backslash M \text{ universal Finsler covering}$
- Theorem. Suppose that (M, F) is a Finsler symmetric space. Then $\Gamma \setminus M$ is Finsler homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement

Finsler Symmetric

- $M \to \Gamma \backslash M \text{ universal Finsler covering}$
- Theorem. Suppose that (M, F) is a Finsler symmetric space. Then $\Gamma \setminus M$ is Finsler homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement
- (M, F) is Berwald and $(M, F) = (M_0, F_0) \times (M_1, F_1) \times (M_2, F_2)$ with (M_0, F_0) Minkowski, (M_1, F_1) compact type, (M_2, F_2) noncompact type

- $M \to \Gamma \backslash M \text{ universal Finsler covering}$
- Theorem. Suppose that (M, F) is a Finsler symmetric space. Then $\Gamma \setminus M$ is Finsler homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement
- (M, F) is Berwald and $(M, F) = (M_0, F_0) \times (M_1, F_1) \times (M_2, F_2)$ with (M_0, F_0) Minkowski, (M_1, F_1) compact type, (M_2, F_2) noncompact type
- First reduction: constant displacement isometries decompose so reduced to cases $(M, F) = (M_i, F_i)$

- $M \to \Gamma \backslash M \text{ universal Finsler covering}$
- Theorem. Suppose that (M, F) is a Finsler symmetric space. Then $\Gamma \setminus M$ is Finsler homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement
- (M, F) is Berwald and $(M, F) = (M_0, F_0) \times (M_1, F_1) \times (M_2, F_2)$ with (M_0, F_0) Minkowski, (M_1, F_1) compact type, (M_2, F_2) noncompact type
- First reduction: constant displacement isometries decompose so reduced to cases $(M, F) = (M_i, F_i)$
- Second reduction: take care of Minkowski and noncompact type cases

- $M \to \Gamma \backslash M \text{ universal Finsler covering}$
- Theorem. Suppose that (M, F) is a Finsler symmetric space. Then $\Gamma \setminus M$ is Finsler homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement
- (M, F) is Berwald and $(M, F) = (M_0, F_0) \times (M_1, F_1) \times (M_2, F_2)$ with (M_0, F_0) Minkowski, (M_1, F_1) compact type, (M_2, F_2) noncompact type
- First reduction: constant displacement isometries decompose so reduced to cases $(M, F) = (M_i, F_i)$
- Second reduction: take care of Minkowski and noncompact type cases
- Third reduction: reduce to irreducible Riemannian cases

- $M \to \Gamma \backslash M \text{ universal Finsler covering}$
- Theorem. Suppose that (M, F) is a Finsler symmetric space. Then $\Gamma \setminus M$ is Finsler homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement
- (M, F) is Berwald and $(M, F) = (M_0, F_0) \times (M_1, F_1) \times (M_2, F_2)$ with (M_0, F_0) Minkowski, (M_1, F_1) compact type, (M_2, F_2) noncompact type
- First reduction: constant displacement isometries decompose so reduced to cases $(M, F) = (M_i, F_i)$
- Second reduction: take care of Minkowski and noncompact type cases
- Third reduction: reduce to irreducible Riemannian cases

Dichotomy – Unbounded Cases

Putting Euclidean factors aside now there are two disparate cases

Dichotomy – Unbounded Cases

- Putting Euclidean factors aside now there are two disparate cases
- Unbounded: here the evidence is that isometries of bounded displacement are ordinary translations along the Euclidean factor
 - Riemannian manifolds of sectional curvature ≤ 0
 - Riemannian manifolds without focal points
 - Riemannian manifolds homogeneous under a semisimple group with no compact factor
 - Riemannian manifolds homogeneous under an exponential solvable Lie group of isometries

Dichotomy – Bounded Cases

- Bounded: here much of the progress on the conjecture has been case by case verification
 - Riemannian or Finsler symmetric spaces
 - Compact homogeneous with a certain Weyl group condition, e.g. Stieffel manifolds
 - Twistor bundles over Grassmann manifolds, hermitian or quaternionic symmetric spaces, nearly-Kähler (3–symmetric) spaces, the 5–symmetric E_8/A_4A_4 , ...

Dichotomy – Bounded Cases

- Bounded: here much of the progress on the conjecture has been case by case verification
 - Riemannian or Finsler symmetric spaces
 - Compact homogeneous with a certain Weyl group condition, e.g. Stieffel manifolds
 - Twistor bundles over Grassmann manifolds, hermitian or quaternionic symmetric spaces, nearly-Kähler (3–symmetric) spaces, the 5–symmetric E_8/A_4A_4 , ...

• Example: $M = G/K_1$ fibered over $N = G/K_1K_2$.

- \checkmark M and N carry normal Riemannian metrics from G
- Γ : finite subgroup of $Z_G K_2$
- Then Γ acts on M: by $(z, k_2)(gK_1) = zgk_2^{-1}K_1$
- This is isometric and centralizes the (transitive) isometric action of G on M so $\Gamma \setminus M$ is homogeneous

• *M* is a complete simply connected manifold with every sectional curvature ≤ 0

- *M* is a complete simply connected manifold with every sectional curvature ≤ 0
- \checkmark γ is an isometry of M of bounded displacement

- *M* is a complete simply connected manifold with every sectional curvature ≤ 0
- \checkmark γ is an isometry of M of bounded displacement

- *M* is a complete simply connected manifold with every sectional curvature ≤ 0
- \checkmark γ is an isometry of M of bounded displacement
- Geodesic segments $\overline{\sigma(t)}, \gamma(\sigma(t))$ fill out a flat totally geodesic strip in M

- *M* is a complete simply connected manifold with every sectional curvature ≤ 0
- \checkmark γ is an isometry of M of bounded displacement

- Geodesic segments $\overline{\sigma(t)}, \gamma(\sigma(t))$ fill out a flat totally geodesic strip in M
- So γ is ordinary translation along the euclidean factor of the de Rham decomposition of M

- *M* is a complete simply connected manifold with every sectional curvature ≤ 0
- \checkmark γ is an isometry of M of bounded displacement

I → $\sigma(t)$ geodesic ⇒ $d_{\gamma}(t) = dist(\sigma(t), \gamma(\sigma(t)))$ bounded

- Geodesic segments $\overline{\sigma(t)}, \gamma(\sigma(t))$ fill out a flat totally geodesic strip in M
- So γ is ordinary translation along the euclidean factor of the de Rham decomposition of M
- Theorem. Suppose that M is homogeneous and $M \to \Gamma \setminus M$ is a Riemannian covering. Then $\Gamma \setminus M$ is homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement. In that case Γ is a discrete group of ordinary translations along the euclidean factor of M.

Idea of Proof: Group Structure

If G is noncompact simple and α is a bounded automorphism then $\alpha = 1$. Essentially the same argument as for sectional curvature ≤ 0: distinct 1-parameter subgroups of hyperbolic type must diverge apart,

Idea of Proof: Group Structure

- If G is noncompact simple and α is a bounded automorphism then $\alpha = 1$. Essentially the same argument as for sectional curvature ≤ 0: distinct 1-parameter subgroups of hyperbolic type must diverge apart,
- If M = G/K, G semisimple with no compact factor, and γ is a bounded isometry then γ = 1. This uses $\mathcal{I}(M)^0 =$ {xK → gxu⁻¹K | g ∈ G, u isometry, u normalizes K

Idea of Proof: Group Structure

- If G is noncompact simple and α is a bounded automorphism then α = 1. Essentially the same argument as for sectional curvature ≤ 0: distinct 1-parameter subgroups of hyperbolic type must diverge apart,
- If M = G/K, G semisimple with no compact factor, and γ is a bounded isometry then γ = 1. This uses $\mathcal{I}(M)^0 =$ {xK → gxu⁻¹K | g ∈ G, u isometry, u normalizes K
- If M = G/K, G exponential solvable, and γ is a bounded isometry then $\alpha = 1$. This uses some basic unipotent group theory, and includes the case of nilpotent G.

● *M*: complete simply conn. Riemannian symmetric space

- *M*: complete simply conn. Riemannian symmetric space
- $\checkmark \gamma$ is an isometry of constant displacement

- M: complete simply conn. Riemannian symmetric space
- \checkmark γ is an isometry of constant displacement
- $\gamma = \gamma_0 \times \gamma_1 \times \cdots \times \gamma_r$ along the de Rham decomposition $M = M_0 \times M_1 \times \cdots \times M_r$, each γ_i constant displ. on M_i

- *M*: complete simply conn. Riemannian symmetric space
- \checkmark γ is an isometry of constant displacement
- $\gamma = \gamma_0 \times \gamma_1 \times \cdots \times \gamma_r$ along the de Rham decomposition $M = M_0 \times M_1 \times \cdots \times M_r$, each γ_i constant displ. on M_i
- So can assume that M is compact and irreducible

- *M*: complete simply conn. Riemannian symmetric space
- $\checkmark \gamma$ is an isometry of constant displacement
- $\gamma = \gamma_0 \times \gamma_1 \times \cdots \times \gamma_r$ along the de Rham decomposition $M = M_0 \times M_1 \times \cdots \times M_r$, each γ_i constant displ. on M_i
- So can assume that M is compact and irreducible
- $\Gamma \subset \mathcal{I}(M)$, every $\gamma \in \Gamma$ const. displ, $M \to \Gamma \backslash M$ covering

- M: complete simply conn. Riemannian symmetric space
- $\checkmark \gamma$ is an isometry of constant displacement
- $\gamma = \gamma_0 \times \gamma_1 \times \cdots \times \gamma_r$ along the de Rham decomposition $M = M_0 \times M_1 \times \cdots \times M_r$, each γ_i constant displ. on M_i
- So can assume that M is compact and irreducible
- $\label{eq:gamma} \ensuremath{ \ \ } \Gamma \subset \mathcal{I}(M) \text{, every } \gamma \in \Gamma \text{ const. displ} \text{, } M \to \Gamma \backslash M \text{ covering}$
- If $M = (L \times L)/(diag L)$ group manifold then Γ is $\mathcal{I}(M)$ -conjugate to a subgroup of $L \times \{1\}$.

- M: complete simply conn. Riemannian symmetric space
- $\checkmark \gamma$ is an isometry of constant displacement
- $\gamma = \gamma_0 \times \gamma_1 \times \cdots \times \gamma_r$ along the de Rham decomposition $M = M_0 \times M_1 \times \cdots \times M_r$, each γ_i constant displ. on M_i
- So can assume that M is compact and irreducible
- $\ \ \, { \ \ \, } \ \ \, \Gamma \subset \mathcal{I}(M), \, \text{every} \, \gamma \in \Gamma \, \, \text{const. displ}, \, M \to \Gamma \backslash M \, \, \text{covering} \ \ \,$
- If $M = (L \times L)/(diag L)$ group manifold then Γ is $\mathcal{I}(M)$ -conjugate to a subgroup of $L \times \{1\}$.
- If M = G/K with G simple: run through the classification

- M: complete simply conn. Riemannian symmetric space
- $\checkmark \gamma$ is an isometry of constant displacement
- $\gamma = \gamma_0 \times \gamma_1 \times \cdots \times \gamma_r$ along the de Rham decomposition $M = M_0 \times M_1 \times \cdots \times M_r$, each γ_i constant displ. on M_i
- So can assume that M is compact and irreducible
- $\ \ \, {} \ \, {} \ \, \Gamma \subset \mathcal{I}(M), \, \text{every} \, \gamma \in \Gamma \, \, \text{const. displ}, \, M \to \Gamma \backslash M \, \, \text{covering} \ \ \,$
- If $M = (L \times L)/(diag L)$ group manifold then Γ is $\mathcal{I}(M)$ -conjugate to a subgroup of $L \times \{1\}$.
- If M = G/K with G simple: run through the classification
- Theorem. Let $M \to \Gamma \setminus M$ be a Riemannian covering. Then $\Gamma \setminus M$ is homogeneous if and only if every $\gamma \in \Gamma$ is an isometry of constant displacement.

 $\blacksquare \pi : \widetilde{M} \to M \text{ given by}$

• $\pi: \widetilde{M} \to M$ given by

• $G/K_1 \to G/K$, $K \simeq K_1 \times K_2$ with dim $\mathfrak{k}_1 \neq 0 \neq \dim \mathfrak{k}_2$

- $\blacksquare \pi: \widetilde{M} \to M$ given by

 - \checkmark M and \widetilde{M} are normal homogeneous spaces of G

- $\blacksquare \pi: \widetilde{M} \to M$ given by

 - \checkmark M and \widetilde{M} are normal homogeneous spaces of G
 - $\ \ \, \widetilde{M} \to M \ \, \text{is a Riemannian submersion}$

- $\ \, \bullet \ \, \pi: \widetilde{M} \to M \text{ given by}$
- $G/K_1 \to G/K$, $K \simeq K_1 \times K_2$ with dim $\mathfrak{k}_1 \neq 0 \neq \dim \mathfrak{k}_2$
- \checkmark M and \widetilde{M} are normal homogeneous spaces of G
- $\ \ \, \widetilde{M} \to M \ \, \text{is a Riemannian submersion}$
- Examples:
 - $G/[K,K] \rightarrow G/K$ hermitian symmetric base
 - $G/K_1 \rightarrow G/Sp(1)K_1$ quaternion–Kaehler symm. base
 - $G/K_1 \rightarrow G/SU(3)K_1$ nearly–Kaehler 3–symmetric base
 - $E_8/SU(5) \rightarrow E_8/SU(5)SU(5)$ 5-symmetric base
 - SO(k + ℓ)/SO(k) → SO(k + ℓ)/[SO(k) × SO(ℓ)] real
 Stieffel manifold over real Grassmann manifold
 - $Sp(k + \ell)/Sp(k) \rightarrow Sp(k + \ell)/[Sp(k) \times Sp(\ell)]$ quaternion Stieffel manifold over quaternion Grassmann manifold

In many cases, including the examples above, I recently

- In many cases, including the examples above, I recently
- calculated the full isometry group $I(\widetilde{M})$ it has identity component $G \times r(K_2)$ where $(g, r(k_2)) : xK_1 \mapsto gxk_2^{-1}K_1$,

- In many cases, including the examples above, I recently
- calculated the full isometry group $I(\widetilde{M})$ it has identity component $G \times r(K_2)$ where $(g, r(k_2)) : xK_1 \mapsto gxk_2^{-1}K_1$,
- \checkmark found all isometries of constant displacement of \widetilde{M} ,

- In many cases, including the examples above, I recently
- calculated the full isometry group $I(\widetilde{M})$ it has identity component $G \times r(K_2)$ where $(g, r(k_2)) : xK_1 \mapsto gxk_2^{-1}K_1$,
- proved the Homogeneity Conjecture for those cases:

- In many cases, including the examples above, I recently
- calculated the full isometry group $I(\widetilde{M})$ it has identity component $G \times r(K_2)$ where $(g, r(k_2)) : xK_1 \mapsto gxk_2^{-1}K_1$,
- \checkmark found all isometries of constant displacement of \widetilde{M} ,
- proved the Homogeneity Conjecture for those cases:
- Theorem. Let π : M → M be one of the examples listed above of isotropy–split fibration G/K₁ → G/K₁K₂. Let M → Γ\M be a Riemannian covering. Then these are equivalent: (1) γ ∈ Γ is of constant displacement (2) Γ ⊂ Z_G × r(K₂), (3) Γ\M is homogeneous.

