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 1988] THE TEACHING OF MATHEMATICS 869

 It is interesting to note that condition (ii) of the definition can be weakened to

 (ii') IaI < Ibj whenever a divides b (for nonzero b),
 which follows easily from (ii). In fact (ii') will be used instead of (ii).

 To show that A is not Eucidean it is sufficient to prove that.A does not admit a
 function j1 satisfying the three stated properties. Thus assume that is a Eucidean
 norm in A. This leads to a contradiction.

 Indeed, let U be the set of nonzero elements in A with minimal norm. Since
 every unit of A divides every nonzero element, (ii') implies that every unit is in U
 and (iii) implies that every element of U divides every nonzero element of A; so U
 consists precisely of the units of A.

 We next show that U = (1, 1). In order to prove this and other assertions a
 few specific calculations in the ring A are needed.

 The following identities can be proved directly from the definition of 0=

 (1 + l-19)/2. For a E A, J denotes the complex conjugate of the complex
 number a.

 (I) 0 1 - 0
 (II) 00 5
 (III) 02 0 - 5
 (IV) For any x = a + b E A, Ox = -5b + (a + b)0.
 From (I) it follows that A is closed under complex conjugation. Identity (II)

 implies that the integer 5 is not a prime in A. Later it will be clear that 0 is not a
 unit in A and it will then follow that 5 is reducible in A. From (III) it follows that

 02 E A and hence A is closed under complex multiplication (a fact not obvious
 fr m the definition of A).

 If N(z) = zz is the usual complex norm, then the preceding identities yield:
 (V) N(a + bO) = (a + b0)(a + b0) = a2 + ab + 5b2.
 Moreover, the function N:A -- Z satisfies
 (a) N(xy) = N(x)N(y) for all x, y E A, and
 (b) N(x) > 0 for all x e A and N(x) = 0 if and only if x = 0.
 This immediately implies that if an element a + bO X A is a unit then 2 + ab

 + Sb2 N(a + bO) = 1 and hence, if ab > 0, then b = 0 and a = ?1. Also, since
 a + bO = a + b - bO and 1= N(a + bO) = N(a + b#) = (a + b)2 - ab + 4b2, it
 follows that when ab < 0 then again b = 0 and a = +1. This concludes the proof
 of the fact that U = (1, -1).

 Now assume that m is of minimal norm among the elements of A different from

 0, 1, -1. Condition (iii) implies that 2 = qm + r, with IrI < Imi; therefore r is one
 of 0, 1, or -1. Hence either m divides 2 or m divides 3. We claim that m must then
 be one of +2, ?3.

 This claim is a consequence of the fact that 2 and 3 are primes in A, which is
 shown as follows. Suppose 2 = (a + bO)(c + dO). Then 4 = N(2) = N(a + bO)
 N(c + dO) and assuming that a + bO, c + dO are not units in A, it follows that

 2 = N(a + bO) = a2 + ab + Sb2 -N(a + bf) = (a + b)2 - ab + 4b2.

 Therefore, considering the cases ab > 0 and ab < 0, we conclude that b and d
 each equal zero.

 Thus 2 = (a + b0)(c + dO) = ac is an integral factorization. Since 2 is a prime
 in Z. 2 is a prime in A. A similar argument shows that 3 is also a prime in A.
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 Now, again using (iii), 0 is congruent to 0, 1, or -1 modulo one of ? 2 or + 3.
 Hence 0 or 0 - 1 or 0 + 1 is divisible by 2 or 3. But this is impossible since
 N(O) = 5 = N(0 - 1) and N(O + 1) = 7, while N(2) = 4 and N(3) = 9.

 A is a PID. As stated in the introduction, to show that A is a principal ideal
 domain (PID) it is enough to show that A is "almost" a Euclidean domain. More
 precisely, it may be seen that given elements a, /8 E A, /3 # 0, if /3 does not divide a
 and N(a) > N(/3) then there exist y, 8 E A such that

 0 < N(ay-/3P) < N(/3). (1)
 This property implies that A is a PID by an argument similar to the one usually

 applied to show that Z is a PID. Let I + 0 be an ideal in A. Let ,B E I be an

 element such that N(/3) is minimal among the nonzero elements in I. Then P3A = I.
 Indeed, since clearly ,A c I, consider the possibility of having an element a E I
 such that /3 does not divide a. Then a # 0 and hence N(a) > N(1B). Now using (i)
 it is possible to obtain another nonzero element ay - /3S in I which contradicts the
 minimality of N(/3).

 To show (i) take a, /3 E A, /3 + 0. If /3 does not divide a and N(a) > N(3) write
 a
 -= a + bO,

 where a and b are rational numbers and at least one of them is not an integer. This
 is possible since the inverse of /3 as a complex number is in Q[0], which is a subfield
 of C.

 A case by case consideration leads to elements y and 8 E A such that

 O < N y y-8 )< 1, whence N(ay-/3) < N(/3) .

 There are seven cases.

 Case 1: b E 71. Then a Z Z and we may take y = 1 and 8 = {a} + b0 (here
 {x } denotes the integer nearest x, with { n + 1/2} = n). Now,

 a \ 1
 0<N -Y_-) < - <1.

 4

 a -
 Case 2(a): a E Z and 5b oZ Z. Then -0 = a + Sb - a0 and we may take

 y = #, 8 = {a + 5b} - a@.

 Case 2(b): a e Z and 5b Z. Take y = 1, 8 = a + {b}0.

 Case 3(a): a,b 7 Z and 2a, 2b E7 Z. Then, although we proved IV for a, b E Z,
 it is clearly valid also for a, b rational and hence Oa//3 = - 5b + (a + b)0 and
 a + b e Z. Therefore, we may take y = 0, 8 = {-5b} + {a + b)0.

 Case 3(b): a, b Z Z and 2a, 2b 7 Z. Then either lb-{ b } I < 1/3 or 12b - {2b}I
 < 1/3. In the first situation take -y = 1 and 8 = { a } + { b }0 and estimate

 (a 35
 0<N -y-8 < - <1.

 In the second situation take y = 2 and 8 = {2a) + {2b } 0 with the same estimate.
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 Case3(c):a,b ? Z,2a e Zand2b 4 Z. When5b e Ztakey = 5and3 = {5a} +

 5b0 and when 5b ? Z take y = 20 and 8 = {2a + lOb) - 2aO.

 Case 3(d): a, b Z Z, 2b e Z and 2a i Z. Take y = 2, 8 - {2a} + 2b0.
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