ÁLGEBRA III - 2019 Práctico 8

Funcionales lineales y adjuntas. Operadores unitarios y normales. Teoría espectral.

1. Probar que $A \in M_2(\mathbb{R})$ es ortogonal si y sólo si

$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \qquad \circ \qquad A = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$$

donde $a^2 + b^2 = 1$.

2. Probar que una matriz $A \in M_2(\mathbb{C})$ es unitaria si y sólo si es de la forma

$$A = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix} \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}$$

donde $\theta \in \mathbb{R}$ y $a, b \in \mathbb{C}$ con $|a|^2 + |b|^2 = 1$.

- 3. Encontrar una matriz unitaria que no sea ortogonal, y una ortogonal que no sea unitaria.
- 4. Sea $V = M_n(\mathbb{C})$ con el producto interno $(A|B) = \operatorname{tr}(AB^*)$. Para cada M sea L_M el operador multiplicar a izquierda por M. Probar que L_M es unitario si y sólo si M es una matriz unitaria.
- 5. Sea V el espacio \mathbb{C} considerado como espacio vectorial real.
 - (a) Probar que $(\alpha|\beta) = Re(\alpha\overline{\beta})$ define un producto interno en V.
 - (b) Dar un isomorfismo de espacios producto interno entre V y \mathbb{R}^2 con el producto interno canónico.
 - (c) Para cada $\gamma \in V$, sea M_{γ} el operador definido por $M_{\gamma}(\alpha) = \gamma \alpha$. Probar que $(M_{\gamma})^* = M_{\overline{\gamma}}$.
 - (d) ¿Para qué números complejos γ es M_{γ} autoadjunta?
 - (e) ¿Para cuáles γ es M_{γ} unitaria?
 - (f) Encontrar la matriz de M_{γ} en la base $\{1, i\}$.
 - (g) Si T es un operador lineal en V, hallar condiciones necesarias y suficientes para T para que sea un M_{γ} .
- 6. Sea $V = \mathbb{R}^2$ con el producto interno canónico. Si U es un operador unitario sobre V, probar que la matriz de U en la base ordenada canónica es de la forma:

$$U_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \quad \text{o} \quad V_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}, \quad \text{para algún } \theta \text{ real.}$$

- (a) Notar que U_{θ} es una rotación de ángulo θ y observar que todo operador unitario en V es o bien una rotación o bien una reflexión seguida de una rotación.
- (b) ¿Qúe es $U_{\theta}U_{\phi}$?
- (c) Probar que $U_{\theta}^* = U_{-\theta}$.
- (d) Sea ϕ un número real fijo, y sea $\mathcal{B} = \{\alpha_1, \alpha_2\}$ la base ortonormal que se obtiene al rotar la base canónica en un ángulo ϕ . ¿Cuál es la matriz de U_{θ} en la base \mathcal{B} ?
- 7. Sea $V = \mathbb{R}^3$ con el producto interno usual. Sea W el plano generado por $\alpha = (1,1,1)$ y $\beta = (1,1,-2)$. Sea U la transformación lineal definida geométricamente como una rotación de ángulo θ alrededor de la recta ortogonal a W que pasa por el origen. Hallar la matriz de U en la base canónica.

 $(Ayuda: Hallar \{w_1, w_2\})$ una base ortonormal de W y w_3 un vector de norma 1 ortogonal a W. Hallar la matriz de U en esa base y luego hacer el cambio de base.)

- 8. Demostrar que $\begin{pmatrix} \cos \theta \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ y $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ son unitariamente equivalentes para todo $\theta \in \mathbb{R}$.
- 9. Sea V un espacio producto interno de dimensión finita. Para cada α, β en V, sea $T_{\alpha,\beta}$ el operador lineal en V definido por $T_{\alpha,\beta}(\gamma) = (\gamma \mid \beta) \alpha$. Demostrar que:
 - (a) $T_{\alpha,\beta}^* = T_{\beta,\alpha}$.
 - (b) $\operatorname{traza}(T_{\alpha,\beta}) = (\alpha \mid \beta).$
 - (c) $T_{\alpha,\beta} T_{\gamma,\delta} = T_{\alpha,(\beta|\gamma)\delta}$.
 - (d) ¿En qué condiciones es $T_{\alpha,\beta}$ autoadjunto?
- 10. Sea V un espacio producto interno de dimensión finita y sea W un subespacio de V. Entonces $V = W \oplus W^{\perp}$, esto es, todo α de V se expresa unívocamente en la forma $\alpha = \beta + \gamma$, con β en W y γ en W^{\perp} . Se define un operador lineal U por $U(\alpha) = \beta \gamma$.
 - (a) Interpretar geométricamente.
 - (b) Demostrar que U es autoadjunto y unitario.
 - (c) Si V es \mathbb{R}^3 con el producto interno canónico y $W = \langle (1,0,1) \rangle$, hallar la matriz de U en la base ordenada canónica.
 - (d) Probar que no existen otros operadores autoadjuntos y unitarios (i.e. todo operador autoadjunto y unitario proviene de algún subespacio W como se describió arriba).
- 11. Sea V es un espacio producto interno. Un movimiento rígido en V es una función $T:V\to V$ (no necesariamente lineal) tal que $||T\alpha T\beta|| = ||\alpha \beta||$, para todo $\alpha, \beta \in V$ (por ejemplo un operador unitario o una traslación).
 - (a) Sea $V = \mathbb{R}^2$ con el producto interno usual. Sea T un movimiento rígido tal que T(0) = 0. Probar que T es lineal y unitario.
 - (b) Probar que todo movimiento rígido de \mathbb{R}^2 es composición de una traslación seguida de un operador unitario.
 - (c) Probar que todo movimiento rígido de \mathbb{R}^2 es o bien una traslación seguida de una rotación o bien una traslación seguida de una reflexión seguida de una rotación.
- 12. Para cada una de las siguientes matrices reales A hallar una matriz ortogonal real P tal que P^tAP sea diagonal

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \qquad \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

13. Sea $V=\mathbb{C}^2$ con el producto interno canónico. Sea T el operador lineal sobre V representado en la base canónica por

$$A = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}.$$

Demostrar que T es normal y hallar una base ortogonal de V formada por autovectores de T.

- 14. Dar una matriz A, 2×2 , tal que A^2 sea normal pero A no lo sea.
- 15. Sea T un operador en un espacio producto interno de dimensión finita.
 - (a) Si T es unitario y positivo probar que T = I.
 - (b) Si T es normal y nilpotente probar que es el operador nulo.
- 16. Sea T es un operador normal. Probar que los autovectores de T asociados a autovalores distintos son ortogonales.

- 17. Demostrar que T es normal si y sólo si $T = T_1 + iT_2$ donde T_1 y T_2 son operadores autoadjuntos que conmutan.
- 18. Probar que toda matriz simétrica real A tiene una raíz cúbica simétrica real, es decir, existe B simétrica real tal que $B^3 = A$.
- 19. Sea A una matriz compleja $n \times n$ tal que $A^* = -A$. Sea $B = e^A$. Probar que
 - (a) $\det B = e^{\operatorname{tr} A}$.
 - (b) $B^* = e^{-A}$.
 - (c) B es unitaria.
- 20. Sean U y T operadores normales que conmutan. Demostrar que U+T y UT son normales.
- 21. Sea V un espacio producto interno complejo de dimensión finita y sea U un operador unitario sobre V que satisface: $U\alpha = \alpha$ implica $\alpha = 0$. Sea

$$f(z) = i \frac{1+z}{1-z}, \qquad z \neq 1.$$

Demostrar que

- (a) $f(U) = i(I+U)(I-U)^{-1}$;
- (b) f(U) es autoadjunto; y
- (c) para todo operador autoadjunto T sobre V, el operador

$$U = (T - iI)(T + iI)^{-1}$$

es unitario y tal que T = f(U).

- 22. Sea T un operador lineal en V, un espacio vectorial complejo de dimensión finita. Probar que las siguiente condiciones son equivalentes.
 - (a) T es normal.
 - (b) $||T\alpha|| = ||T^*\alpha||$, para todo $\alpha \in V$.
 - (c) Si $\alpha \in V$, $c \in \mathbb{C}$ tal que $T\alpha = c\alpha$ entonces $T^*\alpha = \bar{c}\alpha$.
 - (d) Existe una base ortonormal de V formada por vectores propios de T.
 - (e) Todo espacio T-invariante es T^* -invariante.
 - (f) T = NU donde N es no negativa, U unitaria y NU = UN.
 - (g) $T = c_1 E_1 + \dots + c_k E_k$, donde $I = E_1 + \dots + E_k$, $E_i E_j = 0$ $(i \neq j)$, $E_j^2 = E_j = E_j^*$.
- 23. Sea $V = M_n(\mathbb{C})$ con el producto interno

$$(A|B) = \operatorname{tr}(AB^*).$$

Si $B \in V$, sean L_B , R_B y T_B los operadores lineales sobre V definidos por

$$L_B(A) := BA,$$
 $R_B(A) := AB,$ $T_B(A) := BA - AB.$

- (a) Considerar las 3 familias de operadores que se obtienen al hacer variar B sobre todas las matrices diagonales. Demostrar que cada una de estas familias es un álgebra autoadjunta conmutativa y hallar sus descomposiciones espectrales.
- (b) Probar que L_B es unitariamente equivalente a R_B .