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Abstract, The real and quaternionic charge conjugation operalors invarant under the
infinite-dimensienal Clifferd algebra, or compatible with the Fermi algebra, are derermmined.
There results a maze of ineguivalent irreducible charged representations, all of which are
non-Fock. The representation vectors and their charges admit two interpretations besides
those of spinors or states of quantum fields: as wavelets on the circle, with charge conjuga-
lions acting via ordinary complex conjugation; and as mAnite-dimensional numbers, with
charge conjugations acting by avtomorphisms
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1. Introduction

Let # be a separable real prehilbert spuce of even or infinite dimension and €=
Cif) be the Clifford algebra of H. i.e., the quotient of the real tensor algebra
over if by the ideal generated by the elements of the form e @b+ b@a+ 2o, b)
with @, &= [, This is a real algebra. with a natural prehilbert structure. Choose an
orthegonal complex structure b k&' on H oand vectors ¢p € B osuch that [ep e ] is
an orthenormal basis of H. Then

Eoty b e =:'E.£!; + f‘jt"; ==28i
e e’rr S ﬂ';l.'k =0

for all k...
In the complexified Clifford algebra €0 =T ® € define

a=xnle +iey) af =3(—€ +ier)

{here multiplication by ¢ is different from ke E'). Then these are generaters of &
that satisfy the Canonical Anticommutation Relations (CAR):
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aa rapay =0=aial +afa;

ey +a|."m =di.

The wlgebra & acquires an obvious =-structure, but it is not complete. Ifs
C.completion is Arakis CAR, or Fermi algebra 2, which is a C*-algebra. Con-
cretely, N 1s the completion of € relative to the norm ju| = operator norm of left-
multiplication by u in the prehilbert space &¢ [1,5.9]

We shall consider representations m of €, €¢ and %, in complex separable
Hilbert spaces V', which are umitary. in the sense that

Herdhow||=||A1[[|u

for ket and ve V. Upon a choiee of basis of &, those of €¢ can be identified
with the sequences [Ay] of bounded lincar operators on ¥V osuch that {As, A7) sat-
isfy the CAR. As s-representations, they extend continuously to representations of
2 [14]. For emphasis: the s-representations of 2 can be identified with the unitary
representations of the uncompleted real Clifford algebea € We then may view Lhe
elements of ¥V as spinors, under © and @, or as state veclors of fermion fields,
under A

A charge conjugarion operutor on the representiation space V is an antilinear,
norm-preserving operator § that commutes with the action of € and such that
§2==+1. § is called either reai or guoternionic, according to whether $7 =1 or
§*=—1. The given representation V is said 1o be of real quaternionic or com-
plex dype, according to whether it admits o real charge conjugation operator, a
quaternionic ong, or neither, conditions that are mutually exclusive when the rep-
resentation is wreducible. In the real case Vo ={rve V. Sv==v} are real mvariant
subspaces of V oand

V=V¥,.BV..

It should be emphasized that a charge conjugation operator will mor commure
with the action of 2 or &, Instead,

SAr=-A]S.  SAl=—AS.

Hence. although the representations of the complex algebras €4 and # are in cor-
respondence with those of the real algebra € in complex spaces. a charge conjuga-
tion operator is invariant only under the latter. Also, our use of the term “charge
conjugation” is not universal in physics, but is the most common in the context
of spinors, where finite-dimensional types are usually associated to the names of
Dirac. Majorana and Weyl.

As shown originally by E. Cartan (and later rediscovered by many, begining
with Dirac), any representation of C® C(R™) is a multiple of a unique irreduc-
ible. which is of real type for n=1{}, 3 (mod 4) and of quaternionic 1ype otherwise;
complex types arise for H =R**!, The proof involves only linear algebra (see eg.
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[11]). In infinite dimensiens the situation is quite different, since irreducibles are
far from unique, a Mt discovered originally by von Neumann [12] (also Tater redis-
covered by many). This is not widely known and descrves some commenting, but
let us first state what we actually do in this article.

Based on the Garding-Wightman (GW) parametrization of the CAR [4-6]. we
obtain a parametrization of the equivalence classes of all unitary representations
of ¢. Although the problems of equivalence and irreducibility for the various val-
ues of the parameters are not fully resolved, our main result tells how 1o read off
the type of the representation (in the sense above) from its parameter; the answer
is nol trivial. We also give canonical forms for the charge conjugation operators
that can arise for distinguished families of representations, and draw some con-
clusions. There results a maze of irreducibles of each type. Those of real type
parametrize of the real representations of €, i.e., the Majorana spinors of infinite
rank. 1o turn. these carry non-associative products without zero-divisors that yield
mazes of infinite-dimensional analogs of the quaternions and octonions. Finally,
the connection with Wavelet theory is made evident in the examples.

Next, we comment on the special nature and possible significance of the infinite
case. Field theory relies mostly on the so-called Fock and anti-Fock representa-
tions and tensor products thereol. Fock and non-Fock representations are charac-
terized by the existence of a vacuum vector (annihilated by all either all the A7 or
all the A¢) and still form a large family, but this becomes a singleton after weak-
ening uppropriately the notion of equivalence [2). Yet. “most” of the representi-
tions that appear in the infinite case are essentially non-Fock:' briefly. the spectral
measure of the family {A:Af} has a continuous part. while for Fock or anti-Fock
representations it is discrete.

Indeed, wil charged representations are essentially non-Fock, Viewing its ele-
ments as state vectors of fields ¢, the occupation numbers of the conjugate ¢ turn
aut to be opposite to those of ¢, like in the case of a particle and its antiparticle.
Since, by definition, both state vectors live in the same state-space and there are
infinitely many states, the total number of particles must be infinite. This also rules
out Fock-like representations.

Pathologies like this (infinite total energy. no lowest-energy state, no Hamiltonian)
may well preclude the use of non-Fock representations to describe actual quantum
fields, On the other hand, one does expect the latter to exhibit exotic properties
in extreme or singular conditions — gravitational, for example, Without speculating
further, this leads to the mathematical question of seeking operators on the repre-
sentation spaces able to diciate an interesting dynamics for a hypothetical field.”

As it turns out, there are families of non-Fock representations that are most nat-
urally realized on the ordinary L? space of the circle. There, one has plenty of

"The sirustion i similar for the infinite Heseaberg alpebnn: Stone-von Newmann fuils withou
a vacuum. Hy the way, the bosomie unalogy alse justifies our wse of the nume “Fk™ for spinos

MeprEseniations
3This un mterpretution of  remark made 1o us by Witten.
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operators to try. Besides the standard ones, 3 Aydy, where the Ay are creation
operators and & certain dyadic derivatives, makes sense a5 an unbounded oper-
ator, has integral eigenvaluss and its eigenvectors generate a so-called multireso-
lution approximation for L3(T) [8]. By the way, this operator makes formal sense
for any GW representation. but in Fock-like ones its domain is the zero vector.
Perhaps the future of non-Fock representations, if any, lies in Binary Coding and
Signal Processing rather than in Fundamental Physics. Be as it may,’ we found it
appenling to visualize spinors of infinite rank as wavelets on the circle.

The results will be stated without proofl. These are detailed in [8]. The main
arguments for the real case can be found in [7] and the quaternionic case is
much similar. Like those of [6], they reduce to the spectral theorem applied to
the sell-adjoint operators ApAZ, the corresponding spectral measure being the u
below. For a peneral reference abourt the infinite Clifford algebra, the CAR and the
CGiarding-Wightman construction, see [5].

2, The Girding—Wightman Representations

Let X =Z3 be the set of sequences ¥ =(x;, x3,...) of 0s and 1's, and A C X the sub-
sel consisting of sequences with only finitely many 1's. Then X is an abelian group
under componentwise addition modulo 2 (sometimes called the Canror group) and
A is the subgroup generated by the sequences 5%, where 6; is the Kronecker symbol.
The product topology on X is compact and gencrated by the sets

Xo=i{rixg=1}, x;;—_[.ti.r,t =0},

which, therefore, also generate the canonical o-algebra of Borel sets in X. Lat
Xio Xy denote the characteristic functions of these sets.
Garding and Wightman consider tiples (ju, ¥, C), where

* o is 3 positive Borel measure on X, such that all its A-translates are equivalent.

* V=V, ),ox is a family of complex Hilbert spaces. invariant under transhitions
by A and such that the function x+~ v{x)=dim V, is measurable,

s C={ecy: keH} is a family of unitary operators cpix): Vo= Vo a=V, depending
measurably on x and satisfying

ax+i=ax).  alox+8) =gix)ce(x+8)

for all £,{ and almost all x € X, where all sums are mod 2.

One often writes (g, v, C) instead of (u, V,C), in view of the fact that chang-
ing ¥V unitarily will yield equivalent representations. Given such triple. consider the
Hilbert space

The subsect lends el 1o endless speeulution: for binary coding in SO(10)-Unification, see [15].
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L
V= "‘r{;t.'r_{fj = -[I Vi dF{I}-

An element f €V can be regarded as an assignement x— f(x)€ V,. By assump-
tion. the Radon-Nykodim derivatives dgeix+6") fdu(x)y exist for almost all v and

t
Jeflx)==i(= 1yt J"__‘:I{:::) ) flads')

IF___-
dplx+84)

'
i cefx) fle4d%)

S ftx)= (=1yntR

define operators on V',
In the real Hilbert space M, we fix an orthonormal basis [ey. ¢;1 as before and
define an B-lnear m =m0 H — Endc(V) by

tle=A.  mleg=1.

The choice of basis will remain implicit throughout. Theorem 1 in [6] can be
rephrased s follows,

THEOREM 2.1, m(,...c) defines a unitary represeniation of € on V. Comversely,
every unitary represemtation of € on a separable complex Hithert space. fs unitarily
equivalent fo some To.c)

Garding and Wightman give a recursive formula for all possible systems of C's.
hence 2.1 effectively purametrizes all the complex € or A modules. Although this
is far from actually classifying them, a lot is known about irreducibility and equiv-
alence for the various values of the parameters [2,4,6.9]

The simplest examples naturally occur when vix)=1. In that case ¥, =C, the
direct integral becomes

v=Lix.m

and the o (x)s are just complex numbers of modulus one. depending measurably
in x und satisfying the functional equation, The Fock representation corresponds
to the triple Gaa. 1. (1)), where uy is the discrete measure concentrated in A that
assigns measure | to cach of its poinis. A most natural one is (. 1L [1]) where
sy is the Haar measure on X, which assigns the measure 1/2 wo all Xp, X;. Note
that although ., 1.0 and 7,0, @re given by the same formulae. namely

Jof(x)==H{= 11+ = fleas®)
L= (=) fast)
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they are ineguivalent: in the first, the characteristic function of the set ({0,0,...}]
is a non-zero vector anihilated by all the operators (a7}, while the second has no
such “wacuum”™ vector,

3. Charge Conjugations
The map
A i=x+l

where the sum is modulo 2 and 1 is the point with ones in all slots, is
an invelution of the set X, which switches all zeroes to ones and viceversa.
There are induced involutions on subsets of ¥ and on functions and measures
on X,

A=[i:xeA) f=f8) alA)=pu(d)

all to be called “checking™.
Recall the definition of charge conjugation operator,

THEOREM 3.1. w0 admiis a charge confugation operator i and only i the
measures w oand [ are equivalent, vix)=vix) for almost all x € X and there exist
a measurable family of amilinear aperators rixh Ve — Vi 2V, that preserve norms
and satisfy

rix)eF)= (=10 e (xdr(x+d),
Jor afl & and aa. x and, either

rlix)rixd=1 ae, ar rixir{ii=-=] ae

The two cases correspond, of course, to the real and quaternionic types. When
such rix) exisis. the corresponding real or quaternionie structure on V is

idyixy
Sfix)=
fix) \Jd,u[.r}

The axiom of choice implics that there are always plenty of functions rix) sat-
isfying the required equations. However, most will be non-measurable — indeed.
when the representation is of complex wype (i.e, there is no invariant 5), all will
be so.

For example, assume that V is infinite dimensional {and separable). From 3.1
one deduces:

rix) fixy

COROLLARY 3.2, [f' p &5 discrere and V s frreducible. then ir is of complex type.
In particular, this is the case for the Fock representations.

For continuous measures one also has
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COROLLARY 3.3. Suppose that p is ergodic and that dye(x+8%)/du(x) is bounded
away from zero and infinity ax a finction of x and k. Then my 4y i of compley
rvpe. In particular, ihis s the ease for Ty 1)

The first corollary, 1ogether with Cartan’s classification in finite dimensions, shows
that the standard Fock representations and its variamts (anti Fock, canonical). admit
churge conjugation operators if and only if the total number of particles is finite,

The situation is different for the second corollary, since elementury deformations
of 7y, 1y do admit invariant charges. For example, il

cylx)= l
Car—ilx)=(=1)4=* (1)
rqr-i{ll}:{_l :_.'l"' ..|.

for a.a. x and all €21, then my,, (. is of redl type. while if

ci(x=1
cref{x)=1 (2)
et (x)=(=1)"*+*

Capealr) e (=] prie=t,

for aa. ¢ and all £32 1. then (., 1.1on i of quaternionic type. Note that in the
latter case the direct integrands do not admit any quaternionic structures them-
selves, since dimp V, =2, The corresponding charge conjugation operators are wril-
ten below,

Next we give a “normal form™ for charge conjugations and some examples. For
simplicity, we assume v =1, so that V, =C for all x and the direct integral defining
V becomes an ordinary space of complex-valuzd squarc-integrable functions:

Ve Vi v.or= LAX. ).
This has an obvious real structure, namely
Rf(x) = fix),
but this cannot remain invariant under a non-trivial representations of €. Instead, set

di(x) .

Tfix= :I_uu}‘ﬁﬂ (3)

and consider the real structure

SFin=TF00. )



T2 E. GALINA ET AL.
PROPOSITION 3.4, sy ¢y commutes with 8 if and only if
alBy=(~D¥ee(x).
The assumption v =1 can be dropped, provided we measurably fix a real
structure aix} on each V,, invariant under translations by A and checking, and

replace R and bars for o{x); 3.4 remains true For the next result the restric-
tion v= 1, which depends only on the equivalence class of a representation, seems

essential.

THEOREM 3.5, Every pair consisting of a unitary representation of Cp with v=1,
tagether with an imvariant real structure, s anitarily eguivalent 1o o GW represen-
tation en LX(X,u). having (4) as imvariant real structure and multipliers satisfving
cp(F)={=1*cilx).

In example (1), Fgepapep is irreducible over © but commutes with the real
charge conjugation operator $f(x)= f(£). Consequently, the represemtation space
splits into E-invariant real subspaces

Vi 1tehy = Vo & V-
where

Ve={feL}X): f(B)=£FTn}.
PROPOSITION 3.6, If f=p, v=1 and

am=—c ), o)== i)

Jor all k=2 and almost all x € X, then

o dp() —
Oflxi=( lwddja{xl Fisd]

i i 5 - ¥ i "
iy a guaternionic structure in L2(X, p) ivarignt by my, ) oy

Again, this proposition holds for arbitrary v, provided we measurably fix a real
structure a{x) on each V., invanant under translations by A and checking, and
replace R and the bars for o(x) throughout,

THEOREM 3.7, Every pair consisifeg of @ unitary representation of € with v= 1.
together with an imvariant quaternionic structure, Is unitarily eguivalemt 1o a GW
representation en L3(X, g}, having @ as invariant guatermionic struciure,
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4. Representations on LY

The representations m¢ i=m,, 1, where gex is the Haar measure, are naturally
realized on the ordinary L space on the circle T and relate to the classical Haar-
Rademacher-Walsh lunctions.

The map

m

from X 1o the unit interval [0, 1) is a bijection ¢fl 2 countable ser. Under it, the
Haar measure gy corresponds to the Lebesgue measure on [0, 1), The same is true
for the circle T, where the maps 6,: T -+ £ defined by

- = 6 (1)
k=1

induce a canonical identification
LT =L3(X)

with Haar measures in both sides. This “identification™ of X with T is not contin-
uous, since X is homeomorphic to the Cantor set (via xr+ E?—I 2xy ﬁ"}. But cne
is well within standard mathematics: (=1)"9) is the periodic Haar Mother Wavelet
and the (—=17%"" i15 daughters

More precisely. the proup of unitary characters of X {continuous homomer-
phisms X — T) can be identified with A, the subgroup of X of clements with finite
support, the character corresponding to @€ A being

Palx)=(=1p"*",

In particular, X =|dy]aea is an orthonormal basis of L2(X, uyx). Via the identifi-
cation with T, the ¢, become the periodic Walsh functions

sign(sin 2w nx), sign(cos 2mnx)
or more concisely,
iy (1) = (— 1 )pi=1e=1%elt)
where n=3"3 ;2% is the dyadic expansion of the integer n. The correspondence

15

L )
wy += ¢, when n= Z ape12,
=0

The GW represeniations depend on three parameters and g and v have been
chosen. Since v = |, the remuining ome consists of a sequence of lunctions
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ey X = T sotisfying the appropriate functional equations. To write them and the
resulting GW representations explicitly, consider them as functions on the circle

e T—T,

Let # ") denote the selfmap of T that consists in changing the kth dyadic coeffi-
cient in #(t)=log &, The functional equations become

™y =0, ety = s (™)

The corresponding representation xy.; of € is given by
T J i) = =i(= TR i) F )
K =(=fhat-thlily o ¢ %)

PROPOSITION 4.1, The represemtations sy ave irredueible,

The eperation x — % in X corresponds to the symmetry in (0, 1) with respect o
the midpaint. On T4, this becomes ordinary complex conjugation. The real
form Vi is

LAT={f ¢ LXT): [l = f (D)
and g leaves it wariant if and only if the o satisfy
ex (0 = (=)' erld),

An analogous statement can be made for the invanant quaternionic slructure
defined by

Qi =(—1""Fm.

[1 15 not obvious that the latter equation for the ¢ is compatible with the fune-
tional equations above. Interesting examples arise when the cp(c) are actually char-
acters of X. Explicitly;

cetxh =gy =(~T1p=71 "

for appropriste »* € A, It is straightforward to ¢heek that these oy satisly the fung-
vonal cquations i and only iU =95 and =0 for all i, j.

llence, to any infinite symmetric matrix ¥ of (Fs and s, with zeroes along the
diagonal and having Anitely muny 15 in every row or column, we have associated
the representation 77 of € an L2(X) = L%(T) defined by

I F () o =ighyimr 2 ix) f (2484
J F )=y pa (X1 fLx485),
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THEOREM 4.2 x* iy irreducible. If

Y v} =kmod(2)
L]

Wik, then x¥ is of real type and has
LA(Mg=1f e L} @:TW= O]
as the wnigue imvariant real form. If, instead,
Z y; =0 E y}‘ =kmod(2)
! !

Vi 22, then n” is of quaternionic (ype and
gf (ny=(="" fin.

is the unigue imvariant quaternionic structure.

For example, 7° is of complex type. Instead, let

0 01 0 A D O D 0 0
0 0 0 0 o A& D o a0

A=l o o ol ™jo o A .|+ 5|0 0 A
00 0 0 :

where the principal O in v s of order 2. Then 7 s of real and =¥ of quaternionic
type.

5. Real Modules and Infinite-Dimensional Numbers

The charge conjugations of real type for the Giirding-Wightman mpresentaltkrns
give a parametrization of the arthogonal representations of € on real Hilber
spaces (Majorana spinors of infinite rank, when irreducible). (ndeed, i S s such

an operator,
U=[veV: Su=u)

is a real subspace invariant under € Conversely, every real orthogonal represen-
tations of € must arise in this way. For the simplest example, take the ¢;'s of (1).
Then

PROPOSITION 5.1, iy 1. japy i frreducible over C, but

LAX)g=|fe LX)y fiiy=TF{x)

is an invariant real form. The real representation on L3(X)g is irveducible and doex
not arise from any representation of €c by restriction of the scalars
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The real finite-dimensional division algebras, assoviative or not, oceur only in
dimensions 1, 2, 4 and & I we require a multiplicative identity and that ||abi| =
[lee]| 11&]| For some norm {be morsed). one oblaing the wsual algebras of real. com-
plex, gquaternionic and octonionic numbers. This 15 closely related W the fact that
CiE") admits o nontrivial real representation of dimension g+ 1 exactly for n=
1.3, 7. Basically, if = 15 a real orthogonal representation of C{I7) on V' owith that
property and F:V — @R s any Hilbert space isomorphism, then

aev=m{Fulv

is a [non-associative) normed product on V. The unit is £~ (1. the space of imag-
inary elements is F '(U/). the conjugation K is with respect to the decomposition
V=R®F~ (U} and the inverse of an element we V, w20, is u ' =||u|| 2 K ().

In infinite dimensions this construction goes through and w' is a left-inverse
of 1, but contrary to the finite case. it is never a right-inverse — indeed. right-
multiplication by an element is never surjective [10]. {V.»} becomes what is known
us i defi-division normed aleebra with unit. 1o this catepory, the correspondence
with real Clifford modules survives, Therefore, the GW parameters together with
the pessible charge conjugation operators of real type. index these algebras; it fol-
lows thut there is a maze ol isomorphism classes. Notably, their very existence was
in doubt [10], until Cuenca and Rodriguez Palacios [3, 13] provided the first exam-
ples. based cn the Fock representation of the CAR.

Because of the lack of svinmeny between the two slots of ». automorphisms do
not come easy in the infinite-dimensional cuse. Again, charge conjugations yield
some on the circle:

THEOREM 52, Let (L7(Tg.=) be the alpchvg osociated 1o poramelers v =1,
e () veal and odd, ex (%) imaginary and even, Then £ f is an auiomorphisi

if
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