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COMPARISON THEOREM AND GEOMETRIC REALIZATION
OF REPRESENTATIONS

TIM BRATTEN AND ESTHER GALINA

ARSTRACT. In this puper we peaeralize the comparison theorem of Hecht and Taybor to
astsitrary parsbulic subalgebeas of o complex reductive Lic algebra and apply our general-
ized comparison thoorem (o ahtain resubts about the geometric realiion of represenia-
tions in flap spaces.

1. INTRODUCTION

This manuscript concems # homological property of representations for a reductive Lie
group, called the comparison theorem, and the relation this property his 1o the realization
of representations in complex. flag spaces,

The realization of representations in complex flag spaces has historically played a cen-
tral role in the theory, One of the hasic constructions, the parabolic induction, defines
representations as the sections of homogeneous vector bundles defined over certain closed
orbits in complex Mag spaces. Schmid's realization of the discrele series, genernlizing
the Borel-Weil-Bott theorem, gave a defining aliernative 1o the parabolic induction, find-
ing the missing representations on the sheaf cohomology gronps of certain homogeneous
holomorphic line bundles defined on open orbits in full flag spaces.

The problem of understanding sheal cohomologics of homogeneous helomeorphic vee-
tor bundles turmed oul to be & bit tricky, and it took some time uniil general results were
obtained, Meanwhile, the localization theory of Beilinson and Bernstein [1] provided a
canonical geometne realization, defined in the full flag space, for any ieducible Harlsh-
Chandra modules. Via localization, many irreducible Harish-Chandra modules are nicely
realized s certain standard geometric objects (2 precise critenia for this is known [14])
but in general one does not yet fully understand the localization of ireducible representa-
tions, The analytic localization theory of Hecht and Taylor [9] gives a global counterpan
to the Beilinson-Berstein algebraic theory, A main result of the analytic theory shows that
the compactly supported cohomology of the polarized sections of an irreducible homoge-
neous vector bundle realizes the minimal globalization of the cobomology of an associated
standard Beilinson-Bemstein sheall

Although the Hechit-Taylor result construets, for example, all of the tempered represen-
tations, many irreducible representations are not realized as standard medules in a full flag
space. Thus one considers analogous constructions defined on arbitrary Nag spaces. Along
these lines, Wong [17] studied the representations obtained on the sheal cohomologies
of finite mnk homogensous holomorphic vector bundles defined over certain open orbits
in gencralized flag spaces, proving o special case of a conjecture by Vogan. Using the
methods of algebraie and analytic localization in flag spaces, a general version of Vogan's
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conjecturs has been shown and a realization for the Harish-Chandra modules defined by
cohomological parabolic induction was given [4].

In this study we consider how the mesh of localization theories works, in complate
generality, for complex flag spaces. As an intermediate result we obtain our Theorem 4.1,
which generalizes the Hecht-Taylor comparison theorem [10] to arbitrary orbils in flag
spaces, provided one makes a finiteness assumption. A main result, Theorem 5.5, applies
the generalized comparison theorem to show that the Hecht-Taylor realization of standard
modules extends naturally to a class of orbits we call affinely oriented (this includes all
open orbits, and therefore all the homogenecus holomorphic vector bundles). We finish
our study by analyzing an example showing how the situation works in the case where the
orbit in question is not affinely oriented. In particular, vwe illustrate how Theorem 5.5 fails
to hold.

This study is arganized as follows. In Section 2 we introduce the algebraic and analytic
localization in flag spaces and establish some results we will use. In Section 3 we define
the standard modules. In Section 4 we prove the comparison theorem and in Section 5 we
establish our main result. In the last section we consider the SUin, 1) action in complex
projectlive space and see how the min result fuils when the orbil is not allinely oriented.

2. ALGEBRAIC AND ANALYTIC LOCALIZATION

In this section we introduce the minimal globalization, define the flag spaces, consider
the generalized TDOs and establish some Facts about the algebraic and analytic localization
in complex flag spaces.

Throughout this study, Gg denotes o reductive group of Harish-Chandra class with Lie
dlgebra gn and g denotes the complexilication of gg. We fix a maximal compact subgroup
Kp of Gy and let K denote the complexification of Ky, & indicates the complex adjoint
group of g.

Minimal Globalization. By definition, a Hurish-Chandra module is a finite-length g-
module equipped with a compatible, algebraie K-actton. For example, the set of Kp-finite
vectors in an irreducible unitary representation for (o is a Harish-Chandra module,

Let M be a Harish-Chandra module. A plobalization of M means a finite-length, ad-
missible representation for Gy in 4 complete, locally convex space whose underlying space
ol Ky-finite vectors is M. By now there are known to exist several canonical and fungio-
rial globalizations of Harish-Chandra modules, including the remarkable aininial global-
izrtion, whose existence was first proved by Schrnud [15]. The minimal globalization is
funcrorial and embeds continuously and Gp-equivariantly in any corresponding globaliza-
tion. Indeed, as a functor the minimal globulization is cxact and surjects onto the space of
analytic vectors in a Banach space globalization [12].

Flag Spaces. By acomplex flag space [or Gy we mean a complex projective homogeneous
G-space ¥. The complex fag spaces arc constructed as follows. By definition, a Horel
subalgebra of gis a maximal solvable subalgebra. One knows that G acts transitively on
the set of Borel subalgebras and the resulting homogeneous space is a complex projective
variety X called the fiell flag space for Gp. A complex subalgebra thal contains a Borel
subalgebra is called a parabolic subalgebra of g. If one fixes a Borel subalgebra b of g,
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then any parabolic subalgebra 18 G-conjugate to a unique parabolic subalgebra containing
b. The resulting space ¥ of (G-conjugates o a given parabolic subalgebra is a complex flag
space and each complex flag space is realized this way.

Let X denote the full fAlag space and suppose ¥ is a complex flag space. Forxe X
and ¥ € ¥ we let b and py indicate, respectively, the corresponding Borel and parabolic
subalgebras of g. It follows from the above remarks that there exits a unique G-equivariant
projection

m:X=Y
given by m(x) =y where y € ¥ is the unigue point such that by C py. 7 is called the nawral
projection,

We will need to reat ¥ as both a complex analytic manifold with s sheaf of holo-
morphic functions &y and as an algebraic variety ¥** with the Zariski topology and the
carresponding sheaf of regular functions ya,.

Generalized Sheaves of TDOs, Let U (g) denote the enveloping algebra of g and let Z(g)
be the center of U (g). By definition, a g-infinitesimal character is a homomorphism of
alpebras
@:Z(g)—=C
By a fundamental result of Harish-Chandra, one can parametrize the g-infinitesimal char-
acters as follows. Let h* be the Cartan dual for g (definitions as in [4], Section 2 and
Section 3). There is a naturally defined set of roots £ C b® for b in g and a corresponding
subset of positive roots £ C E, Let W denote the Weyl group for h® induced by the roots
of b in g. Then there is a natural 1-1 correspondence between the set of g-infinitesimal
characters and the quotient
h /W,
Given A € b* and an infinitesimal character ), we write 4 € © to indicate thit © corre-
sponds 1o the Weyl group orbit W- 4 in the given parametrization. © is called regular
when the corresponding Weyl group orbit has the order of W elements. 4 € " is called
antidominant il
&(i) ¢ {1,2.3,...} for each positive root & € E* .

We also introduce the following notation: given a g-infinilesimal character @ we let Ug
denote the algebra obtained as the quotient of the enveloping algebra U{g) by the ideal
generated from the ideal in Z(g) corresponding to ©. In particular, a Ug-module is just a
g-module with infinitesimal characier ®.

To each A & h*, Beilinson and Bemstein associate a twisted sheal of differential opera-
tors (TDO) E;]‘ defined on the algebraic variety X™8 [1]. In our parametrization, the sheaf
of differential operators on X% is @™, where p € E" is one half the sum of the positive
roots, Beilinson and Bernstein prove that

HP (X8 ') = 0 for p > O and that Up 2 T(X*%, ")
where 8 = W - 4. In particular
T(X¥, §1%) = T (X" PF) forwe W.

Acias del VI Congrese 0% Antenio A, K. Mondetro, 2005



13 TiM BRATTEN AND ESTHER GALINA

Let m. denote the direct image in the category of sheaves. We consider the generalized
sheaf of TDOs m,(%;*) defined on Y%, Observe that

Us =TI (Y¥2 2,(Z%))
where 8 =W 4.

Given y € ¥ let p, be the corresponding pmab:l)]ic subalgebra of g and let v, denote
nilradical of p,. The Levi quotient is given by

I, = py/u,.
_Since Cartan subalgebras of g contained in p, are naturally identified with Cartan subalge-
bras of I, one can, in a natural way, identify h* with the Cartan dual for the reductive Lie
algebra 1,. This defines a set of roots

LyCX

of b* in [, and a Weyl group Wy C W, generated by reflections coming from the elements
of Zy. As suggested in the notation, these subsets are independent of the point y. One
proves that

.'r.,{@i'g} = ::.(9:_‘;} for w € Wy.
We say that A € h* is antidominant for ¥V if L is Wy-conjugate to an antidominant ele-
ment of h*. Generalizing the result of Beilinson and Bernstein for the twisted sheaves of
differential operators on X2, it has been show [7] that if .# is a quasicoherent sheaf of
R, [fﬂ;_'“']—mudules on ¥ and if 4 is antidominant for ¥ then

HP(YMe #) =0 forp=0.

Algebraic and Analytic Localization. Given a g-module M with infinitesimal character
© and a choice of 4 ¢ @ we define the (algebraic) localization of M to ¥¥&-as the sheaf of
. [@J‘{l’é)—mﬂdules given by

BYE(M) = M Bug m (F5F).

Thus
AJE(M) = %8 (M) for w e Wy

Generalizing the Beilinson-Bernstein result for a full flag space, it can be shown that when
@ is a regular infinitesimal character and A € @ is antidominant for ¥ then the localization
functor and the global sections on Y_"’g deline an equivalence of calegories belween the
category of Ug-modules and the category of quasicoherent 7, (@fg)-modulcs 71

While the algebraic localization functor yields interesting results when applied to Ha-
rish-Chandra modules, the analytic localization of Hecht and Taylor allows anc to study the
geometric realization for the minimal globalization, Since the analytic localization takes
into account the topology of a module, we introduce a few relevant concepts. By definition,
a DNF space is topological vector space whose strong dual is a nuclear Fréchet space. A
DNF Ug-module is a g-module with infinitesimal character ®, defined on a DNF space M
such that the corresponding linear operitors

m—+E-mformeMand § €9
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are continuous, Observe that a finitely generated Ug-module has a unigue DNF topology.
when considered as a topological direct sum of finite dimensional subspaces.

Given A € §*, let %, denote the corresponding TDO with holomorphic coefficients
defined on the complex manifold X and consider the generalized TDO m, (% } defined on
the complex flag space ¥. Let &y denote the sheaf of holomorphic functions on ¥. Since
the sheaf 7, (% ) 15 locally free as a sheaf of &y-modules with countable geometric fiber,
there is a natural DNF topology defined on the space of sections of m, (% ) over compact
subsets of ¥ [9]. When M is a DNF U3 -module then, using the completed tensor product,
one can definc a sheaf i

Ax (M) = m(F1) B, M
of m.{ % )-modules carrying a natural topological structure defined over compact subsets
of ¥. In case the induced topologies on the geometric fibers of Ay (M) are Hausdocff, then
Ay (M) is a DNF sheaf of m,( %, )-modules [4].

Given a Ug-module A, the Hochschild resolution F (M) of M is the canonical resolution
of M by free Ug-modules where

FM)=e"'UgaM.

When M is a DNF Ug-module, then F (M) is a complex of DNF Ug-modules and Az (F(M))
is a functorially defined complex of DNF sheaves of 7. ( % }-modules called rhe analyie
focalization of M 1o ¥ with respect to A € 8 = W L, Observe that

Ay (FM)) 2 A3 (F(M)) Torw € Wy.

It is not hard to show that this complex of sheaves has hypercohomology naturally iso-
morphic to M. We shall analyze in more detail the results of the analytic lTocalization as
applicd to minimal globalizations as our study advances, but right now we want to point
out that when M s a minimal globalization then Gy acts naturally on the homology sheaves
of Ay (F.{M)). In particular, Gy acts on F, (M) by the tensor product of the adjoint action
with the action on M. Although this action is nol compatible with the lefi g-action, the twa
actions are homotopic. Coupling the Gy-action on m, (%) with the Gg-action on F.(M),
one oblains a Gp-action on Ay (F.(M)).

Localization and Geometric Fibers. [n order 1o prove the comparison theorem in Sec-
tion 4, we will nse some simple facts about the localization functors and geometric fibers,
which we summarize in the following two propositions. The first proposition says that, for
computing geometric fibers, the algebraic and analytic localizations yield the same resull.
In particular, consider the sheaves &y on ¥ and &ywe on Y5, Fix y € ¥. If % is sheaf of
#y-modules on ¥ and 7 is a sheaf of &yu-modules on ¥, put

L{F) =C84yF and T () =084 0.
where y|; and &y |, denote the respective stalks of &y and £y, over the pomt y. When
& is a sheaf 9, -modules (#° a sheaf of Q;‘-mndulmj then, in a namral way, T;[.#)
(respectively T3 (#°)), is a module for the corresponding Levi quoticat.

Proposition 2.1. Let M be a DNF Ug-module and choose & € ©. Let ¥ be a complex flag
space and choose ¥y € ¥. Let |y denote the corresponding Levi gquotient. Then there is a

Acias del VIl Comgresn Dr. Anfonds A. B, Monieing, 1005
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natural isomorphism
1,0 8 (Fu(M)) & Ty 0 AZE(F. (M)
of complexes of ly-modules.

Proof: Via the natural inclusion
7 25,5y — 7 Za )y
one obtains an isomorphism
LR (m( ) = T (m( D)
of left [,-modules. Thus there is a corresponding a nwural isomorphism
(A5 (V) = T (B)) Sue N

where N is a Ug-module. On the hand, since T,(7.(%;)) has countable dimension, il
follows that the natural inclusion determines an isomorphism

Ty(m(24)) @ N = T0 43 (N)
when N is DNF Ug-module. B

We will also use the following base change formulas. Let
X, =x" ({3}
be the fiber in X over y and let
PrXy X
denote the inclusion. Suppose i ! denotes the corresponding inverse image (in this case:
the restriction) in the category of sheaves. If # is sheaf of £y-modules on X and 2 is a
sheal of &yuy-modules on X2, we put
i*(F) = Ox, ®pi(p) T (F)
and
Jl:lg [.#} - t?xl:h @,‘ J{(}xd‘] f_!{.af’}.

When % is a sheaf %) -modules (#” a sheaf of Qi‘g—modulcs) then, in a natural way.
T(X,,#(F)) (respectively I(X,, i3 (7)), is a module for the corresponding Levi quo-
tient. The base change formulas are the following (wo results.

Proposition 2.2. Let M be a DNF Ug-module and let N be a Ug-module. Choose A € ©,
Let Y be a complex flag space and choose y € ¥. Let Ay and Ay, denote the corre-
sponding analytic Incalizations 1o X and ¥ and let A;Fft and .'S;'Lli denote the corresponding
algebraic localizations to XYE gnd Yo% Then, using the above notations, we have the
following natural isomorphisms of complexes of l,-modules:

{a) Tyo Ay (Fu(M)) =T(X,, " 0 Ay 3 (Fu(M);
(b) TF 0 AZS (FU(N)) 2 T(X, iy 0454 (FL(N)).

Proof: Bguation (a) is shown in [4]. Proposition 3.3 and Equation (b) can be proved in
exactly the same way. l

Actas del VII Congreso Dr Antonlo A. R, Monreirg, 2605
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3. STANDARD MODULES IN FLAG SPACES

In this section we review the Matsuki duality, consider polarized representations for the
stabilizer and introduce the standard modules. We finish the section by summarizing a
result, due to Hecht and Taylor, that characterizes the analytic localization of a minimal
globalization 1o the full Aag space.

Matsuki Duality. Let ¥ be a complex flag space. It is known that Gy acts with finitely
many orbits in a ¥. We will need to use the following geometric property relating the Go
and K-actions in ¥, known as Matsuki dualiry, Let

B:g-p
denote the complexified Cartan invelution arising from Kp and let

Tig—+n
denote the conjugation corresponding 10 go. A subalgebra of g is called stable if it is
invariant under both @ and ©. A point v £ ¥ is called special if p, contains a stable Cartan
subalgebra of g. A Go-orbit § is said to be Marsuki dual to a K-orbit © when SN0 contains
2 special point. Since it is known that the set of special points in a Gp-orbil, orin a K-orbit,
forms a nonempty Kg-homogeneous submanifold it follows that Matsuki duality gives a
1-1 comespondence between the Gp-orbits and the K-orbits on ¥ [13].

Polarized Modules. Suppose ¥ € ¥ and let Goly] denote the stabilizer of y in Gy, Let
o : Go[y] = GL{V)

be a representation in a finite-dimensional vector space V. A compatible, linear p,-action
in V is called a polarization if the nilradical u, acts trivially. In other words: a polarized
Galy]-module is & nothing but a finite-dimensional (1, Go[y])-module. Tn case p, contains
a real Levi factor (that is: a complementary subalgebra to the nilradical that is invariant
under 7) then an ireducible representation always has a unique polarization, bul in general
compatible py-actions need not exist. For example, suppose ¢ is a stable Cartan subalgebra
of g, b is a Borel subalgebra containing € and @ € ¢* is & simple root of ¢ in b. Let g and
™% denote the corresponding root subspaces of ¢ in g and define

py=g "+b.
Then p is a parabolic subalgebra of g. Assume that the root & is complex, that is:

przlp)=c

and let Cy be the Cartan subgroup of Gg corresponding to ¢. Then the character of Cy given
by the adjoint action of Cy in g% extends uniquely to a character of Goly] [5], but there is
no associzled polarization.

Even though polarizations need not exist, they are unigue when they do exist. In partic-
ular, suppose V is a Gy[y|-module with two polarizations. Then there are two [,-actions in
V that coincide on a pambolic subalgebra of I, [5]. From the theory of finitetimensional
I,-modules, it follows thit the two |,-actions are identical.

On the other hand, if ¥ is a finite-dimensional irmeducible {py, Goly])-module then the
p,-action is necessarily a polarization, since the subspace of vectors annihilated by each
element of u, is invariant under both Gyly] and p,,

Actns del VI Congree D Antomin A, B Moatere, 2003
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Since a Gg[y]-invariant subspace of a polarized medule need not be invariant under the
corresponding [;-action, we define a morphism of polarized modules to be a linear map that
intertwines both the Go[y] and p,-actions. Thus the category of polarized Gg[y]-modules is
nothing but the category of finite-dimensional ([, Go[y]}-modules.

Let Z([,) denote the center of the enveloping algebea U(LL,). Since b is the Cartan dual
for L, the set of [,-infinitesimal characters is in natural correspondence with the guotient

b" Wy
where Wy is the Weyl group of §* in [,. For A € h* we write &, to indicate the [,-infin-
itesimal character corresponding to the orbit Wy - 1. A polarized Go[y]-module V is said
to have infinitesimal character A € §* if Z(1,} acts on V' by the character 0. Since Gy is
Harish-Chandra class, it follows that an irreducible polarized Gp[v|-module has an infini-
tesimal character.

Given y € ¥ let K[y] denote the stabilizer of v in K. By stipulating that the K[y]-action
be algebraic, we can introduce, in the obvious way, a category of polarized algebraic K[y]-
modules. Morphisms, as above, are linear maps that intertwine both the X[v] and [;-actions.
We can also define and parametrize infinitesimal characters as in the case of G,-,{y],

The following proposition can be deduced from the detailed description of the stabilizers
given in [5] via standard Lie theory considerations.

Proposition 3.1. Lef ¥ be a complex flag space for Gy and suppese y € ¥ is special. Then
there exists a natural equivalence of categories between the category of polarized Gyly]-
modules and the category of polarized algebraic K|y|-modules.

The Standard Modules in Flag Spaces. Suppose y € ¥ and let
@: Ggly| = GL(V)
be an irreducible polarized representation. Let S denote the Gy-orbit of y. Then we have
the corresponding homogeneous, analytic vector bundle
"?
{
s

with fiber V. The polarization allows us to defing, in a canonical way, a corresponding
sheafl of restricled holomorphic or polarized sections. In particular, let

§:Gg— S5 be the projection ¢(g) =g-w
If &7 C § is an open set then a section of ¥ over I/ is a real analytic function
f:97'(U)—V suchthat fgp) =@lp")f(g) VpeGol
The section is said to be polarized if
d . d ;
5| fleexp@té))+i—|  flgexp(rd)) = —@(&i+i8)f(2)
=f{)

dt =0 1

for all &, & € go such that § +i&; € p,.
Let 22(y, V) denote the sheal of polarized sections and let €y | be the sheafl of restricted
holomorphic functions on 5. As a sheal of &y [s-modules, & (y, V) is locally isomorphic to

Actas del VIl Congreso Dr. Antonin A. K. Monteirs, 2005
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yls @V [9]. The left translation defines a Gg, and thus 4 g-sction on Py V). LetAeh"
be a parameter for the |,-infinitesimal character in V. Then the |5 and g-actions defer-
mine a 7.{ F; )s-action. Put ©® = W - A, Then the compactly supported sheaf cohomology
groups
HP(S, 2(V)) p=0,1,2.3,...

are DNF Ug-modules with a compatible Gp-action, provided certain naturally defined
topologies are Hausdorff [9].

Suppose y € § is special. Let O be the K-orbit of y and let 4 be the codimension of the
complex manifold @ in ¥. Tn general, one can show the following. Although not difficult,
the proof in [6] depends on some ideas which we will not use in this study.

Proposition 3.2. Maintain the above notations.

fa) HE(S, @(v,V)) vanishes for p < q.

(B) HE'2(8, #(,F)) n=0,1,2,... is an admissible representation, naturally isomorphic
1o the minimal globalfzation of ity underlying Harish-Chandra module

Since y is special, in a natural way V is a polarized algebraic Kly|-module. Thus V
determines an algebraic vector bundle on the K-orbit Q8. The [,-action in V, the transla-
tion by K, and the natural &ga,-action determine the sction by a certain sheaf of algebras,
defined on ("€, on the corresponding sheaf of algebraic sections [7]. Using a direct image
construction [7], modeled after the direct image for sheaves of TDOs modules [11], one
obtains o standard generalized Harish-Chandra sheaf #(y,V) defined on the algebriic
variety ¥¥E, This sheaf of #ye-modules carries compatible actions of g and K. Indeed.
F(y,V) is a sheal of 7,(Z}*)-modules. One knows that the corresponding sheaf coho-
mology groups

HY(Y™, (V) p=0,1.2,...
are Harish-Chandra modules.

Affinely Oriented Orbits. A K-orbit 0 is called affinely embedded if the inclusion

is U s YUt
is an affine morphism, A Gy-orbil is called affinely orienred if its Matsuki dual is affinely
embedded. Since the Matsuki dunl of an open orbit is Zariski closed [13], it follows that
all open Gy-orbits are affinely oriented. 1t is known that all K-orbits in the full flag space
are affinely embedded, and more generally, if a parabolic subalgebra in a Go-orbit contains
a real Levi factor, then the orbit is affinely oriented [8].

By definition, a Levi orbit is a Gy-orbil containing 2 parabolic subalgebra with a real
Levi factor. In the previous studies [4] and [3] only Levi orbits were considered. On
the other hand, it is not hard to define affinely embedded orbits which are not Levi. For
example, consider the natural action of the real special linear group Gy = SL(#,R) on the
complex projective space ¥ = P*/(C). If n > 2, then there is a unique open Gy-orbit and
this open orbit is not Levi. In the last section of this paper we will consider a Go-orbit
which is not affinely orienied.

Analytic Localization of Minimal Globalizations in the Full Flug Space. We conclude
this section with the following thearem, due to Hecht and Taylor, which characterizes

Actzr del VIl Congrere Dr. Antonie A, B. Montrim, J065



12 TiM BRATTEN AND ESTHER GALINA

the analytic localization to the full flag space for the minimal globalization of a Harish-
Chandra medule with regular infinitesimal character.

Theorem 3.3. Let M be a Harish-Chandra module with regular infinitesimal character ©
and choose A € @, Let F.(My,,) denote the Hochschild resolution for the minimal global-
igation of M and let

ﬂl(F [Mmin)}
denote the corresponding analyiic localization to the full flag space X. Fixx € X. Then we
have the following.
(a) Let Golx] denote the stabilizer of x in Gy. Then the homology spaces of the complex

To Ay (F(M))

are finite-dimensional polarized Gylx]-modules.

(b) Ler S be the Gy-orbit of x and let hy(A3(F.(M)))|s denote the p-th homology of
Mg (F.(M)) restricted to S. Then fig(Ay (F(M))}|s is the sheaf of polarized sections cor-
responding to the polarized Gylx]-module

ho(Txo B3 (F(M))).
Proof: This result follows directly from Theorem 10.10, Proposition 8.3 and Proposition
87in[9]. M
4. THE COMPARISON THEOREM

In this section we generalize the Hecht-Taylor comparison theorem [10] to arbitrary
orbits. In particular, suppose y € Y is special, and let uy denote the nilpotent radical of the
comesponding parabolic subalgebra. We will establish the following theorem.

Theorem 4.1. Let M be a Harish-Chandra module with regular infinitesimal charac-
ter and suppose y is a special point. Assume that M has finite-dimensional w,-homology
groups and let My, denote the minimal globalization of M. Then, in a natural way, the Lie
algebra homology groups

Hpluy, M) and Hpluy, M), p=0,1,2,...

are polarized Goly]-modules and the natural inclusion

M — Mupin
induces an isomorphism

Hp(“}':M} = Hp(“yrf"frmn}
Joreach p.
Localization and u,-homology. Suppose M is a uy-module. By definition
Hyluy, M) = Ca,, M

When M is a g-module then Hy(uy,M) is a module for the Levi quotient

= py/uy.
The u,-homology groups of M are the derived functors of the functor

M = Ho(uw,, M),

Actas del VI Congreso De Amtonio A. R, Monteiro, 2005



COMPARISON THEOREM AND (?ED.'!.E‘TRIC REALIZATION OF REPRESENTATIONS E

Since U/(g) is a free U/ {u,)-module, it follows that a resolution of free g-modules can be
used to compule the u,-homology groups, In particular, if M is a Harish-Chandra module
and if F{M) denotes the Hochschild resolution, then K acts on F{M) by the tensor prod-
uct of the adjoint action with the action on M. This action is then homotopic to the lef
g-action. Thus one obtains a K[y|-action on the complex Hglu,, F{M]) and a correspond-
ing algebraic (L, K|y|}-action on the u,-homology groups. Similarly, there is a continuous
Goly|-action on the complex of DNF |-modules Holty, F (Mmin)). Thus, since these ac-
tions are homotopic, if the homology groups of Holuy, F.{Mmn)) are finite-dimensional
(and therefore HausdorfT in the induced topologies), it follows that the homology spaces
Hy(ty Mugn)  p=0,1,2,...

are polarized Gp[y]-modules. When M is Harish-Chandra module with infinitesimal char-
acler ® then one can use the Hochschild resolution with coefficients from Lfg to compue
the uy-homology groups for M and My, since U is a free U{u,}-module, The induced
module strecture on the homalogy groups s independent of these two resolutions,

Let Z{1,} denote the center of U (L,) and suppese V is an ly-module. Foreach A € h* we
let V;, denoie the corresponding Z([, )-eigenspace in V. When 8 is a regular g-infinitesimal
character and M is a Ug-module, then one knows that

Hyluy, M} = €P) Hy(uy, M),
i@

Indeed, letting F (M) denote the Hochschild resolution of M, with coefficients from Us,
one can deduce that the p-th homology of the complex Hafu,, Fu(M)); calculates the [,-
module Hy(u,, M]3 [3].

Thus, to establish the comparison theorem for a Harish-Chandra module with regular in-
finitesimal character 8, it suffices 1o establish the result for each of the spaces Hp(u,, M);.

To caleulate the modules H,(u,,M);. we use the fact they can be identified with the
derived functors of the geometric fiber at y of the corresponding localization to ¥, We stale
this fact in the following proposition. A proof can be found in [3].

Proposition 4.2. Let M be a Ug-module with © regular and let F.(M) denoie the corre-
sponding Hochschild resolution of M. Choose A € I Suppose Y is a complex flag space
and let :_".";’ denote the corresponding algebraic localization lo Y. Then, for each y € ¥,
there (s a natural isomorphism of complexes of ly-modules

T3 0 AP (F(M)) = Houy, (M)
The Comparison Theorem From the previous discussion, the comparison theorem fol-
lows from the next result, which we prove in this subsection.

Theorem 4.3, Let M be a Harish-Chandra module with regular infinitesimal character @,
Suppose v is a special point in a complex fiag space ¥ and let uy denote the nitradical of
the corresponding parabolic subalgebra py. Suppose A € © and assume that each of the
algelrate {1y, K[y])-modules

Hplu, M)y p=0,1,2,...
is finite-cimensional. Then the nutwral inclusion
M = Mein
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induces an isomorphism

HP[:uj':M}J. EHP(“_?} MﬂLi]l}.’.
of polarized Goly]-medules, for each p.
Prool: Since the spaces Hy(uty,M); are finite-dimensional algebraic (1, K [y])-modules
and y is special, these spaces are also polarized Gg[y]-modules, Indecd, in order to prove
the theorem it suffices to show that H,(u,, M)y and H,(u,,Muin); are isomorphic as
(Iy, Ko[v])-modules, where Ky[y] is the stabilizer of v in Kg.

Let X be the full flag space and let X, be the fiber in X over y. Let £y denote the root
subspace of h* corresponding to Levi factors from ¥ and let Wy denote the associated Weyl
group. Put

IF =FIynLt.
We say that A is antidominant for the fiber it

a(d) ¢ {1,2,3,...} foreach e €Ef.
Since there exists w € Wy such that w is antidominant for the fiber and since wA and A
parameterize the same [-infinitesimal character, we may assume that A is antidominant for
the fiber, Suppose x € X, and let
itX,—+X
denote the inclusion. Reintroducing the notations established in Section 2, we now prove
the following lemma.
Lemma Maintaining the assumptions of Theorem 4.3, let
hp(i" oAy x (F(M))
denote the p-th homology of the complex i* o Ay x(F.(M). Then hy(i* 0 Ay y (F(M)) is the
sheaf of holomorphic sections of a K[y|-equivariant holomorphic vector bundle over X,.

Proof of Lemma: By Proposition 2.2 and Proposition 4.2, il follows from the given
assumptions that the homology groups of the complex

P(X% iy o 635 (F (1))

are finite-dimensional algebraic (I, K, )-modules. We claim that this implies that the ho-
mologies of the complex

N i

iqg 0 A7 % (F.(M))
are the sheaves of sections for K[y|-equivariant algebraic vector bundles defined over the
algebraic variety X,"%. Tn particular, one knows that X% is the full flag space for the Levi
quotient [, and that the h{:»malcgy groups of the previous complex are sheaves of modules
foraTDO E”’g e defined on X_,. . Since the parameter A is antidominant with respect to [,
it follows that the global sections define an exact functor on the category of quasicoherent
ﬂ’;lx;,z-modulm Thus, for each p=10,1,2,..., there are natural isomorphisms

ty (TOX2, 5, 0 A3 (F(WD)) ) = T(XJE iy (i, 0 AT, (7(3))))

of finite-dimensional algebraic (I, K[y])-modules, where hi,(-) denotes the p-th homology
group of the given complex. Therefore. our claim follows, since the only guasicoherent
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COMPARISON THEOREM AND GEOMETRIC REALIZATION OF REPRESENTATIONS 15

sheaves of ﬁ?i,,,-momlex with finite-dimensional global sections are finite-rank locally
i
free sheaves of ﬁx;:.-mudul:s.
Now let j: Xy = X1 ¥ indicate the identity and let
e(-) = O, 'ﬂﬂ_.—lrag,,,] i)
denote Serre’s GAGA functor [16]. We claim that
Eohy(ihg 0 ATE (F(M))) = hy (" 0 8y x (F (M)
Indecd, the claim follows, since there is a natural isomorphism of complexes of sheaves
£0ilg 0 AYE (F(M)) 4 08y x(F(M))
and since the functor € is exact on the category of quasicoherent ﬂx:a.-mudules. This
proves the lemma. W
We continue with the proof of Theorem 4.3 and establish the following lemma,

Lemma Use the given notarions and maintain the assumptions of Theorem 4.3. Then the
natural morphism

i’ Oﬁl.g{F{M:I] =2 L) ﬁ;;{FI;‘{m}}
of complexes of sheaves of (ly, Koly])-modules, induces an isomorphism on the level of
homology groups.

Proof of Lemma: It follows from Theorem 3.3, that for each x € X, the stalks of the ho-
mology sheaves h, (8 x (F (Mmin)) are locally frec, finite rank &y|.-modules, Therefore,
for each x € X,, the homology sheaves

By (1" 085 x (F {Muin)

are locally [ree, finite runk &y |,-modules. We now apply the comparison thearem of
Hecht and Taylor [10] to deduce the desired isomorphism. For x € X,, let T 5, denote the
functor that takes the geometric fiber at x with respect to sheaves of @y -modules. Then
the Hecht-Tayler result implics that the natura] morphism

Tox, of 08 ¢ (F(M)) = Loy, 08" 0 &) x(F (M)

induces an isomorphism on homology groups, when x € X, is special. Thus for each special
point x € X, and for each whole number p, we have 2 natural isomorphism

Tox, eholi® oAy x (F(M))) = Tex, 0 by (i* 08y x (F{Min))) -
Thus the lemma follows, since there is a special point in each Gyly]-orbit on X, [13]. W
We can now conclude that the namwral morphism
DXy, 1" o Ag x (F{M))) = DX, i" 0 &z x{F (M )})

induces an isomorphism on the level of homology groups. Thus the proof of Theorem 4.3
follows immediately by an application of Propesition 2.2, Proposition 2.1 and Proposi-
tion 4.2, W
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5. GEOMETRIC REALIZATION OF REPRESENTATIONS

In this section we consider the relation of the comparison theorem to the geometric
realization of representations. In particular, suppose y € ¥ is a special point and let V
be an irreducible polarized Goly]-module. Let .#(y,V) denote the corresponding gener-
alized standard Harish-Chandra sheaf defined on ¥®&, Tf A € h* is a parameter for the
Ly-infinitesimal character in V' then the sheaf cohomologies

HP(Y™ #(y,F)) p=0,12,...
are Harish-Chandra modules with g-infinitesimal character @ =W - 4. Put
M=T(Y', #(yF))
and let M, denote the minimal globalization of M. We are interested in finding a geomet-

ric realization for My, in ¥. One obvicos candidate is the analytic localization of My, 10
Y. In fact, suppose i € © and, using our previously established notation, let

Ay (F (Muia))
denote the analytic localization of My, to ¥. It follows from the Beilinson-Bemstein result

that the sheaves Ay (Fy(Muin)) p=0,1,2,... are acyclic for the functor of global sections
and that there is a natural isomorphism of complexes
T(Y, Ay (F(Myin)) = F (Mein).
Thus the complex Ay (F (Mmin)) has vanishing hypercohomology in all degrees except
zero, where we reobtain the module My, Indeed, when the mfinitesimal character ©
is regular, one obtains the following uniqueness for this geometric realization of Mp,ip. Let
. be a complex of sheaves of DNF m,(%,) -modules, with bounded homology, whose
hypercohomology realizes the module My, then there are natural isomorphisms in ho-
mology
Iy (B (F(Myin))) = hp{F)

for cach p. In the case of the full Aag space, this uniqueness follows from an equivalence
of derived categories shown in [9]. The general case is not hard to deduce from this.

Thus we would like to understand the complex Ay (. (Mya)). It turns out that the struc-
ture of the analytic localization is completely determined by the corresponding peometric
fibers, In particular, we have the following resule [4].

Proposition 5.1. Let W be a minimal globalization with g-infinitesimal character © and
choose A € ©. Suppose Y is a compiex flag space for Gy. Using the previously established
neiation, let A; (F.(W)) denote the analytic localization of W to Y. Choose y € Y and let
5 = Gy y. Assume that each of the homology groups

hp{fioﬂl(F{WJ)} pzulllzs"'

is finite-dimensional. Let P(y,hp(Ty0 Az (F.(W)))) denote the sheaf of polarized sections
for the polarized homageneous vector bundle on S determined by hy (T,0A; (F.(W1))}), Then
ihere is a natural isomorphism

(B4 (F(W))ils = P (nhp(Ty 0 85 (F(W))))
of Gy-equivariant DNF sheaves of g-modules.
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COMPARISON THEOREM AND GEOMETRIC REALLZATION OF REPRESENTATIONS 17

Base Change. The previous proposition, in conjunction with the comparison theorem, can
be used 1o deduce information abouwt the geometric realization for the minimal globalization
of a generalized standard Beilimson-Bemstein module, There is a thind ingredient we will
ulso use: (he so-called base chunge formula [4], as applied o the derived geometric fibers of
the Harish-Chandra sheaf #(y, V). In particular, let D (1, ( }'®)) (respectively D*(U; (L,))
denote the derived category of bounded complexes of quasi-coherent m{ﬂi’f"}-modules
(respectively the derived category of bounded complexes of L-maodules with infinitesimal
character A). Suppose z € ¥. Then, in a natural way, the geometric fiber al z determines a
derived functor

LT, : DY, (9}")) = DP(Ua(Ly)).
Let 0 be the K-orbit of y and Tet { be the Zariski closore of @in ¥. Put 0 =0~
and U = ¥ = Q. Thus { is Zariski open. Let g denote the codimension of 0 in ¥ and
let V]g] denote the complex of |,-modules which is zero except in homology degree g,
where one obtains the module V. We also identify the sheal # (v, V) with the complex in
DPix, {W}} which is zero in all degrees cxeept degree zero where we obtain S(w V).
Then, at !r.aat for z € U/, the complex LT2(.# (v, V)] is simple to understand. We summarize
in the following proposition,
Propositlon 5.2. Matniain the previously introduced notations. Then we have the follow-
ing isomerphisms in DAL (1))
fa) Forze l —Q

LL(# (V) =0

(b} LT{# (3 V)) = Vgl

Proof: The result follows from the construction of #{y, F] and the base change formula,
which holds for the generalized direct image, as in the case of the direet image for -
modules [2]. W

For z € d¢), the structure the complex LT.(.# (v, V)) is more complicated, at least when
(™ is not affinely embedded in ¥, In particular, let
i ey il
denote the inclusion. We let =, [.'B""Huu be the sheal of algebras =, () 18y restricted to
U and let DP(m, (%5 % )], 0 ) denote the derived category of bounded complexes of quasi-
coherent 7,( %) |yv-modules. Then the direct image in the category of sheaves induces

a derived functor

Riy : DY (R 95)|ya:) = DY(m(4]P)).
We have the following.
Propasition 5.3. Maintain the previously introduced notatiens,

fa} Suppose z € Q. Then
LT oRL(F (3 Vily=) =0

in the category DP(Us (4,)).
(b) If O* is affinely embedded in Y*'¢ then

Rio(F (3 V)] = S V).
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18 TIM BRATTEN AND ESTHER GALINA

In particular
LT(F(yV))=0

forze dO.

Proof: Once again, the first claim (a) is an application of the base change formula for
the generalized direct image, applied to the sheaf .#{y,V]. On the other hand, the second
claim (b) is another standard result for the direct image functor [2], which also applies to
the direct image n the category of generalized %-modules. B

Geometric Realization for the Minimal Globalization of a Standard Modaule. Supposc
M =T(¥", #(y,V))

is a standard Harish-Chandra module, where y £ ¥ is special and V is an irreducible polar-

ized Goly]-module, Let 2%(y,V) be the sheaf of polarized sections for the corresponding

Gy homogencous polarized vector bundle and let M,y denote the minimal globalization of

M. We are now ready to deduce the fellowing result, which generalizes the result for the

full flag space.

Theorem 54, Maintain the previous assumptions and notations. Let () denote the K -orbir
of the special point y and let g denote the codimension of Q in Y. Assume the |,-infinitesimal
character in V is regular and antidominant for ¥ and let A € b* be a corresponding pa-
ramefen

{a) Suppose S is the Gg-orbit of v. Then

0
Fip (83 (F.(Muin))) |5 =2 { _gﬂ(y,.}-{[;r;riépq= g

() Suppose S is affinely oriented. Then

= 55,

where (v, F)Y denotes the extension by zero of #(y.F) o Y.

Proof: Since A is regular and antidominant for ¥, it follows from the Beilnson-Bernstein
equivalence of calegories that

iy (ALE(R0))) = { .;r(}?vf;)r gjﬁ =

Thus, for z € ¥, the homologies of the complex T, o :le{F. (M}) are isomorphic to the
homologies of LT,{.# (y.V)). Via the comparison theorem, the homology groups of T, o
ﬁ}f‘{ﬁf(ﬁd’}} coincide with the homology groups of T o Ay (F.(Muyin)) when these homol-
ogy groups are finite dimensional. Thus the first part of the theorem follows by an appli-
cation of Proposition 5.2 together with Proposition 5.1, and the second part follows easily
using Proposition 5.3. B

Theorem 5.5. Suppose y € ¥ is special and that the K-orbit Q%% of y is affinely embed-
ded in Y8, Suppose V is an irreducible polarized Goly)-module. Let #(y,V) indicate the
corresponding standard Harish-Chandra sheaf on Y™ and let Py, V) denote the corre-
sponding sheaf of polarized sections on the Gy-orbit § of . Suppose g is the codimension
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of @ in ¥, Then the compacily supported cohomology group HE(S, #(y,V)) vanishes for
p < g and for each n = 0, HIT(S, #(y,V)) is naturally ixomorphic to the minimal glob-
ﬂﬁzﬂﬁmafﬁ"{l’,ﬁ{y,l’]}.

Proof: When V has an |-infinitesimal character that is regular and antidominant for
¥, then the corollary follows immediately from the previous theorem, The general case
follows by a tensoring argument. as in [4]. W

6. THE SU(n, 1}-ACTION 1N COMPLEX PROIECTIVE SPACE
In this section we give an example o analyze the sitvation when the Gp-orbit is not
affincly oriented. In particular, we show that Theorem 3.5 fails to hold. Put
1=} Ejj—Enitary
=1

where Ej; are the standard basis for the (a+ 1)  (n+ 1) matrices and suppose G is the
complex special lincar group SL{n+ 1,C). Define

AA)=(A")"" and 2(A) = J¥(A)

for A € G. Thus 7 is a conjugation of G and ¥ is a compact conjugation commuting with
7. By definition, he fixed point set of 7 is the group

Go=SU{n,1).
The comesponding y-invariant maximal compact subgroup of Gp is
Ky= 85U [n41)NGy.

The complexification X of Kp is naturally isomorphic to the fixed point set in G of the
involution

B(A) = JAJ.
Thus the ¢lements of K are the matrices of the form
0
0
0 o 0 (deta)”
where A & GL(r, C).

We calculate the K-orbits on the complex flag space ¥ = P*{C). For (23,...,2041) €
Enchl ™

|

Intl
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20 TIM BRATTEN AND ESTHER GALINA

denote the corresponding point in #(C). Let & C P*(L) be the K-mvanant affine open
set defined by z; # 0. Thus I/ contains two K-orbits: one consisting of a fixed point

0
pr =% o
1
and the other being the open K-orbit:
G =U~ Oy
The complement of U:
Q=P Q)-U

is a closed K-orbit of dimension n —1.

Matsuki duality now determines the Gg-orbits on ¥. In particular, let Sy, S, and 5S¢
denote the dual orbits to Qg,, s and ¢, respectively. Thus Sy, and 5. are open orbits
while §, is closed in ¥. Observe that Sy, and 5, are affinely oriented while 5, is not when
n > 1. Using Iwasawa decomposition for Gy, one sees that Ky acts transitively on S;,. In
particular, §, € {J, and each point in §, is special.

Let &y denote the sheaf of holomorphic functions on ¥ and let & |5, denote the restric-
tion of £y to S,. We also introduce sheaf &y« of regular functions on the algebraic variety
Y€ and let

i QN8 YW
denote the inclusion. Choose a point y € S, and let C denote trivial one-dimensional po-
larized Gy[y]-module. Then the comresponding sheaf 2#(y,C) of polarized sections is the
Gy-equivariant sheaf &y |5 and the corresponding Harish-Chandra sheaf .#(y,C) is the K-
equivariant sheaf of g-modules i.{ &y | ﬁlg) where ¢, denotes the direct image in the cate-
gory of sheaves,

Let u, denote the nilradical of the parabolic subalgebra p, and let

y =Py /1y
denote the corresponding Levi quotient. Then the [,-infinitesimal character for the trivial

module C is parametrized by —p, where p is one half the sum of the positive roots in b,
Sinece —p is regular and antidominant, it follows that

HP(Y,#(y,C)) =0 for p> 0 and T(Y,#(»C)) #0.
By a direct caleulation, it is not hard to show that the set of Ky-finite vectors in
[(Sor Ols,) = T(Se, 2(4,C))
is naturally isomorphic o
[(Qq, ﬁr-"dg‘fu) = I'[Y,J"[y,c:)}

although we shall give a different reason for this below. On the other hand, since the
codimension of (&, in ¥ is zero and since S, is compact, if the orbit O, were affinely
imbedded, it would follow from the work in the last section of this paper that

HP(S5,, P{y,C)) =0 forp>0.
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We now show thar this vanishing does not occur whenn > 1.

If & is a sheaf defincd on a locally closed subset of ¥, we let #¥ denote the extension
by zero of & to ¥. To calculate the higher sheaf cohomologies of &y |s, we consider the
following short exact sequence of Gop-equivariant sheaves on ¥

0 (Oylsus,)” = Or = (Oyls,)" 0.
We compute the resulting long exact sequence in sheal cohomology. Since S, and Sy, are
open orbits, a standard sheal cohomelogy argument shows that
HP(Y, (Cylsus,)') = HE(Se, Os.) ® HE (Sty, O,,)

where €5, and #y,, denote the sheaves of holomorphic fonctions on §; and Sy, respec-
tively, Since the codimension of . is one and the codimension of O, is n il follows from
Theorem 5.5 that

HP(S., O ) =0forp# 1 and HE(Sp, €, ) =0 forp#n

Indeed, via Kashiwara's equivalence of categones for the direct image functor [7] one
deduces that (8., 5, ) and B} {8y, @,) are imeducible minimal globalizations. Tn par-
ticular, each of these last two cohomologies are nonzero. On the other hand, it is well
known that sheal cohomelogy for &y vanishes in positive degree. Thus, for n > |, we
obtain the shor exact sequence

0= C =T(S,, P(1.0)) = H(5, O5,) = 0.

For positive p, il Tollows that H?(5,, 2*(».C)) is zero except when p = n, in which ease
we oblain the isomorphism:

H"™ : { '-'i'lh 9‘“"1 'E} } = H{n Lsfpr 'ﬂ'b*]

which contradicts Theorem 5.5,
We continie our analysis using the ideas developed in our study, Pul

M =T(Y,.#(»Cj)

and let M, denote the minimal globalization of M, We calculate the analytic localization
of My, to ¥ and use this information (0 deduce that

Muin = TS, 2(3. )}

Let

A_p(F{Mpin))
denote the corresponding analytic localization of M, to ¥. By the comparisun theorem,
for z € ¥ special, the morphism of complexes

T3 0 A% (F(M)) = o0 A p (F{Main))

induces an isomorphism of homology groups, provided the left hand side has finite-dimen-
sional homology.
Therelone we are inlerested in caleulating the homologies of

LT(#(»C})
forz € ¥ — Q. Put U = Gp U Q. Thus 1/ is a Zariski ppen st isomorphic to 2, Let

ji: QU UM and k:UME— YR
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denote the inclusions. Since &, (.# (3, C)|gme ) = #(3.C) and since I is an affine open set
it follows from the base change that

LTS (3C)) =0 forze ¥ - U.
On the other hand
f{)’-cﬂuﬂr g.ﬁ{ﬁrﬂs
Thus il {z} = Qg and 1 > 1 then

o)

LT (s (nC)) =C
since
f-{ﬁrﬂrlagh} = ﬁr”r'rrﬂr-
Therefore
O idp£0
byls,us,) ifp=0

1

hp{ﬁl p{F:(Hminn) E{ (

where (ﬂ?ﬂsﬁu_g!',)y denotes the extension by zero 10 ¥ of the restriction of the sheaf of

holomorphic functions 1o Sy U Sgp. In particular, [ﬁrgsuug,,)" is the unique sheaf of DNF
modules for the sheaf of holomorphic differential operators on ¥ whose sheaf cohomology
vanishes in positive degrees and whose global sections yield Myin.

Since #(y, C) = &y|s,, we have the following short exact sequence:

0 (Brls,)" = (Frlsis,)” = PH,OF = 0.
Taking global sections we obtain My, = (S, #{».C)).
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