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alized to infinite dirsensions. The main conclusion is that, in the statistical
interpretation where such spinors are fuoctions on Z37, any real or guaber-
nionic structure involves switching zeroes and ones, There results a maze of
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classification of spinors leads to a parametrization of certain non-associative
nlgebras introduced spaculatively by Kaplansky
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1. Introduction

Let H be a separable real prehilbert space and € = C(H) the Clifford algebra
of H, ie., the quotient of the tensor algebra Tz{H} of H by the ideal generated
by the elemenis of the form

hah+hheh+2<h i’ >
with h. B’ € H.
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In two little known papers from 1954, Gérding and Wightman parame-
Lriged (up to equivalence) the unitary representations of the so-called Canonical
Commutation and Anticommutation Relations. The first essentially amounts to
parametrizing the unitary representations of the infinite-dimensional Heisenberg
group M, while the second amounts to doing the same for €. Their work,
based on original examples by von Neumann [15], show that both have “a true
maze” of equivalence classes of irreducibles, in striking contrast to the finite case.
Abusing lunguage, one says that Stone-von Neumann fails in infinite dimensions
in both cases, The standard representations appearing in QFT constitute a
special elass characterizable by the existence of vacua - vectors annihilated by
all the annibilation operators. One calls these Bose-Fock in the case of H, or,
sbusing apein, Fermi-Fock, in the case of €, or simply Fock representations.
According to ordinary use in finite dimensions, the unitary representations of €
will be called here compler spiner structures or simply spinors, and the parficular
realization derived from the construction of Girding and Wightman, GW spinors,

In this article we determine the type of these spinors and deduce some
conclusions. Reeall that a real (resp., quaternionic) structure on a complex
Hilbert space is an antilinear, norm-preserving operator S (resp., @) such that
§% = I (resp., Q% = —I). As in the finite dimensional case, a complex repre-
septation of € is said to be of real, gualernionic or compler fype, according to
whether it commutes with an 5, a @, or neither, conditions that are mutually
exclusive when the representation is irreducible.

The guestion of type is basic in finite dimensions, where its solution was
found apparentiy first by Cartan amd rediscovered later by Jordan, Wigner and
Dirac. The fact is that every {vomplex) representation of C'[R™) iz a multiple
of a unique irreducible one (for n £ 3,7 mod{(8}), or a sum of multiples of
two unigue irreducible ones (for » = 3,7 mod(8]}. The irreducible ones are of
real type for n = 0.6, of complex Lype for n = 1,5 and of quaternionic Lype
for n = 2.3,4 [5][6]{14]. In the physics literature § and @ are called charge-
conjugation operalors and the rreducible spinors of real type Majorana spiners.

In infinite dimensions we find mazes of inequivalent irreducible spinors of
each of the three types. The key condition for a spin-invariant real or quaternionic
structure to exist is that in their dyadic representation (cf. §2), changing all 0's
to 175 and all 1's to 0's mmst be a meaningful operation among spinors. This
rules out all representations common in physics: Fock, anti-Fock, Canonical.

Because the questions of reducibility and equivalence of the GW repre-
sentations are not completely resolved -indeed, they may be essentially unsolvahle
in general, the GW parametrization works better in practice as a source of ex-
amples than as an instrument of proof. Our results are an exception to this rule:
the GW parametrization is well fit to describe the breakdown into types and
vields a neat answer. We now mention some specific consequences.

The spinors of real type yield the orthogonal representations of € in real
Milbert spaces. If § is a spin-invariant real structure then {v: Sv = v} is an
invariant real form which, by restriction, provides a real representation of € and
every real representation must arise in this way

When dimz £ = 1,3,7, the real irceducible representations of € have
dimensions 2, 4, 8, respectively, and are in correspondence with the classical divi-
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sion algebras [2]. For this, the property of € having a module of dimension equal
to one plus the munber of generators, is crucial. O course, this property holds
when dim H = 0o oo, so it is natural to search for imfinite-dimensional analogs
of quaternions and octonions. This possibility was considered by Kaplansky in
tha Afties [13], who ruled out strict analogs and proposed weaker alternufives,
Although he seemed doubtful of their existence as well, examples were found in
the nineties [7][17]. We give here a parametrization of all suck algebras up to
equivalence, coneluding that there are mazes of inequivalent ones.

There are families of representations of € on L*T) or L(R), of real or
quaternionic type which seem to have analytic content. We discuss two operators,

D=iah&;. D’=iu;ﬂ;

k=1 k=1

where ¢y, af, are Lhe creation and annihilation operators nssociated to the spin
structure and the 8 are certain dyadic difference operators. Notably, for the
standard Fermi-Fock representations they diverge off the vacuum. But for the
spinor structures in L2(T) they have a dense domain and relate neatly with the
real and quaternionic structures,

In the statistical interpretation of the creation and annihilation opera-
tors, & real or quaternionic structure necessarily empties all occupied states and
filla all non-occupied ones. This may be an unlikely feature for particles or fields,
but nol necessarily for other systems modelled with 0's and 1's.

We thank 11, Araki J. Baez, A. Jaffe, A, Kirillov, F. Ricci, A. Rodriguez
Palacio and J. Vargas, for their helpful advise.

2. Girding-Wightman spinors
Let
X=2F

be the set of sequences = = (3, 2,...) of 03 and 1’5, and A C X the subset
consisting of sequences with only finitely many 1's. Then X is an abelian group
under componentwise addition modulo 2 and A is the subgroup generated by
the sequences §*, where &} is the Kronecker symbol. The product topology on
X is compact and is generated by the sets

Xe={x: zx=1}, Xi={z: z =0},
which, therefore, also generate the canonical r-algebra of Borel sets in X, Let
Xk le'

denote the characteristic functions of the sets X, Xj. respectively.
We will realize all the complex spinor structures on L? spaces of C-
valued functions on X or direct integrals thereof. As a motivation, let us realize
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the standard finite even-dimensional spinors in this manner. For each positive
integer N consider the veclor space

Vw={f:Z¥ = CL
Then, clearly, dim Vy = 2V and the operators

Jef(x) = —i(=1)=F+51 flzsd¥)

P (@) = ()P i)

where 1 < k < N, z € Z¥, addition is modulo 2 and the §* is the standard
basis of Z&', define an irreducible complex representation of the Clifford algebra
C(R2Y) -the unigque one modulo equivalence. The unitarity is relative to the
natural L? inner product in Vy , which in turn is associated to the measure on
ZY where each point has measure 1.

When & = oc, in order to reach all equivalence classes ome must allow
for more general measures on the group X = E3° and replace C-valued functions
for seclions of appropriate fiber spaces over X. Three natural but very different
measures on X Lhat generalize the finite case are:

The Haar measure of X, py.

The Fermi-fock measure on X, pa, supporied on the discrete set &
with each point having measure 1. More generally,

The Canonical measures, g ;s , supported on translates of A.

The first is invariant under all translations in X while the second s invariant
only under those from A, Tt is ua that leads to the representations that appear
most in QFT, however implicitly. It ignores all the points = with infinitely many
1 = 1, or “occupied states”, on the basis that the total number of fermions must
be finite. In any case, (2.1) define irreducible representations of € on L2(X, ux)
and on L2{X, pr;,+a) of very different nature.

The next theorem is Garding and Wightman's mainp result in [9], rephra-
sed to fit our setting, A sketch of its proof is included in an appendix,

Recall that two measures A, g on the same Borel algehra of sets are said
to be equivalent if they have the same sets of measure zero. Equivalently, if there
exists locally integrable functions, denoted by dA/du and dp/dA, such that for
any measurable set A. these Radon-Nikodym derivatives satisfy

dA
A{A}=Lﬁdp, u{A}:fA% da.

p is said to be guasi-invariant by A if p is invariant under translations by
clements of A.

MNow, consider triples
(s V. €}

where

® 4 is a positive Borel measure on X, quasi-invariant under translations by A.
e V={V.}.ex is a family of complex Hilbert spaces, invariant under transla-
tions by A and such that the function z — v(z) = dimV; is measurable.



GALINA, KAPLAN, AND SAaL 461

e (= {er: k € N} is a family of unitary operators e(z): Ve = Voo = V2
depending measurably on = and satisfying

ci(z) = exlz+8*)

(2.2)
ex(z)e(z+8*) = q(z)c(z+6')
forall §€ A and almost all z € X.
We will often write (g, v, C) instead of (p, V,C), in view of the fact that
changing V unitarily will yield equivalent representations. Given such triple,
consider the Hilbert space

(=)
VY= fx Vi dulz)

and define aperators on V' by

ke
Def(a) = =i-prermees [HEED ) Slaes
(2.
k
Kf@)= (et JHEE) () piaiat

where an [ € V is regarded as an assignment z+ f(z) € V; and all sums are
modulo 2.

In the real Hilbert space H. we fix an orthogonal basis with a given
pairing, {hs, A} }, and define an R-linear

T = Ty ey - H — Ende(V)

by
‘I”It}l = Jp, 'ITUI:‘} = JI.,

Theorem 2.4. The operators Jy, J}, J2. Jy, ... are mutually anticommuting or-
thogonal complez siructures and, therefore, ® = W, . r) ertends to e unitary
represeniation of © on V. Conversely, every spinor struciure on a separabie
complexr Hilbert space is unitarily equivalent to some 7, . ).

The proof of the theorem is in the appendix.

Remarks. (a) Garding and Wightman give a recursive formula for all possible
systems of C's, hence Theorem (2.4) gives an effective parametrization of all sep-
arable Cliford modules. Although the malters of equivalence and irreducibility
are not resolved, a lot is known in interesting special cases [4],[9],18].

{(b) The relation between the operators Jy, Jp and the operators ag,aj
of the Canonical Conmutation Relations:

1 g
ay = 5 i i) af = 5 (=T +idk)
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{c) When v(x) = 1, ¥, can be identified with C, the direct integral
becormes
Vo= L3( X, )

and the cx(z) 's are just complex pumbers of modulus one depending measurably
in . The Fermi-Fock representation corresponds to the triple {ua.1.{1}].
Von Nenmann's first examples of non-Fock representations, were apecial cases
of infinite tensor products, which in our notation are the ¥, 5 g2y, wilh

(~1)s
cg!:z}:wk ) ;

the we being fixed complex numbers of absolute value 1. In particular,

Viue 110

with px the Haar measure, is one such. As we shall see, this has a natural
realization on L? of the circle.

(d) While Viuy 1,0y and Vi, 1,0y are given by the same formulae
as those of the finite-dimensional case, namely {2.1), they arc inequivalent: in
the first, the characteristic function of the point 0 = (0,0,...) gives a non-
zero vector annihilated by all the operators af, while the second has no such
“vacuum” vector.

{e} Although the GW representations can be discussed more intrinsically
in terms of the “Clifford-Weyl systems™ of [3|, we prefer to keep {Ay, )} as an
implicit parameter, to be in tune with previous publications, One must keep in
mind that this is not just a notational issue: different basis may yield inequivalent
representations (cf. Berezin’s notion of G-equivalence [4]). We will return to this
imsue in ED.

Fur further results on the Garding-Wightman parametrization, see [4](8].

3. Real and Quaternionic structures

If [ is a real module over €, then C®U is 2 complex module over C® &, which
comes with the €-invariant decomposition

Cal=Uggill

7 is an invarfant reaf form of CRU . Conversely, any module over CRE with an
invariant real form determines a real module over € simply by restriction. Hence,
parametrizing the invariant real forms of the Girding-Wightman modules up to
unitary equivalence, is the same as parametrizing the real representations of €
up to orthogonal equivalence.

The first problem is equivalent to that of determining the C-antilinear

operators
S: V=2V
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which commute with the action of € and such that
(3.1) st=1, 1851 =1A

The invariant real form associated to S is then {v € V : Sv = v} and §
becomes complex-conjugation relative to it.
The map
e F=1341

where the sum is modulo 2 and 1 is the point with ones in all slots, is an

involution of the set X . which switches all zeroes to ones and viceversa. There
are induced involutions on subsets of X and on [unctions and measures on X :

A={z: z€4), [fle)=r1), WA)=uA).
Theorem 3.2. my, . ¢) admils an tnvariant real form if and only 1f the measures
w and fi are equivalent, &#(z) = v(z) for almost all x € X and there enist a
mensurnble family of antilinear operators
riz): Ve Va2V,
that preserve norms and satisfy

rizir(f) =1

(3.3) r{z)eu(®) = (=1} er(z)r{z+8)

forall ke N and almost all z € X,
Proof. Tl u and i are equivalent, » = # a.e. and v{z): Hy —+ H: s as stated,

then Lthe operator P
Sf(x)= ﬁf—fﬁ%rtz}rm

is an invariant real structure in V{p.»,C). Indeed. it is clearly antilinear, it is
norm-preserving because both r(z) and

(3.4) Tf(x) = :—E—-}ﬂf (%)

are so, and

$4(0) = || D r(a)S1(8) = r(ar()f (@) = S0
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showing that S is involutive. As for invariance,

Sheflz) =

- \fj:j'é;"’]*(z]c @)

du(E46%)
dpr)

= _i{_1}n+...+-‘ra.. 1 CJ:{W}T{:F'FJ;J Jdﬁ{£+€ }f{ -i—rsk]
k @
= —ipttn ae) \[BEED) riesat) (g eV Gl
i ke
= i1t g (o) ﬁﬁi SF(z+d*)

= JySf(z)

Finally, since J.f(z} = i(=1)"*Jef(z) nnd S(pef) = —pS[ for pp(z) =
(=1)2* , it follows that SJ = J,S as well.

Conversely, let S be an arbitrary -invariant, antilinear operator on
V = [y Ve du(z). Let Ny, Ny be the operators on V' defined by

sal=T)nrheayiid (=1) e (x)r(z-+8) f(24+6%)

N, = ajay Ni =apa}

As it can be seen in the proof of Theorem 2.4 (see the Appendix the details)
N and N[ are projections on V', moreover they act as multiplication by the
characteristic functions of the sets X and X = .fk, respectively, Since
2ay = J, +idy and 2ef = —J + 1Jg, one obtains the relations

(3.5) Sap = —a;S, Say = —a}5, SNy = N[5

If L, denotes the operator of multiplication by the C-valued bounded measur-
able [unction &, the third equation in (3.5) implics that

(3.6) SLy = L;S

for ¢ = xr of ¢ = xi. Since the X, generate the o-algebra of Barel sety of
X, (3.6) rmust. hold for any measurable characteristic function and, a fortiori, for
any essentially bounded function . As a consequence,

(3m Supp(Sf) = (Supp(f)J

for all f & V. Indeed, if F = Supp(f), then Supp(Sf) = Supp{Sixrf]) =
Supp(x#S(f)} C F; since § is an involution, the equality follows,
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In order to see that g and [t are equivalent, let E C X be a measurable
set contained in some E, = {r: w{z) = n} We can identify all V., z € E,,
with a fixed Vj,,,. Let u be a unit vector of ¥},,) and define f & f? Ve dulx) by

xelziu € E,
”‘"""{u % § En,

On one hand,
IF12 = fx (f(2), f(2))dulz) = f,; (f(2). flz))du(z) = fE (u, w)du(z) = u(E).
On the other, because § preserves norms and Sf(x) is supported in £,
A2 = IIS11? = f (Sf(z), 8 f(2))du(z) = f (8f(x), 81 () du(z).
X E

Therefore p{E) = 0 = w(E) = 0 for any E contained in some F,. The last
restriction can now be dropped and the implication be reversed, so u and fi are
indeed equivalent,

To show that #{z) = v(#) for alnost all z, suppose the contrary:
In <o, m<nand EC E, such that u(E) > 0 and £ C E,.. Since p
and i are equivalent, u(E) > 0. As before, Identify all V;, z € E,, with a
fixed Vin). Let {v;} be an orthonormal basis of Vi, and F C E a measurable
subset, Then

filz) = xrplz)y

are elements mutually orthogonal in V. IFf we let "V be V regarded as a real
Miibert space with the inner product Re(u,v), the f; remain orthogonal in V.
Since S is antilinear and preserves norm,

(8Fi.8F5) = fi ;) =0.

for 1 ¥ 3. Because of (3.7), the Sf; must vanish off ¥, and we can conclude
that

[ ReAS (@), S1ENdatz) = [ RelS ), SFite)dutz) =0
F F
Since g is equivalent to G and F' is arbitrary, this implies that
Re(S1,(2), 813(x)) =0
almost everywhere in E. On the other hand,
itF) = [[1fa)Pduta) = j; i) ()
= 152 = USA = [, |SAPdutz)
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shows that the |Sf;(z)| cannot vanish identically. We conelude that {5f;(x)}7,
is a linearly independent set in ¥, for almost all z in E ¢ K. which is a
contradiction since m < n.

We may now assume that V; = V:. so the operator

di(z)
e e

is well defined. It is C-linear, unitary and satisfies the relations

Tf{z) =

(3.8) T? =1, TNy = NiT

The first is clear while the second follows from

T:‘l’af{z}l—ﬁg-if%a"ﬂff .1.l {: kf JF(E) = ‘/‘jpﬁz}ﬂ ) f{F)

= Ny T'fiz)

The product
R=_8T

is then antilinear, bounded and commutes with all the Ny, and &) . This implies
that & acts fiberwise, as an antilinear operator-valued function r{z}. In fact,
if B would be C-linear, rather than C-antilinear operators, this follows from
the Spectral Theorem, In our case we urgue as follows: the condition that A
commutes with the Ny and N implies

RLy = LR,

for any essentially bounded real-valued function . On cach £, we can assume,
as before, that all "V, are the same "V, so it is enough to definc r(z)v for
v € "Vigy. ldentifying v with xg, (z)v. Rv is an element of

f Vedulz)CTV

"

and, therefore represenzable as a Vi-valued function z v~ {Ru)i{z). Now
r{ziv = (Rv){x)

defines our desired operator-valued function. Clearly, r(z) is antilinear, preserves
norms. and satisfies

riz)f(z) = (Rf)(x) = (STf)(z)

for wll f € V. Because T is an involution, this is equivalent to r(z)(Tf){x) =
Sf{x}, yielding a pointwise formula for S:

di{z)
dys{z)

(3.9) 5f(z) = () f(2).
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Since

- " fd:'s[:nl fd#(r‘.i " B .
flz) =8*f(z) = mr{x}l d#{ﬂf{r}{ﬂr]}} = r(zjr{z)f(z)

wo obtain r(z)r(£) = I for almost all z € X'. Because S comunutes with the
Ji, Ji., themselves,

rig)(- 1t teetle (2) = (TR sz,
must hold a.e.; the calculation is straightforward. -

All this applies to the finite, even case as well. A measure p on Z{ s
guasi-invariant if and only if every point has non-zero mass and any two such
measures are equivalent. Take p({z}) = 1, v(z) = 1 and c{z) = I for all
z € ZY. From (3.3) one deduces that

(1) = (-1)=F* r(0).
Assuming, as we may, that r(0) is the standard conjugation on T, we see that
V splits over R il and only if N(/¥ +1)/2 is an even integer, i.c., for
N=0,3 (mod 4)

as we mentioned earlier.

Assume now that V' is infinite dimensional and separable. The axiom
of choice implies that there are always plenty of solutions r(z) to the equations
(3.3}, whatever the data. Indeed, let X = X/ ~, where x ~ y if and only if
y=4%or -y € A. Choose an element z, € p from each class p € X and
define r(z,) in an arbitrary manoer. Then

rifp) = "[39]'_"‘ "'{Ip"'ﬁ} = {'l}kﬁ{rp}'r{mp]ﬂk{fﬂ
defines r(z) for all z. However, most of these solutions -and often all those
associated to a given €, will be non-measurable.

Corollary 3.10. If p is discrete and V' is drreducible over C, then it is trre-
ducible over K. In particular, this is the case for the Fermi-Fock represeniations.

Proof. If i is discrete and V|, , ¢y is irreducible, then g is supported in some
set of the form z,+A [8]. Then [i is supported in (z,+AJ, which is disjoint
from z,+4A and, therefore, cannol be equivalent to s, "

The proof above is based on results from [8],[9], involving relations among
the ergodicity of the measure 2, the nature of its support and the irreducibility
of m(uve). In the next result ergodicity is used in the statement, so we recall
that j is ergodic under translations by & if any A-invariant set has measure
zero or its complement has measure zero. This is equivalent Lo asking that every
essentially bounded measurable funclion invariant under translations by A {in
the sense that f(z+4) = f(z) ¥4 € A and a.n. = € X) is constant (i.e., flr) =¢
for some ¢ and a.n. = € X ). In our case, both the Haar measure py and the
discrete measures jiy_+a are ergodic for elementary reasons. Worth mentioning
here 18 the fact thal if p is quasi-invartant, discrete and ergodic, then

T T
for some 1, € X [8]. This is used in the last proof.
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Corollary 3.11. Suppose that ¢ is ergodic and that dp{z+6"*}/dp(x) is bounded
away from zero and infinity as a function of z and k. Then Vip,1,{1})
is irreducible over B. More generally, this i3 true of all the fensor product
representations V{p, 1.C¥).

Prosf. When » = 1, the operator-valued function r(x) of the Theorem is com-
plex valued and (3.3) implies r(z+6*) = (=1)*r(z). By hypothesis, 3C > 0
such that

l fdpfz+£" }'

c dpu(z)
for all k& and almost all X. For any measurable essentinlly bounded function
like r{z), the difference r{z+8*) — r(z) must go to zero as k —» oo, at least in

measure (see e.g., Theorem 4 in [8]). This is incompatible with that |den.r.11.y and
r being invertible.

We conclude that Vi, 1,11y has no invariant real forms. That the same
is true for temsor product representations follows by a similar argument, using

that for op(z) = wi‘l}“ i

_grEg#l
cx{Z) = ”f: R c;,{:r}_L

so that {3.3) becomes
r(z+d%) = {—ljkw:'['”’k riz).

The irreducibility over R follows from the irreducibility over L, which in turn is
imnplied by the ergodicity of 4. Indeed, any complex linear operator commuting
with € must commute with the projection operators Ve and, therefore, consist
of muliiplication by a function f{z). That the operator commutes with the
J's themselves implies, as in the proof of the Theorem, that f{x) is invariant
under translation by all elements of the subgroup A. By ergodicity, f must be
constant. L]

We next give a “normal form” for spinors of real type, in the case when
the multiplicities #{z) are 1. In this case one may set

V:=C

for all z and the direct integral defining V' is an ordinary space of complex-valued
square-integrable functions:

V=Vuve =LX n).

Like any space of complex-valued functions, this has a canonical real structure,

namely
Ve=L%X,pa={fcV: flzr)eRae}

for which the corresponding S-operator is

(Rf)(z) = f(=).
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As we will see, this cannot remain invariant under 2 non-trivial spin structure.
Consider instead the real structure

(3.12) Suf(2) =T = | jﬁ% .

whose space of real vectors can be written as

313 VE=L(XuR={feV: Jx)Vdulz) = [(&)dulE)).

Proposition 3.14. m, ¢ leaves L*(X, u)® invariant if and only if
cx(F) = (=1)%ex(x).

In such case, r(z)f(z) = Rf(z) = :l"l‘,_:.'i

Proof. For any m, ..c

m
JeTflz) = —i[=1 )5+ &1 d't:[:t-:; cx(z) Tf{x+8%)

=g _1-.{_1]::1+—-+:t.—1 ﬂ#[:} c:.{z‘} 1 i :—'i%:'_‘lr:::f{i'l‘-ﬁk}

—

£
:
3

S SR 7o R

dp(x)
S0
TITf(z) = i—‘f{{iﬁmﬂﬂ
= du(%) a1 = dﬂ{i+§l} " -
=V auln I g @@
k

L —f{_[}l". r..-+n-:1 ﬂdﬂ_}:&:ﬁ } {“l]'*lﬂn[-'-‘}.f{-r-l-ﬁ"‘}
=j&f{1’?

with

Gel2) = (~1)* oy (2).
Now, JuS, = JuRT = Ju,TR = TJiR, since T is real. On the other hand,
looking at Lke formula for Ji, it is clear that RJ R = Ji, with &(z) = —ei(z).
Therefore
Sy Se =RTHTR= 1]
with :
d(x) = &lr) = -&(r) = —(-1)*+g (@) = (-1)* e 7).

In particular, S, commutes with the Ji iff ¢, = &, which translates into the
condition of the Theorem. [ ]
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Remark. The assumption v = 1 can be dropped altogether, provided we mea-
surably fix a real structure o(x) on each Vg, invariant under translations by
A and checking, and replace B and bars for o{x); (3.14) remains true. For the
next result, however, the restriction » = 1., which iz a property of the equivalence
class of a representation, seems essential,

Theorem 3.15. Every pair {7, 5) consisting of a unitary representation of €
with v = 1, together with an invariant real structure, is unitarily eguivalent to a
GW representation on V = L*(X, i), having L3 X, p)® as inveriant real form
and multipliers satisfying cx(2) = (~1)%ex(x)-

Proof. Realize m as a GW representation my,)¢;. By (3.2), u is equivalent
to j, the derivative du(%)/dp(r) exists a.e. and the operator T' of (3.4) is a
well defined unitary operator on V. Let r{z) be the operator-valued function
associated to (7, 5),

r(z)(f(z)) = (STf)(z).

Since each r(r) is antilinear and norm preserving, R ov(z) is a linear, unitary
operator on Vz = C and therefore has the form

Ror{z) =w(z)T
for some measurable w @ X = T. We are using ¢ to denole composition of
operators when there is some risk of viewing r(z) itself as an ordinary C-valued
function.
Because R is just plain conjugation and r{z) is antilinear, we also have
r{z)o R=w(z)l.
Because r{z)r{f) =1, one has

Ror{z)=Ror(z) ' =Ro(r(z)oRoR)"' =Ro {w(z)f o R)™" = w(x)I

g0 Lhat
w(z) = wlzx)

for almost all . For —7 < 0 < set Ve = ¢*f . Then
u(z) = v/w(z)
i a measurable T-valued function satisfying
u(z)® = wiz), ulE) = ulz).

The operator

Ufiz) = ulz) flz)
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is unitary from V to V' and

USU~f(z) = u(z)r(z)TU™ f(z) = ulz)r(z) %u{i]“ﬂi}
— || B ey e Bat=)Bg @) = || BT (2
=\ (o)) W) RI(8) = || S RI2) = RTf(2)
= S5,f(=).
so that 5§ = U-18,U. ]

Corollary 3.18. [f a real form of L*(X,u) is invarant under some spinor
structure, then it is of the form UL*( X, p)®U~ for some unitary U'.

Remark. If = is irreducible then S is unique modulo sign. This follows from
Shur's Lemma applied to the intertwining operator 5,53, which is C-linear.

The “simplest” infinite-dimensional Majorana spinors are those in
V(ux,1.{p}) with px being the Haar measure of X' and the p; given by the
dyadic Rademacher functions

plz) =1, pagsrlz) = (1), pyaalz) = {=1)%w43,

Theorem 3.17. Ty 1.} 18 irreductble over C, but

LHX™® = {f e LXX): f(2)=F(z)}

is an invariant real form. The real representation obleined by restriction te
L} X)® is irveducible and does not arise from any representation of C2 € by
resiriction of the acalars.

Proof. The irreduclbility over C follows from the ergodicity of the Haar measure,
exactly as in the proof of Corollary (3.10).

It is straightforward to check that the functions ¢, satisfy (2.2) and the
conditions of Theorem (3.14), so the comresponding Ji, J;, must leave the real
form VR invariant, OF course, this can be deduced by direct calculation as well,
VE must be irreducible under €, since any closed invariant subspace yenerates
a closed € @ €-invariant subspace in V.

Finally, suppose that the representation of € in V® could be extended to
one of C9€ in V® itself. Denote by J the operation representing multiplication
by v/=1: J is an orthogonal complex structure in V* commuting with €. Its
unique C-linear extension to all of V = VR & ¢V® is unitary and commutes
with all the Ji,J. As we have already mentioned, this implies that [ is given
pointwise, by an operator-valued measurable function: (Jf){z) = jlz)f(z). In
the present case, j(x) is complex valued. Since j(z)}® = -1, we can write it as
j(x) = e{z)i for sume measurable ¢ : X — {£1}. The condition for J to leave
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invariant the real form V¥ and to commute with the Clifford action amount to,
respectively,

e(2) = —e(z), e(x+dx) = ()
for almost all » and all k. The sccond cquation implies that e is actually

constant on each A-equivalence class. By ergodicity of px ., £ must then be
constant almost everywhere, contradicting the first equation. =

Corollary 3.18. Assume p2= i, Then

fa) LA X, w)® is a real form of L2(X, p) which is not unitarily conjugate
to L*(X, pr

(b) If = is a spin representation on L2(X, y), then RaR is another,
which 13 not unilarily eguivalent to .

Proof. Let {Ji,J{} represent a spinor structure on L*(X, u), which we can take
in its GW form (2.3) with parameters C. Let Pei(z) denote the multipliers for
the representation RJLR. By inspection, RJ R = Jy, implies ®ey({z) = —ex(z),
while RJ{R = J implies Rep(x) = ep(x), which is impossible since |ey(z)] = 1.
n
For more on the nature of the spinors that split over R, see §5.
Now we will apalyze the quaternionic siructures on spinors. Hecall that
a quaternionic structure In a €-module V is a C-antilinear operator

Q: V=V
that preserves norm, commutes with the action of € and satisfies
Q*=-I

Theorem 3.18. w, . ¢ admits an invarant quaternionic structure if and only
if p and i are equivalent, & = v almost everywhere, and there exist a measurable
family of operators

glz): Ve ==V,

which are C-antilineer, preserve the norm end satisfy

x)glE) = -1,
(3.20) ql }'i'fi]' r o
g{z)e(E) = (—1) ce(z)g(z+8k)
forall k e ™ and almost all z € X .

Proof. The argument exactly parallels that of Theorem 3.2, with the equation
r{z)r() = I replaced for g{z)g(Z) = —1I, as it fits the condition @* = —I. We
will not repeat it here, but will highlight the pointwise formula obtained for the
quaternionic structure, for later reference:

(3.21) Qf(z) = g{z)T f(x)

where T' is as in {3.4). [
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Corollary 3.22. If i is discrete and my, o 9 irreducible over C, then it
admils no invariant quaternionic structure. In particular, the Fermi-Foek repre-
sentalions are of complex type.

Proof. As we mentioned in (3.9), discreteness of g and irreducibility of 7, .0
implies that u is supported in some translate z,+A. Sinee (2, +AJN(2,+A) =
0, p cannot be equivalent to 4. (. ¢) cannot admit then any real or quater-
nionic structures and, therefore, is of complex type. [ ]

There are families of representations m, , o) whose u and # are consis-
tent with checking, so that the operator T' is a well defined unitary involution,
but whose cx(z) do not transform properly. Indeed, this is the case for m,., 1 (1))

and, more generally,

Corollary 3.23. The tensor product represeniations 7, . 1 ce) ere all of com-
plex type.

Proof. The Haar measure is ergodic and satisfies the condition of (3.10). Hence
the same argument as in the proof of that Corollary shows that there are no
moeasurable solutions g{z) to the equations (3.20). -

Most interesting are the quaternionic structures invariant under a spinor
structure with v = 1, i.e., when the fibers V; have real dimension two and,
therefore. do not admit any quaternionic structures themselves. To describe
them, recall that in this case V = L¥(X, u), which has the space of real-valued
functions as a (non-invariant) real form; let, as in §2, denote the conjugation
with respect to it by v~ 0.

Proposition 3.24. If =2 p, v=1 and for 0.6. =

a(z) = —e,(2), @) = (—1)*eu(#) VK22,
then
Q@) = (-1 2 7@

is a quaternionic structure in L2(X, p) invariant by =(,1,c). In that case,
g(z} = (-1)"R.
Proof, Both TJy = TAT and BJ, = RJLR are GW representations whose
multiplier operators are, respectively,
Tep(z) = (1) 'el®),  Polz) = —al2).

Therefore, 2
Ji == TRJRT

has

au(z) = T(Roy)(x) = (=1)* 1 Bey(2) = (=1)** (—ca(#)) = (- 1)*en()



474 GaLiNa, KAPLAN, AND SAAL

as the parameter C. The operator ®(x) = (—1)*'] anticommutes with J; and
Ji and commutes with Jp and J for all k > 1, Since @ = ®PRT und, clearly,
PRI = R¥T = -ATd,

j‘; k=1

QJ.Q = BRT.J.3TR = —®RTJ,TR® = —bJ, & = .
- Jx k>1

and similarly for the Ji,. It follows that the ex's for QJpQ are

Rea(r) = &(z) = —a(F), op(x) = —&(z) = —(-D)Fe(z)  (k>1).
Hence, the representation commutes with € if ¢,(z) = —ey (%) and efr) =
(=1)5+15x(Z) for k > 1. -

Remark. Once again, (3.24) holds for arbitrary v, provided we measurably fix a
real structure o(7) on each Vy, invariant under translations by & and checking,
and replace R and the bars for o(z) thronghout.

Theorem 3.25. Every pair (7, Q) consisting of e unitary representation of €
with v = 1, together with an invariant guaternionic structure, 18 unitarily eguiv-
alent to & GW representation on L*(X, ) having Q1 as invariant quaternionic
structure.

Proof. Realize 7 as a GW representation my,q¢). By Theorem (3.19}, u is
equivalent to j, the derivative dp(£)/du(Z) exists a.e. and T is 2 well defined
unitary operator on V. Let g(z) be the operator-valued function associated to

(= &),
g{z)(flz)) = (@Tf)(=)-

Since each g(x) is antilinear and norm preserving, It o g(z) is a linear, unitary
operator on ¥V, = C and therefore has the form

Roglz) = alz)]

for some measurable a : X — T, Because £ is just plain conjugation and g(z)

is antilinear, we also have g{z)} e R = a{x)l. Because g(z)g(#) = -1,
Rog(z) = -Rog(z)™' = —Ro(g(z)oReR)"' = ~Ro(a(z)IcR)™' = —a(z)I,

s0 that
alf) = —alx)

for almost all z. If we set 8(z) = {—1)" a(z), then
Rogiz) = (-1} 8(x)I, qlz)oR=(-1)"8=z){, A& =Alx).

Define

u(z) 1=/ Blz),
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where for any —7 < 8 <w, Ve? :=e'§ . Then u(z) is a measurable T-valued
function satisfying

u(z)? = (), u(#) = ufz).

The operator
Uf(z) := u(z)f(x)
is unitary from V to V. Ope has

UQU="f(2) = wla)a(a)TU1(2) = wlz)ata)y g huce) 12

= | gty R RS 2

d""l:i'] E T =
Tt @) B RS (2)

- (=)™ 1}1‘1‘5 ulx)Bl@u(z) RS (£)

= (=1)y" du(z) u{r)u(zr) ulzulz f
=(-1) dﬂ(]{](]{]flﬂﬁi

= Ifdul'ﬂ

={(-1)"RTf {I’.' Qf(x)

Corollary 3.26. If a quaternionic structure on L*(X, ) is mvariant under
some spinor structure, then il iy unitarily equivalent to Q.

Remark. I = is irreducible then there is a most onc invariant @ up to sign. This
follows from Schur's Lemma applied to the operator @&z, which is C-linear and
commutes with =. We will ignore the sign ambiguity and talk in that case about
the unique quaternionic (or real) structure., real or quaternionic structures, see

£6.

4. Examples in L*{T)

The representations
g = M8
where py is the Haar measure, are realized on L* of the circle T, as follows.

‘qu
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from X to the unit intervel [0,1) is a bijection off a countable set. Under it,
the Haar measure gy corresponds to the Lebesgue measure on [0,1). Hence,
as a measure space, (X, ux) 8 a union of (0,1} with a set of measure zero, or
Lebesgue space. The same is true for the circle T; in this case, the maps
Hp; i T -+ Ez
such that -
; ilt)
Tzeld B
k=1
induce an identification
(4.1) L¥(T} = L*(X, px).
As a topological apace, however, X i3 homeomorphic Lo the Cantor set,

el
Tk
I — E E‘i‘-'

=1

via

X is sometimes called the Cantor group [12]. The two topologies are related
by Cantor’s function. We will often switch between T and X, but must keep
in mind that translations in X do not correspond to rigid rotations in T -they
preserve the measure but not the metric. In the switching, Cantor’s funetion will
not be used explicitly, thanks to the fact that at the L2-level, it is like switching
between Fourier’s and Walsh' basis.

The group of unitary characters of X -the continuous homomorphisms
X —+ T, can be identified with A, the subgroup of X of clements with finite
support. The character corresponding to o€ A is

Balz) = (~1)25 2=,

In particular, .
X = {"i’m]‘ne.ﬂ
is an orthonormal basis of L2(X, px). Via the identification {4.1) the ¢, become
the classical periodic Walsh functions wy, 1wy, ... , defined by
(4.2) walt) = (—1)2oam =100

for ¢t € T and n = ¥ oo, nx2¥ is the dyadic expansion of the integer n. The
coreespondence is

o0
Wy !ﬁn iff = Zﬂ'k+12k-
k=0

We will refer to both the wy, and the ¢, as Walsh functiops,
Of course, X # T, since on T the ¢, are not even continuous. Periodic
Walsh functions jump between 1 and -1, with the jumps occurring at the points
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of the form j2* with j.k € Z. As an illustration, here is wg(e?*") = (—])f+:
(¢ @s1452 ) for 8> 0:

w
] —— — —
[ TERYS POUF STOPPRRS Lo ;S AR P e P SRR et -
-1
Define

e R
and 73 f(z) = f{z+6%) for £ € X. Then w¢ is defined by
e = =iy 4T, Ji = dorcamy.

For simplicity, we shall refer to these representations as spinor structures, on
L3(T). Since the Haar measure on T is ergodic and v =1,

Proposition 4.3. The representations (me, L2(T)) are irreducible.

Remarks. (&) The operation £~ £ in X corresponds to the symmetry in (0, 1)
with respect to the midpoint which, on T € C, becomes ordinary complex
conjugation. The real form V¥ is
TR = {f € LY(T) : J(1) = f(D)}
and mp leaves it invariant il and only if the ¢ 's, which are now functions from
T to itseif, satisfy -
ol = (—1)en (D).

An analogous statement can be made for the invariant quaternionie structure

defined by o
Qf() = (-1 @
{b) The function (=1)"® is the periodic Haar’s mother wavelet.
{¢) L*(T)®, the typical spin-invariant real form, is the real span of the
Fourier basis {#*""%**}, The ordinary real form L?(T)g is the real span of the
Walsh basis {wn}.

Infinite matrices of 0's and 1% are a source of an interesting funily of
examples,
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Definition. The representation (sc, L*(T)) is a charseter representation if
£c X.
Explicitly, the assumption is that

ckizj = d’-;-* {t} = {—I}EJ‘?" ";IJ

for appropriate +* € A. These can be can be regarded as the rows of an infinite
matrix

»
(44) 7=1"

e

of 0's and 1's with finitely many 1's in each row. Regarding X as a Zp-vector
space, A is a subspace and the set of such y's can be identified with Endz,(A}".
Giiven such v, define unitary operators on La(X, px) by

TP f(2) = —ighga-1 4 (2) f(z+55)

J;.—_rl'f{'rj = ¢a*+7‘{$}f{$+a‘kjr

2o T T
Proposition 4.5. J.,J}". define a spinor representation if and only if
(4.6) ¥ =, E=0

Jor all k, €. In that case, they act on the Walsh basis by:
b = ~i(=1) " Ppprbpob-ts I Pa = (=1 ™ skt

The corresponding spinor representation 77 iz irreducible.

I
(4.7) Y ovF=k mod(2) vk

then 77 45 of real type and has
(MR = {f e L*(T): f(z) = F ()}

as the unigque invarient real form.
ff. instead,

(4.8) Z"':f =0, Z*;f =k mod{2) ¥k =2

3

w7 is of quaternionic fype and

Qf() = (-1)¢ 7(B),
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is the umique tnvarianl guaternionic structure.

Proof. The operators Ji. Ji are of the form (2.3}, with the characters ¢, {z] =
®yu (2)] as multipliers. We verify equations (2.2):

(2 +8%) = doa(3+6%) = Gop (Vb (2) = (-1 50 60 ()
= (=1%o (z) = dye(2) = exlz)
= eulo)"

since the ci are real. Also,

cxl(Ter(a+6%) = dys ()9 (248%) = by (2o (2)by1 ()
= or ()b (R)(=1)Th = (=1)" §o (2) s (2)
= o (T8 )by (2) = ci{2)enlz+6")
It iz elear that the converse also holds. The calculation of the action on Walsh
functions is straightforward and irreducibility follows from (4.2).

According to Theorem (3.1d), 7 will leave L*(T® invariant if and only
if ex(Z) = (—1)%ck(x), which translates into the equation

o (#) = (=1)" 6 2).

Since s (2) = 6.4 (142) = 6,4 (s (2) = (~1)25 7 §.4(2) and § is real, the
equation is satisfied exactly when Eiﬁ = k mod(2), i.e., when 5 € [g.

A similar computation shows that =7 leaves @@ invariant exactly when
~ € I'y. The uniqueness follows from the irreducibility of =7. =

Because of (4.6}, the columns of v also involve finitely many ones, so
v € Endz, (A). Define
I'={g€Endz,(8): 7f=1f, 2 =0}

g = {g € [ : satisfying (4.7)}
I'g = {ge: satisfying (4.8)}

In other words, + € T’ belongs to [z if and only if the parity of the number of
1's in the kth. row (or column) squals the parity of k, while v € 'z if and only
if the same condition holds except for the first row, which must have an even
number of 1's.

For ~ =0, 77 is of complex type. by (4.5). Set, instead,

bo10) [BOO 00 0 0

0D oo0o 0 _
B=|,000[ #=|0o 0o B 'T_ggﬁg

0000 s :
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where bold letters denote matrices and non-bold sealars. Then 8 € 'y and
+ € T, so that #7 is of real type while 7 is of quaternionic type.

For any (vector-valued) function f on X define
8.f(z) 1= par (x)(f(z+6*) = f(2))

where, as usual, addition in X is modulo 2. These differcnce operators are
natural in two ways: they are the partial derivatives in X = Z3 once we fix
the motion from 0 to 1 as positive and, via X = T, the ordinary derivative
on T with respect to the angular parameter is f'(8) = limp_o 258 f(z(0)) or,
equivalently,

d fe=
= g‘; 2*[:'231-4_1 — ).

This follows by taking incremental quotients of the form Af = (=1)"2% and
noting that the translation = — z+4% in X, corresponds to the operation
6> §+(~1)%27% in T.

This suggests some deformations of the derivative operator that, aside
from the obvious one Y7o, ¥{28441 - Ok}, are directly related to spinors.
For example, the operators 8. can be expressed in terms of the JJ, J&' of the
special characler representation & = mg, . 1 11}); a small calenlation shows that
O = (g a1 JJF — JEIF'). Replacing now & by any m = me -indeed, by any =
whatsoever, one obtains corresponding “twisted derivatives”

d
dyf

=i lim 2%(@ a2 ST = JEJT').
kE—roe

We will not discuss these here but will concentrate inglead in the following frst-
order differential-like operators which relate directly to the main subjeet of this

paper.
Given a spin structure 7€ on L(T), consider the associated operators

D= ;Jha,“ Zk:ﬂ’ = J5 3

or, better yet, their linear combinations D = (—D'+iD)}/2, D' = (D'+iD)/2.
Evidently,

D:iakakl D*=§:a,‘=ﬁk.
k=0 k=0

We will not attempt Lo motivate them a priers. They are, of course,
linear wherever defined and annihilate constants, but their resemblance to Dirac
operators does not go very far because the & do not commute with the spinor
representation. Moreover, they -even their domain and spectra- depend on the
specific tepresentation, not just on its equivalence class,
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Proposition 4.9, For the standard Fermi- Fock representation the domain of D'
consists of {0} alone. For the characler representations, the domains of both D
snd 1Y arc dense in LAT).

Proof. 'The characteristic functions of points in A, ya, are an orthonormal
basis of Vi, 1,(1)), where the Fermi-Fock representation acts. Oune has

Bexe = (=1 Drtaais)

D'Xa = 3 _(=1)" ™ bgu X} (Xat+Xa+h):
e
This is nonzero only at the points of the form z =a, T = a+d. 50
D"Xu =CE Xat Eﬂg Xo+d®

k>1

with CF = D'y.(a+48%) € Z. Therefore
C =D'xala) =Y (1) ¢pulatilo) == Y duula)

k kgsuppia)
Since ¢ has finite support, d,«{e) is a constant, =1 or -1, forall & >> 0. s0
the series diverpes,
For the character representations, the Hilbert space is Vi, 1.¢), where

the ¢, form an orthonormal basis -or, equivalently, L*(T), where the w, form
an orthonormal basis, With ex = ¢ul,

Tef(2) = —ibgaryp @ F(E+8"),  Jif(2) = for sz f(z46%)
wherefrom
(4.10) Jitha = 'i':“'l}d"#'n:-l-'r"-w""v Jiba = (=1)™ $asbsar.
On the other hand,
Oxda = =2xal0) Py s
where, us before, y s the characteristic function of the set Xy, Therelore
Déa=2 ¥ (~)™*Xabosatser
k£ supplo)
- Z (=1)" (Gatyrsor = Pasyttror-1)
ke wuppla)
{4.11)
Dy =2 E (=1 Xk Ba iy 0t
ke suppla)

= ¥ (1) ™(Pappriot + Boigrias-)-
ke suppla)

D and ¥ are therefore well defined in Lthe linear span of the Walsh functions,
which is dense in L2. =
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Proposition 4.12. Let m = 7y, ,c) be a GW representation with p equivalent
te fi and let Do, DY, be the associated operators. Then

TD,T = -Dj, TD.T = -Dy
where T is the operator of (3.14) and 7 = T €) urith
&(z) == (=1)* e (E).

In particular, a spinor struclure = on L*(T) leaves invariani the real form

LAT)R if und only if
TD.T=D..

Proof. As we saw in the proof of (3.14),
TITf(z) = Jif(z)

with

Gulz) = (~1) Fex(2).
Since Ji f{z) = i(-1)**Jif(z) and T anticommutes with multiplication by
(—1)"*, one has y

TJTf(z) = =Ji f(z)
and, therefore,

Tﬂ.kT = ﬁ;, TﬂET = l‘ig.

These identities have a meaning and are valid for any GW triple, as long as T
is invertible. Under the same assumption and for identical reasons,

Toy =-aT.

Therefore .
TDT =Y TaxTTT =—y a8 =-D'
& &

and, similarly, TD'T = = D.
The last assertion follows by comparing the formula for & with (3.14)m

Corollary 4.13. If a spinor structure = on L2(T) leaves invariant some real
structure, then
Spec(D, ) = —Spec(Dy).

Whenever defined, either operator determines the representation. For
example, if {ax} arc the creation operators corresponding to a character repre-
sentation, then

201 f = Dy — P52 D (s f)

2upf = D, f = pp Dyldhsn ).
Remark, For character representations, the matrices of D and D' in the Walsh
hasis involve only 0 and £1, as is evident from (4.11). An intriguing aspect of

these matrices is that, although very non-symmetric, they appear to be always
diagonalizable. More remarkably, the diagonalization can be done over £ in
the sense that all eigenvalues are integers and all eigenspaces can be spanned
by integral linear combinations of the Walsh funetions, The diagonalizability
condition is equivalent to a combinatorial property ol the matrices v which we
have been able to verify in some, but not all, cases.
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5. Kaplansky's infinite-dimensional numbers

The real finite-dimensional division algebras, -associative or not, with or without
a 1, occur only in dimensions 1,2.4 and 8. If we require a multiplicative identity
and that [jadli = ||al| |ib]|] for some norm (be normed), one obtains the usual
algebras of real, complex, quaternionic and octonionic numbers.

In [13], Kaplansky proved that
there are no infinite dirmensional normed division algebras,

no “infinityonic numbers™. Of course, in infinite dimensions there are many
division algebras, cven associative and commutative ones, like R[t], as well as
many normed algebras, because 7 @ U = U for any linear space. But none will
satisfy both conditions simultaneously.

A normed algebra has no zero-divisors, a condition that is often used as
the definition of division algebra on the basis of the equivalence that exists in
finite dimensions. So, let us make our terminology more precise.

For the resl of the section, an alpebre is any veclor space I' endowed
with & bilinear operation *. It is normed if U is & real Hilbert space and
lwww|| = || |hw||. Tt is left-division if ¥u £ 0, 3vy"' such that

vp'w(vaw)=w  Vuw.
It is right-division if Yo # 0, vz’ such that
[W*U}tuilz‘w Yu;

it is simply diviston if it is both left- and right-division. An eguivalence, is a
change *++ = of the form

wiw = A(B(v) = C(w))

with 4, B,C € G(I7). Then, up to equivalence, one may assume that in a
division algebra there is a two-slded unit and that left and right inverses agree.

Kaplansky then shows that weakening “division™ to, say, “leRt-division™
does nothing in finite-dimensions, i.e., that

u finite-dimensional real left-division normed algebra, is n division algebra

and speculates about the situation in infinite dimensions. A counterexample
could claim the role of infinite-dimensional relatives of the guaternions and
oclondons. The first connterexamples were found 30 years later by Cueney and
Rodriguez-Palacios [7],[17].

Now we can describe all such structures, i.e., all the left-division normed
algebras on an infinite-dimensional separable real Hilbert space -or JILNA's, as we
will be calling them for short. Tt turns out that there are muzes of incquivalent
ones, ns implied by
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Theorem 5.1. The ILNA's are naturally porametrized up to equivalence by the
triples (p,0,€) of 3.15 and 3.15. In fact, if U is a separable real Hilbert space,
then there ts a one-fto-one correspondence between real representetions of © on
U7 and structures of (LNA% on UJ having a lefi-identity.

Proof We only need Lo show that such algebras are in correspondence with the
real orthogonal representations of €5 the examples of [7)[17] wers alao implicitly
or explicitly built from the CAR’s, the now ingredient here being the role of the
GW parametrization.

Let ([f.%) be given, where L/ is a separable Hilbert space. Pick a unit
vector v, € I/ and define viw = v ' % (v w), where we drop the subscript L
in wy'. Then w,dw = u;"'# (t,*w) = w. Therefore, up to equivalence, we may
assume that » has a left-identity element ¢, ie.,

CHu=1u
for all w. Let K denote the orthegonal complement of ¢ in 7. Then
alhlv = h+xw, (h e H)
defines a unitary representation of € on IF. Indeed, if A, &', are orthogonal to
1, then polarizing the norm condition vields
hwib’ sv)+h' = (hxv)=-2<h W >v

foraivel.

Conversely, leb = be an real orthogonal representation of € on U7 and
choose an somorphism of real Hilbert spaces

F:USHaR CC.

1t is precisely when
dimg H = 1,3. 7,20,

that such isornorphism exists, i.e., that € has a non-trivial module of dimension
dim H+1.
Define + = %, by

{5.2) uxv =a(Flu)).

By the orthogonality of =, the resulting algebra is normed. Finally, if u € U/,
w# 0, write F{u) = h+d with he H and A € R, Then

Flih =N s{usv)=a(FF 'h- NHurv) = rlh= A)x(Flu)n)
=w(h = ANmw(h+A)w) = (w(h = X)wlh4 M)

w((h = N+ = w(h% = X)v = (=l — A%

(B30 = —|[A+A 2o = [ F (A A)2u

= ful

L]

In terms of the involution in H ® K (“conjugation™) K{h+A) = —h+A,
up! = |Jul| "t F T KF(u)

is o left-inverse of «. u
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We next look a bit more closely at the structure of » and show how
its groups of symmetrics reflects various classes spinors that exist in infinite
dimensions. The exceptional properties of the symmetries of the Octonions [2]
leads to some conjectures. Here we discuss only aspects directly related Lo real
and quaternionie siroctures and related matters,

To an ILNA (I/,=) we associate its group of eguivalences

Eq{*) C O(U})?
consisting of the triples (g0, 91, g2) of orthogonal transformations of U satislying
(5.3) go(uxv) = (g1u} * (g2v)
Yu,v € U. Then
Aut(x) = {(g0, 91, 92) € Eq(*) : 30 = 91 = ga}.

As we saw in the proof of (5.1), (£, %)} can be assumed 1o have a left-
identity e. Set
QU)=e' sothat U=RedS(U)

We digress briefly on the peculiarities of the infinite-dimensionsl case and
ou the choice of paired basis {hy, hi} which, so far, has remained as an implicit
parameter.

This choice determines a subspace
(5.4) H, = spang{h:},
and an orthogonal complex structure j on ff

ilhe) = Rk, J(RG) = —ha,
50 that
H = Hr i jHr-
This data is equivalent to an isomorphism of real Hilbeel spaces

H=CaH,.

The equivalence class of = depends on H, and j -this is the reason we use the
plural when talking about Fock representations, In QFT, H is taken complex
from Lhe start; the physical meaning of the complex structure {or lack thereof)
is discussed i [3).
Let
v:H = H, r{hy + jha) = by = jha

h; € H,, which is an orthogonal involution. Obviously, H, and j determine T,
and {5.4) = the decompeosition of H into =1-eigenspaces of +

(5.5) H=H.aH..
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Conversely, let v be an orthogonal involution of #. It determines an orthogonal
decornposition (5.5) but the summands be of different size. In finite dimensions
one sometimes says that an involution is a polarization if dimH, = dimH_.
This condition is equivalent to the existence of an isomorphism of H which
anticommutes wilth 7. For example, when + comes from a pair (j, H,), then j
is such an isomorphism. In infinite dimensions we adopt this as a definition of
polarization.

As we saw in the proof of (5.1), (I/,+) can be assumed to have a left-
identity e; then left multiplication by elements of

W) = e*

defines the Clifford action of C{S(IN)} on V2 S(U7) is identified with H and
inherits the structures above:

(5.6) ) =Ce W,

for some subspace W C [V and, writing also j for the induced complex structure
in (U},

U=Red Wa W
We will keep denoting by 7 the corresponding complex-conjugation.

The existence of these conjugationz characterizes infinite-dimensional
left-division normed algebras, since in the finite-dimensional case dimg S(U') is
udd and, therefore, cannot support a complex structure, Tt is a bit one gaing in
exchange for giving up two-sided inverses.

Another infinite-dimensional phenomenon is the fact that right multipli-

cation is never invertible.
RBy:urruxv

is injective whenever v # 0, becanse there are no zero-divisors. Dut, as shown
in f13], it R, is onto for some v then (U/,») would be two-sided division, which
is ruled out. Hence,

Ry(U)=Uxv

is always a proper subspace of I/. In particular, R, fixes e and leaves e~ = G(U)
invariant, From the above, S(U) xe # S(U) so that

coker R, # (1)

Next we exemplify how algebraic properties of 3(U7) +e and v discrim-
inate among ILNA’'s and relate to anaiytic properties of the associated spinors.
We will say that a given (I/,+) “comes from" a given spin structure = if it is
equivalent to the one constructed from m by the procedure of {(5.1).

Proposition 5.7. ([7, %) comes from a Fermi-Fock representation if and only i
has no proper left-ideals, U iz o compler Hilbert space and

{a) » is C-linear in the right-siof.

wx v = f{ury)
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(b) X(U) we is a compler subspace; equivalently,
(jw) *e=i{w e}

Jor all w € (L),

Progf. The Fermi-Fock representations m are characterized by the fact that U
iy a complex Hilbert space. the operators w(h} are C-linear, # is irreducible and
there exists a non-zero v, € U/ annihilated by all af’s. From §3 we know that
such w is irreducible over R, which translates into (I/, ») not having proper left-
ideals. We can choose v, = e, so the condition ajv, = 0 becomes Jie = 1Jge,
pe.,

w(hi)e = im(hy)e

Wk. In terms of the complex structure j this amounts to w(jhsle = in(hy)e, or
n(jh)e = ir(h)e
¥h € H.. Via the identification H + {U/) this becomes

{5.8) (jw)we =i(wxe)

Yw € (). It follows that (L) =€ is closed under multiplication by .
Conversely, suppose that the latter is the case: Yw € Q{U) I’ €
) : i{wee) = w' »e; uniquencss is assurcd because R, is injective. Then
jw = w' defines a linear operator j : () —+ (V) with the property that for
all w & V),
(Jw) = e = i{w * e).

j is norm-preserving, because = is normed, and j® = -7, because
(fPuw)we =i(june) = —wre.

Under 7, 3{L7} becomes a complex Hilbert space, with hermitian inner product
hinv) =< u.v > ++/=1 < ju,v >. Let {un} be u complex unitary basis of il.
Then {ws,jwy] is a real orthonormal basis and W := spang{ws} is a real form
of (3(L7). j). totally isotropic for < ju,v >. Then

Jru = wg % u, Jiu = Gug) *u

defines a C{3([/))-spin structure on U'. The equation (jw)we = i(w & e)
translates into

age = ()
Yk, s0 e 18 a vacuum vector, ]

Because of the evident lack of symmetry between the two slots, worsened
in infinite dimensions, true aulomorphisms of ILNA'S do not. come easily,. We
will see that how Lhe operator

——

Tf(z) = J’-ff‘{—") f#).  fe j: V. dulz)

dy(x)
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used to Lypify spinors, can be used to construet antomorphisms of =.

Recall that T7:V =V, V = [§ V. dulx), is well defined and invertible
if and only if the measure g and the multiplicity function # are quasi-invariant
and imvariant, respectively, under the operation =+~ £. For simplicity we will
ASEUINE

= i, v=i=1, wX)=1

Then
V=LYX,u, TFz)=F§3

and the constant function 1 lies in V', i3 a unit vector and is fixed by T'.
In our algebra (U, %), U7 always arises as a w-invariant real form of V.
By (3.13), we may assume that

U=VR={fe2(X,n): fz) = (@) ael.

Choose the left-identity ¢ to be the constant function 1, which lies in 7, Then
H=SW) = {f € PXp)s (8)=T&), [ f@ntz) =0}

It is clear that on U/, T coincides with the conjugation {r f){z)} = f{z) and that
H is invariant under this operation (but pot under multiplication by i!). The
eigenspaces of T = 7 actually polarize H:

(5.9) H=H, el

where the 1-eigenspace M, consists of the real, even (relative to the checking
symmetry) lunctions and the —1-eigenspace H_ consists of the purely imaginary,
add functions. For emphasis, we can rewrite (5.9) as

H = Hopaloven B 1 H eal 0ad

Under X = (-1, ), checking coincides with the symmetry with respect to 0,
s0 “even” and “odd” acquire their ordinary meaning,
For the Walsh functions,

da(®) = (-1 gq(a)

where pla) i the parity of (the numbers of 1'sin} @ The linear combinations of
Walsh functions are dense in L?( X, i), because this ia true of the finite products
of the x&, x}. and 2x; = 1 —dy, , 2x;, = 1+ g, . It follows that K is spanned
as a Hilbert space by the ¢, with e even, while H_ iy so by the id; with
odd.

Pick an orthonormal basis {he) of H, and hp of H_: only now can =
be specified, by

alhe)f = Juf,  w(h)F = JLf

with Jg, Ji, as in {2.3).
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According to the proof of (3.14), whenever T is well defined and invert-
ible one has

(5.10) ThT=hy, TIHT=-J]

where, il ®# = ™y, L tey: J corresponds to the spin structure & = Tl (&) >
with

(5.11) Gu(z) = (=1)"*er ()

a3 multipliers. Let % be the associated product. Then (5.10), which is equivalent
to T(x{h)v} = F{r(h})Tu, translates into T{w xv} = v{w) ¥ Tv for w € T{U).
Extending 7 to all of 7 so that 7(¢) = e, one obtains

T{u*v) = r{u) % T(v).
But on U, T = r. Moreover, suppose that # =7, 1e, Je = Ji. In that case,
T{uwxv)=T{u)=T{v).

According to (3.14) the multipliers ¢x must satisfy e = (-1)* 7, while ac-
cording to (5.11) they must also satisfy & = (=1*"'ci. In the terminology
used asbove, this is equivalent to acsking that ¢ be real and odd for & even and
imnginary and even for & odd. We have proved

Proposition 5.12, . Assume that =g, p(X) =1, v =1 and that ¢) 1s real
and odd for k even, and imaginary and even for k odd. Let w, be the real spin
structure in L*( X, u)® associated to the GW parameters u, v, {ci}, together wath
the conjugation v = T and let (L?(X, ), ) be the corresponding ILNA with
the function | as left identity. Then

T(f+q)=T(f)»T(a)
for all f,g € L}X, p)®.
Example . Let « an infinite matrix of 0's and 1's and set
Cin = Poan,  Cing1 = izt

with 4®* € A odd and 4%"*! € A even. The condition y(2)* = ez + &)

translates into
(™) =1,  Gmn (i) =-1,

that iz, _—
vin =0, Yamir = 1.
The condition ex(r)e(x +8%) = ¢(z)ep(z + §') translates, exactly as in the case
of the character representations, fnto < being symmetric,
Finally, the conditions of (5.12)

fan = ~Can; Eane1 = Cin



4490 GaLina, KAPLAN, AND SaAL

Lranslabe into .;5.).1. = —thyan Al igh et = '!:{512:11-1 respectively. This is equiva-
lent to gam (1) = =1, gpmni (1} =1, 0r to
p(v*™ =1,  ply

We conclude: 5 is o be symmetric, with diagonal (1,0,1,0,...) and the
parity of +* opposiie to that of k.

ﬂﬂ-l'l} ={.

B 0

o ...
o B 0 ... 1 1
"=\lo 0 B ... where B= 1 ol

s the simplest example,

Next we give the elementary description announced earlier for the alge-
bras (L*(T), *,) arising from Character Representations. According to (4.10),
the algebraic span of the Walsh basis is preserved by the operators Ji, Ji, thus
+ must be given by such expressions.

To make them explicit, we extend the sum modulo 2 in the set {0,1} C M
to an abelian group structure in all of M:

min =Y (myn)2
iz0
where . _
m = ijEJ1 T =Zﬂj21| {T]".I.}'.,ﬂ‘j € {uil}}
3z0 j20

are the dyadic expansions of the positive integers m, n. The operation + is just
addition in A, transported to M via n: A —+ N,

na) =Y a;n?.

=20
Since the Walsh functions w,, correspond to characters, one has
(5.13) tim (P (#) = w, 3,.(8).

Note that m — m+2? switches m;_; between 0 and 1 and
mP =mi(2 -1 =mF(l+2+ 3 +...+27Y)
is the integer obtained from m by changing its first j binary digits mg, ... . m;_,.
Define o funetion Ny 2 Eop % Ezp —+ Zgﬂ. by
Ny (ke m) = n(y*) Fm=),
Regarding L*(T) as a real space, a straightforward caleulation shows that the
product is given by the following table
Wy *oy Wy, = My
{ftwrg) *y e = Wy ¢1.myd1
Wy, #oy Wy = {_1 }l EauTT hti.w:\'-r{klm_]
(B ) wy wen = (=1)™ Ny g my gk
for all k = 1 and all ym > 0, together with the requirement that wiv = {{uvv].
For emphasis:
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Proposition 5.14. Ths table defines an R-bilinear operutor
*: L3(T) x LT) = L*(T)

salisfying
[1f *gll = 111 1ol

and such that ¥f #0 3f;":

Fx(feg)=g, Yo

For example, take 4 = 0. Then N (k,m) = m'*~1) so

g *g Wen = Wiy
(tuwp) % We = W01 5y = Wy
W, g Wy = {—1:’1+u1_liﬂ!m{k—1_1
(i) 5 W = (—1)™* Wz = (D)™ 'wpean
The representation #(,, 1.1y being irreducible /R, this algebra has no proper
laft ideals.
If, instead, «v € 'z (see (4.5)), then %, has exactly lwo complementary
left-ideals, T. iT, while if v € T'y, there exist an antilinear, norm-preserving
operator @ such that

QP =-I, [Qi=Q(f+yg)

We end this section relating these algebras and their equivalences to spin
representations of orthogonal groups. The key identity is the lollowing weak form
of commutativity/associativity,. Given (U, %,) with left-identity e, we identify
H with ¥(U), so the spin structure on U is identified with leR-multiplication
by elements of 3({{/}. For any 0 # h € S(U) let

ra:lU=2U
be the reflection through the 2-plane spanned by h and e, i.c.,
r(e)=¢,  m(h)=h  ralv)=-v Yol {he}
80, ry|grn & minus the refleclion trough the hyperplane h™. Extend h — 7y,

to all of F by setting
rai= L

Since for k' L A, it holds that
—w(h)w(h') = w(h')=(h)
it i3 easy to see that for any w, h € S{{)

wlrpu) = w(h)x(u)r(h) 7L
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Let
R{H) C O(H)

be the {ordinary) group generated by the reflections ry, i.e., the operators of the
form

(5.15) 9="h " Tha
with A € H, hy| = 1. Since

r{rarpu) = w(h)r(rau)w(h)~" = x(h)x(k)m(u)m (k) = (h)~!
= a(hk)w(u)m(hk)™,

setbing

Melrp, - -th, ) = 7lha) - -w{him)

defines a projective representation of R(H) on U:

M, : R(H) = O(U)
such that
{5.16) wig(h)) = My (g)m ()M (g) ™"

Because (5.15) 18 not unique, Mg(g) is only projectively defined. Indeed, it
is unique up to sign: r_y = rp but x(—h} = —=(h). According to common
language, M, should be called the spin representation of the group R{H}.

Although not a Lie group, R(H) is, in a senze, the largest subgronp of
(I for which a spin representation can be defined so that {5.16) holds without
further restrictions when dim H = oc. O(H) is generated by R(H) in the strong
topology, but M, does not extend to a projective representation of if,

An interesting fact is that some 7's do induce spin representation of
some Lie subgroups K © OQ(H). For example, if ¥ = my,, 1.1y (Fermi-Fock)
and K consists of all g € O{H) such that [g,ig] is Hilbert-Schmidt, then M.
is well defined on K and is, in fact, the infinite-dimensional spin representa-
tion that appears in QFT [3][16]. The problem of describing all the possible
apin (and metaplectic) pairs {My, &) scems well ft to treatment by the GW
purametrization.

6. Appendix
In this section we give the main lines of the proof of Theorem 2.4 following [8].

Theorem 2.4. The operators J1, i, J2, J3. ... are mutually anticommuting or-
thogomal complex structures and, therefore, m = w, ¢} extends to o unitary
representation of € on V. Conversely, every spinor structure on a scparable
compler Hilberd spuce is unitarily equivalent lo some 71, 000
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Proof. The first implication is verified by a straightforward computation using
the funetional equations for the ¢

Let now a countable collection of mutually anticommuting unitary com-
plex struclures on a separable complex Hilbert space V be given. If infinite (or
even) We can pair them arbitrarily so as to list them as Jy Ji, 0, J;, ..., The

assumed properties
wull = llul| = ull,  Jf=-T=J,
Ty + Ddie = Do di + Jide = i + T Jg = 0,
when written in terms of the “creation” and “annihilztion” operators
oo %[J;HJ,‘} ap = %{-J,‘,H'J.}

become
agay -+ agag = 0= aga] + ajag, aray + ajap = Oy.

Therefore, the products
Ni = alag, N = aga;,
are mutually commuting bounded self-adjoint operators, that are projectors:
NimNe, NP=Ne

According to the Speciral Theorem for zelf-adjoint operators, there exist a o-
algebra of seta B and & measure g on B such that

&
(6.1) V= fw Vi dus(h),

where each operator in the set A’ = [N, N[}, acts as multiplication by an
essentially bounded function, f~—+ ¢f. Indeed, any selfadjoint opecator P that
commutes with all clements in N is of the same form.

If the operator P is a projection, the corresponding funetion must satisfy
@* = ¢ and, therefore, be the characteristic function of some set Yp € 8:

Ly
P(f)=xv.f, Vf€ j; Vi dut).

In this way, each of the operators N, ¥y, corresponds to a set Xp, X € B, =0
that, in the decomposition (6.1),

Nef=xxt. N =xx.l
But beczuse our A comes from a Chfford representation, one hes the identities

Ny+ N =1, NuNg =0,
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S0, Xf =X, .

The direct integral representation (f.1) is nol unigque. Moreover one can
consider as the underlying space the set X whose points are the subset in B of
the form

Zy

4
N
R

-
il

1

where Zp = X or X{ and B is replaced by the Borel algebra generated by the
sets {Xi, X} }. We assign the number 1 to each set X and 0 to each Xj. So
that to each point r € X correspond an infinity binary sequence. In this way,
we identify X with Z§°,

We may now write

a
V= f Ve dudx)
X
with the operators & acting by

Nef(z) = xel=2)f(z) = zeflz),  Neflz) = xi(2)f(z) = (L - 2} f(2)

if we view zp in E.
The fact that z — »{z) = dim V} is measurable, is part of the spectral
theorem, The quasi-invariance of u follows from the identity

{6.2) Jelg = —Lk¢Jk1

where L is the operator of multiplication by the C-valued, bounded measurable
function ¢ and *d(z) = ¢(x+4d%). When ¢ iz a characteristic fanction of a set
Xe or X, (6.2) is a formal consequence of the relations between the ax's and
the Jg, J;.. Hence the formula holds for any measurable characteristic function.
How to go from this to the quasi-invariance of u and the A-invariance of v
is explained in [B] and the main idea was used in the proof of the invariance
statements of Theorem (3.2), so we will skip that here.

As to the operators cg(z) : V2 =3 Vo g« = Vi, they are defined explicitly
by

dp(x-+4%)

i
dalz) Jlz+67).

ce(z)f(x) = i{=1)r P Lme flz), meflz) =

Thai they satisfy the invariance property is, again, a formal consequence of (6.2)

and of the commutation relations satisfied by the Ji, Ji. ]
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