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Abstract: We obtain the explicit reduction of the Oscillator representation of the sym-
plectic group, on the subgroups of automorphisms of certain vector-valued skew forms
@ of "Clifford type"-equivalently, of antomorphisms of Lie algebras of Heisenberg type.
These subgroups are of the form & - Spin(k), with G a real reductive matrix group, in
general not compact, commuting with Spin(k) with fimite intersection. The reduction
turns out to be free of multiplicity in all the cases studied here, which inelude some
where the factors do not form a Howe pair. If X is maximal compact in (7, the restriction
to K+ Spin(k) is essentially the action on the symmetric algebra on a space of spinars.
The cases when this is multiplicity-free are listed in [R]; our examples show that replac-
ing K by & does make a difference, Our question s motdvated to a large extent by the
geometric object that comes with such a @: a Fock-space bundle over a sphere, with
G acting fiberwise via the oscillator representation. It carries a Dirac operator invariant
under G and determines special derivations of the corresponding gauge algebra,

1. Introduction
Consider skew-symmetric bilinear maps of finite-dimensional real vector spaces
SV V=l

which are non-degenerate, in the sense that ¢ o @ is non-degenerate for all non-zero
¢ € " Let

Aut{®} = {{g. h) € GI{V) x GI{U) : ®(gv, gv') =hd(v,v') }

the cormresponding group of automorphisms. The clements with & = 1 form a normal
subgroup, isomorphic to

G=0G(®)={geGI(V) : ®gu, gv) = D, )}
* This research was supponed in pan by CONICET, CONICOR and SECYT-UNC.
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In the standard case m = dim U = 1, & is unigue up 1o equivalence, & = Spin, R),
where Zn = dim V, and the connected component of the identity in Aut{®) is the direct
product of G times the dilations {(r, r*)) = R.. On the other hand, form = 2 there are
continuous families of non-eguivalent @'s, (cf. [LT]) and, generically, Aut{®) contains
only the dilations. However, in those dimensions m, n, for which such a @ existy at all,
there are some of pasirive Clifford rype: there exist positive definite inner products in U
and ¥, such that the linear map J : 7 — End{V) defined by

(Jgti, viy = (o, P, vy

satisfies
Jodg + Jado = =2, Bul.

For these, the corresponding group of automorphisms, modulo the dilations, is of the
form

G - Pin(m},
with G a real reductive group, in general not compact, computed cxplicitly in [Sa] and
listed below. The action of Pin{m) is penerated by the pairs

{_pn'i Jl:l'}l (ﬂ = Ul 1I:I'f - |}1

where g, is the orthogonal reflection in I/ through the hyperplane &~ These factors do
not form dual pairs either.

Fix o unit & & [/, The group generated by {Judp : 8, 8" L e, |B] = |8 = 1] is
isomorphic to Spin(m — 1). Both G and this Spin, (m — 1) leave invariant the ordinary
symplectic form @y (u, v) = (@, (k. v}}, 5o that

G - Sping{m — 1) € Sp(®q).

This article deals with the restriction

Spi%Pa)
MG-Spinqlm- 13

of the oscillator (also called Sepal-Shale-Weil, or metapleetic, [H. T, VK]) representation
to these products, which we do explicitly for | < m < 9 and, usually. V irreducible as
a Clifford module over [J. In the cases considered here, G can be Sp(A, C) or a direct
product of & small compact subgroup times a copy of R, or S/(2, R). All restrictions
are free of muluplicity,

The analog of the Heisenberg group in our setting is the group of Heisenberg nipe
N = N(®) [Kal, the simply connected nilpotent Lie group whose Lie algebrais Va U
endowed with the bracket

lv+ow+ f]l=0+d(p, w).

Aut{d) is precisely Aut{N)/N. The irreducible, unitary representations of N that are
not onc-dimensional are parametrized by U'* ~ (0). Given the inner product in {4, for
w e ! U, the corresponding representation 7, is realized in the appropriate Fock
space JF, of entire functons on (V, J5), a fiber of our bundle F [KR]. By definition, the
metaplectic representative wy(g) of a g € G (oreven in G -Sping(m — 1), and forgening
double covers) intertwines m, ¢ g and m,, while for & € Spin{m), the standard linear
action intertwines Ty o & and Myq).
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The automorphisms that leave invardant the inner products in U/ and V', form a max-

imal compact subgroup
K - Pin(m) € G - Pin(m),

the group of isometries of the corresponding left-invariant metric on N fixing the identity.
Those that, in addition, fix a given & € 5™, make up K - Spin,(m — 1). By what
is said above, the Oscillator representation of Sp(d,) reduces here 1o the ordinary
action on holomorphic polynomials over C" = (V, Jy), where Spin acts via a half-spin
representation. The cases when this action is multiplicity-free were determined by [R].
Our calculations show that replacing K by G does make a difference in this respect

2. Heisenberg Algebra and Oscillator Representation

We recall some definitions and notation which will be used in the following sections
(see [T,VK]).

Let H,, be the Heisenberg group of dimension 2n - 1. [ts unitary irreducible repre-
sentations are classified by the elements of the center 2 =~ R.

Let{P;, 0;.H i=1...., n} be a basis of the Lic algebra b, of H, satsfying the
following commutation relations:
[Q5. Pl =8, H, [Q; Q] =[P). Pe) = [Qy, H] = [Py, H] = 0.

For cach real number 3 # ) the corresponding unitary represenzation m; can be
realized in L=(R") giving the following action of b, on the analytic vectors:

(Ml @) X)) = ix; f(x),
a
(m(Py) F)ix) = a— f(x),
dxy
(ma(H) F)(x) = iAf(x).

This is called the Schrijdinger realization.
We will also use the so-called Fock realization. Consider the Hilben space:

Hom {u{c}hmmarphic onC" : fﬂ (@) e P2 d¢ < ml
with inner product
(u,v) = f 1_::{;1@}:““”“ d.
The following operators on M d.::i-n: 4 representation &y that is unitarily equivalent
o () = i),

8 ¢ 7
FUQHUE) = (——utc‘.l +c;-n:n),

J2\8g;
. 1 ]
m(Pull) = B (a—{fﬂ'{{i"‘ Q‘"(E])-
This gives the Fock representation.

For h € H, and ¢ an automorphism of Hy,, my(o(h)) defines a representation of
Hy that is unitarily equivalent to ;. The equivalence is realized by a unitary operator
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T, defined up to a multiple, Since the group of automorphisms of Hj is isomorphic
to Spin, R), the association w ¢ — wig) = T, defines a projective representation of
Spin, B), called the Weyl representation and denoted by M. This can be extended io
an ordinary representation for the two-fold covering group of Spin, K). This covering
group is called the metaplectic group, denoted by Mp(n, R), and the corresponding
representation is the oscillator or metaplectic representation,

As we will work at the Lie algebra level we will restrict to an invariant lincar space
isomorphic to the polynomials on n variables,

3, Restriction of the Oscillator Representation

Here we decompose
A l_i_ztﬁ-!l
in irreducibles, for some @ : BY A RY — R™ of Clifford type and any fixed unit
) ETEe:ulfgr&:p G = G(®@) of antomorphisms that leave invariant U are the following
{cf. [Sa]):
Sp (2?: ?-_MT_H : ]R) ., m= 1 mod(8),

Sp (Zﬂ E“ﬂf‘:uﬂ), m = 2 mod(8),

U(mi"!!_,n_l!_%'l,}[l]. m = 3 mod(8),
Gl (2027 H), m=4mode®).
50* (qﬂ 27F),  m=5mod(®),
o(znz‘?.tr:]. m = 6 mod(8),
G(n;2‘ 'i’,n_.:“’!:'*,R], m = 7 mod(8),
Gl (2:;2"':‘,3), m = 8§ mod(8).
iy and n_; = 2n — n; are de dimensions of the eigenspaces of V with respect to

K:...lrlaa.J;".

The case ® : % A R* — R

Here Sping(m — 1) = Spin{1) = {=£1}. which is already contained in G. This group
is described as follows. Let Jy, Ja{= J,) be generators of the Clifford algebra C(2).
Then JiJ2 is a complex structure on R relative to which (Jyi, v) + i(Jou, v) is &
C-valued, C-hilinear, non-degenerate skew form. G is exactly the group of complex
automorphisms of this lorm:

Ag(®) = G = Spin, C).

Note that the identification E* = C" used to realize the isomorphism (where i[ is
Jid2) is not the same as that used to build the comesponding Fock space (where i is
J2). In fact, G will not act C-linearly on (B**, J,), e.g. in the classical case m = 1,
unless it is compact.
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In any case, for this inclusion, Barbach [AB] proved that M remains irmeducible on
Spin, C) and equivalent to a metaplectic representation AMc of this group. Hence, in
this case, the reduction is simply

Spita) Spin. Ry _
ML= Mg = Mc.
The case @ : R* A R* — R>. Here we may identify R* with the quaternions, with
Ji. Ja, Js = Jy, acting as the usual imaginary units. One has

Sping(m — 1) = Spin(2) =U(1), G = U(l,H) = SU(2).

On R*, ¢ € U(1) acts as €”** on the left, while G are the unit quaternions acting on
the right. So,

A, = U x SU(2),
acting on C* = (R*, J,) in the usual manner. The induced action of SU(2) on 59(C2)
is the irreducible representation V; of dimension d + 1, while z € U(1) C C* acts there
as 2l (Fy = C denotes the corresponding irreducible representation space). Hence the
desired reduction is

o
Spida) Sp(2.m) ==
M L M Y= @ Fq® Va.
d={

The case @ : R® AR* — R*. Here Sping(m — 1) = Sping(3) = SU(2). and G =
Gi(l, H) = R, x SU(2), s0

Ay =R, x SU(2) x SU(2).

Viewing SU(2) as the unit quaternions, SU/{2) x SU(2) acts on B* = H2 by left (the
first factor) and right (the second factor) multiplication. As (R®, J,) is isomorphic to
C*, with the complex structure J, = Ju,

V=ClgC? = Mpa(0),
and SE/(2) x SU(2) acts on M242(C) by

(R1.82) - A = g1 Ags".

The following decomposition is almost a corollary to the First Fundamental Theorem
of the theory of invariants for GL(2) x GL(2) {cf. [H]):

schH=(vy@ Vay@ (Vg2 ® Vy2) @+,

ending in Vo ® Vo= Corin V; @ V; = C*,

As we see, M Lg% . is not multiplicity-free: each ireducible sppears in-
finitely many times, as predicted by [R]. However, the factor R, in A, separates
them out. The action of B, x SU(2) x SU(2) on L*(R*) splits into an action on
L*R. x 5%, where 5* = {x : |x| = 1}. R acts on the first variable and fixes
the second one; SL/(2) x SL/(2) acts on the second variable and fixes the first one.
The group Ry is included in Sp(4, R) as t — (12, ™1 12). Its infinitesimal action on
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LR, u"'du) = [f : flu,x) = f(u), (u,x) € Ry » 5%} can be deseribed on the
set {g(u)e ™ @ g i3 a polynomial, w € R} as follows:

wlt)g(u)e ™) = 21 (1 + ui} glu)e™,
du
This is so, since B4 acts infinitesimally on the polynomials in four variables by

() (px)e ™) = 1k + 2 — 2x[*) p(x)e™", (3.1)

wherc k is the degree of the homogeneous polynomial p{x). Hence, the corresponding
action of the group K. on L2 (R, 1~ du) is ew(s) f(u) = sf (su). Thus L2 (R, ™" du)
can be decomposed, via the Mellin transform, into a direct integral (cf. [T]),

[+ =]
L3R, udu) = f F, dh,
—no

where F), is the irreducible representation of R with character e/, For each polynomial
of minimal degree belonging to the isotypical component of type Vi & Va. the action of
R generates a space isomorphic to L2(R.,., w™! du), where the polynomial factors out
asin {3.1).

We conclude:

Epilgg) Spid.) -
M ) & T M R % ST = ST EBL F,@ Vs @ Vg di
d=i}

The case ® : R® A 2% — B3 Here Spin, (m — 1) = Spin{4) = SU(2) x SU(2). and
G = 50"(2) = U(1), 50

Ax S U(1) x SU(2) =% SU(2).
Viewing (BY, J), with J; = J5,as C*,
V= ﬂ:ﬂ' = 't.:j' ] :2

with each factor of SU/{2} x SL/(2} acting by the standard representation on the corre-
sponding term and trivially on the other, and z € U(1) € C* acting by multiplication
by z on the first term and by 2~ on the second.

In
SR = 6 ST e ST,

r4a=k

the terms are invariant and irreducible under SU7(2) = SU(2), while z € [7({1) acts on
57(C?) @ §7(C?) by 7! 1. We conclude:

Spige) _ Spis,R) =
M Jf.q., =M ‘l‘ii{i}xSUfE}xSUllj_ @ Frs@V. @V,

rzl

The case ® : % AR® — RS Here Sping(m — 1) = Spin(5) = Sp(4). and G =
0O(1, C) = |1}, already contained in Spin(4), so

Ag = Sp(4).
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Viewing (R®, J,), with J;, = Jg. as C*, Sp(4) acts as the standard representation.
The induced action on homogencous polynomials of a given degree is irreducible. We

conciude Spida) SR
M= Mg = D s'ch
e
is the decomposition in irreducibles,
The case @ : R* AR?* — R, Here Sping (m — 1) = Spin(6) = SU(4), and G = {1},
already contained in $£/(4), so
Ag = SU@).

Viewing (R®, J,), with J, = Js. as C%, SU(4) acts as the standard representation.
The induced action on homogeneous polynomials of a given degree is irreducible. We

conclude .
M L *= MU =D s
d=0
is the decomposition in irreducibles,
The case & : R'® AR'® — R®, Here Sping (m — 1) = Spin(7) and G = GI(1, B) = R*.
Then
Ay = R" x Spin(7).

The first factor is included in Sp(8, R) as (1 /s, r~' 1g) and the second factor is included so
that when restricting the natural action of Sp(8, R) toit we obtain the spin represeatation
on (V, J;) = C%. The decomposition of §(C*) as Spin(8) modulc for the natural action
on C¥ is:

/2]

S9CY) = @ Vig-2ma,

k=0
where Ay is the highest weight corresponding to the natural representation of SO(8)
and V), the irreducible module with highest weight 3.

The group Spin(8) has a particular property called the triality principle. This means
there exist outer automorphisms of the group that permute the representations Vs,
Via+ and Vs~ for the same non-negative integer m and A* the highest weights of
half-spin representations.

Using the miality principle we can replace the natural representation by the half-spin
representation A" on both sides. Then we need to restrict 1o the Spin(7) subgroup, but
the represeniations Vjg_2;+ remain imeducible, therefore:

472
M- D @ i
d20 et}
is the comresponding decomposition into irreducibles. Note that the restriction of both
A* 10 Spin(7) is the highest weight of the spin representation.
Similarly to the case m = 4, the first factor acts on the closure of each isotypic
component of Spin(7) and decomposes it as a direct integral, so that we get the decom-
position:

Splthald_ Sp(8.R)
d=0
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The case ® : R A R*™ — R®, Here Sping(m = 1) = Spin(8) and G = Sp(1, R) =
312, E), so
Ag = SI(2,R) x Spin(8).

The inclosion S1(2, ®) = Spin(8) — Sp(16, &) splits as
S5i(2, B) = Spin(8) — Sl2, R) x Spin(16) — Sp(le, B). (3.2)

The second arrow is given by

ab al bB
((c d) * B) - (cE‘ -.fb") *
where ad — bec = 1. To finish the description of the action of A, it remains to specify

the sction of Spin($) on B'®. As Spin(8)-module B'® = V,- & V-, where V= are
the half-spin representations. both of dimension eight. That is

Spin(8) < Spin(8) x Spin(8) — Spin(16). (3.3)

According to [VK] and considering the inclusions of groups (3.2),

=4
Spit6.R)
" J’ﬂtz,mms.penum’ @' Dy @ Vima, s
m=0

where Djm; is the discrete series of S1(2, K), or of its double cover, of Harish-Chandra
parameter {(m) = 3 -+4. The irreducible representation of 5 O'(a) or Spin(n) with highest
weight m Ay, is realized on the harmonic polynomials of degree m in # variables.

Considering the inclusion (3.3) associated with R 6 = Vi, @ V)y, . thereis aresmiction
formula [VK)

Spini16) ]
Vind ¥ spinis) xspinis) = €D Ven, ® Vin,
%

where the sum runs over the integers r and s such that m — r — 5 is an even non negative
integer. So, applying the proper outer automorphisms that transform R'® = ¥y, & Va,
into B'S = V, . @ V, - to the above decomposition and eombining it with the previous
decompositon, we obtain:

s}

Spilfi,R)
M 1tL*.'a'frlz.ﬁ?.] wSpiniS) = Spin(8) @ @ Dijmy & (Vear @ Vea-)-

msi f3

In order to obtain the decomposition into imeducibles it remains to decompose the
tensor product V, 5~ & V, 5 -. The decomposition for any pair of positive integers r, 5 is
given by
Theorem. Let {Aq. A, Ag, Ag) be the fundamental weights of Spin(8) { AT = Ay

and A™ = Ajg). Letr, s be nonnegative imegers and Ay = (A (5 = i) A+ (r—1)As
fordi =0, 1,..., minir, 53, Then,

min{r.sh
Ver, ® V:A_:; = _p Vi
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We start by proving a generalization of a result from [L]. Let g be a semisimple Lie
algebra, W is Weyl group, W), the subgroup of W that fixes the weight A, A™ a system
of positive roots and d.i" the subsystem of A™ generated by the simple roots orthogonal
to A. Let {a, a2, a3, @} be a basis of simple roots of A™ and p the halfsum of positive
roots. Let § be a subset of A* and let Kg(u) denote the number of ways in which —pu
can be written as a sum of roots belonging to §.

Proposition. Let § € A™ and ms(a) be such that

st[a}e_“ = n{l —e 5,
o Pes

Then, for any T C A™ we have:

D Kz +p—t(0)) = mys @ Kpas i+ ).
TEW, o

Proof. Let L be the root lantice and Z(L) = {3, ., mie* n; € Z} the commutative ring
of formal sums, with product satisfying e*e¥ = ¢**¥. Consider the projection P onto
the identity component €, P : Z(L) — Z such that P(Y n,e*) = ng. Then,

Kr(p) =P (f-‘u zfr{l}e“) =P (t"“ n{l - e_ﬁ}_l) .
per

Define o3 = 1 ¥~ . Itis casy locheck by induction that o (p) —p = o (p:) — s
for all o € W;. Using Weyl's identity for the subsystem A", we have
Z sg(r)e PR = n (1—eh).
TeEW; peal

Now the proof follows:

Y sge)Kr(u+p—t(p) =
el

=) sg(r)P (:‘*‘"’*“P? [Ta --t"-‘"]-l)

TEW, fer
=P Z sp(TyenTein) I-I“ - Al
TeW, AeT

=pPle™ l_[ (1—e % l_l[l = T
Aeal BeT

=Ple* [ = J] a-eh

BEAL~T peT~a;
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=P e"“ZmﬁrxT(af}e_ﬂ ]-[ (1 —e"8~!
2 BeT- AT

=) my P |e* [ a-ehH™
<]

peT~a]

=Zma;.¥7{ﬂ}ﬁ'h¢£[ﬂ + o). o
@

Remark. Tn [L] this was proved for the case T = A™.

Proof of the theorem. We will show first that each of the irreducible modules V3, occur
in the decomposition. For this we will make use of Steinberg’s formula [St] for the
multiplicity of V; in the tensor product Vyr @& Vs

myard) = Y sgEDKar (420 —a (W + ) = T + p)).
o TEW

In our case, W is the Weyl group of Spin(8), A" = rAy, A" =sAz and 4 = 4;.
To compute the multiplicity we reduce the sum o a sum over the subgroup W, of
W. This follows from the fact

o(A) #Ae = Y sg(D)Ka-(h +2p —o(rAs+p) — TisA3+p)) = 0.
reW

By Kostant's multplicity formula [K], the LHS is the mulaplicity of the weight &; +
g — a(rAs + p)in the representation with highest weight sAs. Now,

vishito—oalrAs+p)=shi+rAy —ilmatos+oau)+p—olrha+ p).

Assuming that o (A4) # Ay we can write o = wry, with @(as) > 0, where r; is the
reflection on & ;. Then,

rhag+p—olrda+ p) =rdg = riwlhy) = wiaa)) + p — w(g) + wleg)
=r Ay — (A} + (r + Dolay) + p — wip).

As As —awihs) = 0and p — wip) = O, it follows that s Ay — y; containg ey with a
negative coefficient since i < r + 1. Therefore, 3; can not be a weight of Vi4,.
Then, using the proposition with T = A and L = A4, we have

Mrasans(h) = 9 SE(T) 3 sR@IKxi (M +2p = al(rAa+ p) — T(sA3 + p))
TEW sEW,,

=) sglz)K,. caj,shs i + oy +as) +p —TlsAs + 0)).
reW
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By a similar argument we can reduce the sum on 7 to the elements that fix A3. Then,
using the proposition with T = A™ ~ Ay, and A = A3, we have

MrasensO) = ) sg(£)K s+ ay ($A3 — i@z + a3 +au) + 0 = T(sA3 +p))

TEWy,

]

> 80K y; (—iler+asban) +p - 1)
THEWa,

- ;"‘a;] sar~at O ar(at naz, (Cil@z a3 +aa) +a),

=t .. -
Z"'n;,xmﬂq‘}{“}‘ = n L=
w

AeAl ~(AT~AL)
= (1= M)1 =™ %) - ™™™,
[t is ¢lear that the only contributing term corresponds to ¢ = 0. Therefore,
Mrasony(hi) = Kiaroag pap (i@ o +a) =1

Hence, every A; appears with multiplicity one.

To finish the proof we compare the dimension of V4, & Vi, with the sum of the
dimensions of V;;,. For this we usc Weyl's formula:
crhg+p.Br<shy+p. B>

dimvrmﬂﬂm'n <p0.B > <p. B>

pea-

3
=360+ D+ [|e+ e+ )

J=i
min{r.o)
Y dimVy, = 3601127 r +3)(s +3)
1=
minir.s) 2
}: (r+.i+3-2.!]1_[[1'+k}{r+k—.f}u+.i:—ij[r+.!+3+i'—ij
i=N kel

and MaplcV to check the equality of the two polynomialsonrand 5. O
Therefore, the desired decomposition into irmeducibles is

ad minirxl
5 SpiiR
M 'I'Ai{ﬁ]= "t 'I'S;I'E"..'R}J:rﬁﬁn{ﬂ= @@ @ Dyimy @ Vi,

m=g FJ il

where [(m) = F +4 and the integers r, s are such that m — r — 5 is 4n even non negative
integer.

Notice that the pair (SI(2, B), Spin(8)) is comtained in the dual pair (512, R),
Spin(16)).
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Remark. Although in all the examples considered above the restriction is r:mit"t|l‘JIi|:it:.-I
free, one knows that this cannot always be true. For example, fora @ : RZx g2 5
R*, one has G = K = O(1,C) = {#1}, and this case does not appear in [R]. It
would be interesting to have an algebraic condition on @ assuring that the reduction is
multiplicity-free, like the one obtained from [R] in the case of K.

4. Fock Bundles and Dirac Operators

We will now deseribe briefly the geometric construction that lies behind the examples
studied in this paper, w be treated in more detail in a follow-up article. Given the skew-
form &, the Fock spaces on the various (V. J;,) are fibers of a Hilberi-space bundle

F - §™1,

Its smooth sections over an open @ ¢ §™~' can be identified with the functions

f:O0xvV=C
such that f{e, v) is smooth in «, J;-holomorphic in

dfoJ, =idf,
and sarisfy

I fle) IP:= ﬁ e, wie¥ dv < oo.

F is acmally a Spin{m)—homogeneous bundle with an invariant connection V. The
isotropy representation on JF, is just the (closure of) the action of Sping{m — 1) on the

symmetric algebra over the half-spin representation on O = (V. J;). The connection
is given explicitlly by

(Vs./)er v) i= (D ffe v) + (D, e v),

where 8 € 5™~ is perpendicular to o and DY (resp., DY) denotes the ordinary fat
derivatve in the firsi (resp., second) variable.

The group (¢ acts fiberwise on JF through the restriction of the oscillator representa-
tion, commuting with the spin action and the connection. Henee G will be represented in
spaces of sections of F defined by differential equations construcied from ¥ and tensors
defined by the spin action.

The connection determines differential operators on the groups of smooth maps from
§™=! 1o N, K and G and on their Lie algebras. In turn, the Spin(m) action defines an
extension (non-central) of Map(S™~1, N), as well as a Dirac operator

D=EJﬁJ?ﬂI'

where {8;] is a local orthonormal frame on the base. T operates on the sections of the
bundle F, as well as on the Lic algebras of the gange groups, defining special central
extensions and representations of the larer,

Remark. After this article was written we became aware of an article by Littelmann [Li];
our Theorem on Spin(8) (cg. the case m = 9), 1s a special case of his results,
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