SL(2,R)-MODULE STRUCTURE OF THE EIGENSPACES
OF THE CASIMIR OPERATOR
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ABSTRACT. In this paper, on the space of smooth sections of a SL(2, R)—homoge-
neous vector bundle over the upper half plane we study the SL(2, R) structure for
the eigenspaces of the Casimir operator. That is, we determine its Jordan-Holder
sequence and the socle filtration. We compute a suitable generalized principal series
having as a quotient a given eigenspace. We also give an integral equation which
characterizes the elements of a given eigenspace. Finally, we study the eigenspaces
of twisted Dirac operators.

§1. Introduction

Let G = SL(2,R) and K be a fixed maximal compact subgroup K of G. Let
(1,V') be a representation of K, we denote

C®(G/K,V)={f:G—V /fisC® and f(gk) =7(k) ' f(g) forallke K}
L*(G/K,V)={f:G—V [flgk)=7(k)""f(g) forallke K, |f[|5 <o}

where || ||2 is computed with respect to Haar measure. On L? (G/K, V) we fix the
obvious topology. On C* (G/K,V') we fix the topology of uniform convergence on
compacts of the functions and their derivatives. Both spaces are representations of
G under the left regular action L, f(z) = f(g~'x) for all g,z € G.

Let Q the Casimir element of the universal algebra U(g,) of the Lie algebra g,
of G, Q define a G-left invariant operator on C*° (G/K,V). Here, we obtain the
G-module structure of each eigenspace of the Casimir operator

Q: C®(G/K,V) — C®(G/K,V)

whenever V is an irreducible representation of K. Actually, we prove that whenever
an eigenspace is irreducible, then it is infinitesimally equivalent to a principal series
representation, and when an eigenspace is reducible then we have an exact sequence
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0—W — AY - M — 0, where AY is the A—eigenspace of  in C* (G/K,V), W
is a Verma module and M an irreducible Verma module.
As a corollary we obtain the eigenvalues and eigenspaces of

Q: L*(G/K,V) — L*(G/K,V)

From this, it results that if X is an eigenvalue of Q the corresponding eigenspace is
a proper subset of the respective one of Q. We also compute the L?-eigenspaces of
the Dirac operator D.

Knapp-Wallach [K-W] obtained an integral operator which sends an adjusted
principal series onto the K —finite vector of the L?—kernel of the Dirac operator D.
In this work we obtain a similar result for each L2-eigenspace of D (c.f §4).

Let ¢ be the Eisenstein function (cf. ***) in C*>° (G/K,V) that belongs to
the A—eigenspace of €2, we prove:

(7) a continuous function that satisfies the integral equation

/ f(gkz)dk = f(9)$r, forall g,z € G
K

is smooth and is an eigenfunction of {2 corresponding to the eigenvalue \.
(7)) Any A—eigenfunction of 2 satisfies the integral equation in (7).

Now, we stablish some notations,

{’“G (_Z?EZ 3222) : 9€R}
{ (o t1> : tERﬁ}
(1.2) M = gi( ) }

N

v={(3 7) ¢ wer}
At ={a, €A : 1<t}
AT ={ar €A : 0<t<1}

We will use the decompositions G = KAN and G = KAK = KATK = KA~ K
[K]. If we denote by

0 1 0 1 1/1 0
(13) X‘(q 0 Y‘@ 0 H‘ﬁ@ 4)
the Iwasawa decomposition of the Lie algebra g, of G is g, = k, & a, ® n, where
ko, =RX, a, = RH, n, = RY. We denote by g, k, a, n their complexifications.

The Casimir operator € is an element of the universal algebra U(g) of g, more-
over, the center of U(g) is C[Q] [L]. It is defined by

(1.4) Q=
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If

o w=(03) s L) e D)
another expression of Casimir operator is
(1.6) Q=1(W?+2W +4E_E,)
W, FE4 and E_ satisfy the relations
W=-W Ey=E+ [E,E_.]=W [W,Ey]==+2Fy

Let 0 be the usual Cartan involution on g,. Therefore, k, is the subspace of fix
points of 0. Let p, be the (—1)—eigenspace of 6.
The Killing form in g, is

B(X,Y) = 4Trace(XY).
Thus {%EJF, %Ef} is an orthonormal base of p with respect to the hermitian form
—B(X,0Y)

The Iwasawa decomposition for £, and F_ is
1 0

1 1 1

2By = gW+g (0 _1>

0

T2 l0

(1.7) Lo 0
o=tk (o 4)+5(0

§2. Figenspaces of §2

Since K is abelian, the irreducible representations of K are onedimensional.
They are (7,,,V,) with n € Z, where

dimV,, = 1 and 7, (kg)v = ey for all v eV,

Given n € Z, the elements of the center of the universal enveloping algebra of ¢
will be considered acting on C*°(G/K,V,,) as left invariant operators.
For all A € C define

(1) = {recx@mn) / szvglf}

Since (2 is a continuous linear operator on C*°(G/K,V,,), it follows that A} is a
closed subspace of C*°(G/K,V,,). Thus, AY is a subrepresentation of C*(G/K,V,,)
with infinitesimal character x», , where ¢ is the linear functional of a, such that
0(H) = % and x»s is the character of C multiplication by %.
We denote by A%[m] the K-type 7, of A%.
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PROPOSITION 2.1.

Giwen n € Z, A\ € C, the representation AY of G is admissible and finitely
generated. Moreover,

(i) dimAY[m| <1 forall meZ

(i)  If AY[m] # {0}, then n and m have the same parity.

Remark: The converse of (i7) is also true. It follows from proposition 2.4.

We need some results to prove the proposition 2.1
Let f € AY[m], f is a spherical function of type (m,n) because

f(koghky) = e ™0 f(g)e™™  for all g € G, ke, ky € K

Since G = KAK , the values of f are determined by its values on A. Besides, if
m # n then f|x = 0. In fact, the equallity f(kg) = f(kg.1) = e~¥™? f(1), implies
that flx # 0 < f(1) # 0, now since f is spherical of type (m,n) we have that
f(kg) = f(1.kg) = f(1)e™? = f(1)e="? therefore if f|x were nonzero we would
have that m = n.

The subgroup A is Lie isomorphic to R™ (positive real numbers with the usual
product) by the isomorphism a(a;) = t2.

Lemma 2.2.
If f € AYm], the function F : Rt — C associated to f given by F (a(a)) =
f(a)  for all a € A satisfy the differential equation

5 d? 223 d 22 2(1+ 2?%) -1

2 2
m—l—n)—f—mnm— 1

The equation has regular singularities at the points 0, +1, co.
A proof of this lemma is in [Ca-M].

Proof of the Proposition 2.1. Since Q is an elliptic operator in C*(G/K,V,,), if
f € A}, f|, is real analytic. Therefore, the function F' : RT — defined in (2.2)
is a real analytic function. Hence there is a holomorphic extension of F' to a
neighborhood of R™ in the right half plane.

On the other hand by the Frobenius theory for differential equations with reg-
ular singular points [C-page 132] the equation (2.2) has an analytic solution on a
neighborhood of 1 if and only if m and n have the same parity. Moreover, any
holomorphic solution of (2.2) is a multiple of the power series

(2.3) (z=1)2m=N iz -1 =1

In fact, the indicial equation of (2.2) is

s(s—1)+s — %(m—n)2 =0
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and its roots are j:%(m —n). Thus, as the roots differ by an integer, the exponent
of the first term of (2.3) is §|m —n/, if this number were not an integer the function
(2.3) would not be analytic on a neighborhood of 1, this forces the same parity for
n and m.

As the other singularities of (2.2) are 0,—1,00, there is an extension of the

analytic solution on a neighborhood of 1 to an analytic solution on a neighborhood
of RT. So (i) and (7) holds. O

Remark. Since A% has infinitesimal character x s and AY is admissible by Propo-
sition 2.1, A} has finite length by a known rwsult of Harish-Chandra [V,Corollary
5.4.16].

Corollary 2.3.
Given n € Z, A € C, the K-type 1, occurs in any subrepresentation of AY.
Moreover, A} has a unique irreducible G-submodule.

Proof. Let W be a nontrivial closed submodule of A} and denote by Wy the set
of K-finite elements in W, we consider the map

Homg (W, AY) ——  Homg(Wk,V,)

) T e <v —Tv = Tv(l))

This map is well defined. In fact, if v € Wk,
T(kv) = T(kv)(1) = (L. Tv) (1) = To(k™Y) = 7, (k)T (1)

Moreover, it is inyective. In fact, suppose that T = 0, so Tv(1) = 0 for all v € Wk.
As T' is a continuous linear transformation, Wi is a dense subset of W [L-page 24],
and there exists a sequence {v,,} in Wi such that v,, — w for each w € W, then

Tv, - Tw = 0=Tv,(1) = Tw(l)
that is, Tw(1) = 0 for all w. Now, for w € W,
Tw(g) = (Ly—1.Tw) (1) =T (g 'w)(1) =0 forall g € G,

so T =0. If W is a closed submodule of A}, by (*) W{n] # 0, and by (i) W(n] =
A%[n]. This concludes the first statement of the corollary. The second follows from
the equality Wn] = AY[n]. O

Fix n € Z, A € C, let 6 be the linear functional on a, such that §(H) = 1

2
-1 0

loga; =t H, and denote by (—1)" the character of M such that 0o 17 (—=1)™.

As usual, define
(24) Ifan((-D)"@e¥ 1) =
={f:G— C (C such that
f(zman) = e~ ADoMosa) (_yn (=) £(2) for all 2 € G, man € MANY}
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the representation of G induced by the representation (-1D)"®e* @1 of MAN.
G acts by left translation. Recall that 1§,y ((—1)" ® e’ ® 1) has infinitesimal
character yxs and 1§, 45 ((—1)" ® e*® ® 1) is irreducible if and only if A # (n +
1) mod(2) [B].

Define linear transformations

oy S (@ e &
f —— (2= Tf(z) = [y f(zk)Ta(k)dk)

Whenever it becomes necessary to sea which is the domain of the operators, we will
write Ty, otherwise we will write T
The linear transformation 7' is well defined because

Tf(xk") /kaan(k)dk—T ’)_1/Kf(xk)7'n(k)dk:

Besides, since I§; 4 v ((—1)" ® e*** @ 1) has infinitesimal character y»s, T is a left
G-morphism and left infinitesimal translation by ) agrees with right infinitesimal
translation, (Lq.f = Rq.f forall f € C*°(G/K,V,)). Hence the image of T is
contained in AY.

T is not zero because

Tr_,(1) = /KT_n(k‘)Tn(k’)dk‘: /de:#O

Note that A} and A%, is the same eigenspace of Q if A2 = (\')2. So, if A € Z we
will always assume that A > 0 .

PROPOSITION 2.4.
Given n € Z,
(i)) IfXe C\Z, or A\ € Z and X\ # (n + 1)mod(2), A% is infinitesimally
equivalent to 1§, ,n ((—1)" ® e @ 1).
(i0) If X € Z>¢ , A1 =nmod(2) and X > |n|, AY is infinitesimally equivalent to
fay (D" @eMel).
(i) If X\ € Z>o, A+ 1=nmod(2) and A\ < n , the (g, K)-module structure of
AY is the following
ELAX[m] #0  for all m such that AY[m] # 0
E_AX[m] #0  for all m # £\ such that AY[m] # 0
E_AT[+M +1] =0
() If X\ € Z>p, A+ 1 = nmod(2), n < 0 and A\ < —n , the (g, K)-module
structure of A% is the following

E_AX[m] #0  for all m such that A\[m| # 0
ELAY[m] #0  for all m # £X + 1 such that A\[m] # 0
ELAY[EA 4+ 1] = 0.
Remark 1: Under the hypothesis (i) or (iv) we have that A% is not a quotient
of I%AN ((—1)” ® eTM 1).
Remark 2: A% is irreducible if and only if A # (n + 1) mod(2).

We need the following lemma to prove (iii) of proposition 2.4.
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Lemma 2.5.
Givenn € Z, let A\ € Z>o , A+ 1 = nmod2 and A < n, there exist m € Z ,
m < —\ such that AY[m] is not zero.

Proof of Lemma 2.5. Let m be an integer such that

(2.6) m = nmod2 m < —A\ i(n—m) iseven

The conditions on m and n ensure the existence of a smooth solution F' of (2.2)
on the interval (0, 00). In fact, using the Frobenius method for differential equations
with regular singularities, that (2.2) has a analytic solution in a neighbordhood of
1 if and only if m and n have the same parity. Besides, the singularities of (2.2)
are 0,41, oco. Therefore, this solution extends to a solution on the interval (0, co).
Moreover, any smooth solution of (2.2) in the interval (0,00) is a multiple of the
power series

o0
(z—1)2m "y iz -1 =1
3=0

Therefore, F has a zero of order 1|m — n| at 1.

We have to prove that F' extends to an element of A%[m]. This will take some
work.

Let Nk (A) be the normalizer of A on K.

Consider C2°_ (A) to be the set of smooth funtions on A such that

(j) d(kak™) = 1_m(k) ¢(a) forallae A, k€ Ng(A)

y ¢(a)
(j]) §(loga) 3 (n=m)

Let f: A — C given by f(a) = F(«a(a)) , with « the isomorphism between A
and R* defined in (2.2). Let’s prove that the function f is in C2°_ (A). In fact,
the normalizer of A on K, is exactly

Ni(A) = {+1} = {kg, b5}

is a smooth function and even on A.

As n —m and 1(n —m) are even numbers,
Tn-m(E£l) = Tn—m(kig) _ tiln-m)3 _

So, f satisfy (j) if and only if f(a) = f(a™!) for all @ € A, or equivalently
F(z) = F(z7!) for all z € RT. Let’s prove that F(z) = F(z7!). Let h be
the function given by h(z) = F(271), we want to prove that h = F. We claim that
h satisfies the same differential equation that F' does. In fact, let w = z~!, then

dh, . dF

an _“r /
o (2) T (w) w
dF
—_— 2_
?F dF LA2F
el (2) = —wa’%(w) T2 (w)
dF d’F
— 9,3 4071
w o (w) +w T2 (w)



8 ESTHER GALINA JORGE VARGAS

and
22 2w 2w~ !
1-22 1-w?2 1-w?
22 w2 w?
(1-222  (1-w?2? (1-uw?)?
z(1+2)  wil(l+w?)  ww?+1)
(1-22)2 (1-w2)?  (1-w?)?
So,
L d%h 223 dh

<—(1_z—22)2(m2 +n?) + ﬁi—tggnm— A 4_ 1> h(z) =

d2F Qw1 dF
:U}W(ll))—|_(211)_1—11)2 >dw( I+
wt e ey w(w?) N
*( ™ ) T i )F“

The right hand side is exactly the equation(2.2) on F', so it is zero. Both h and F'
are smooth functions on (0, c0) and solutions of the differential equation (2.2). So,
by (2.6) they are multiple of each other in a neighborhood of 1. Hence, we write,

h(z) = (2 — 1) mlyy (2)
F(2) = (z = 1)2"mlyp(2)

with 1, and p power series, such that ci,(z) = ¥p(z) for a suitable nonzero
complex number. Therefore,

h(z) = F(z7) = (271 = 1) 2 mlyp (271 = (2 — 1)(mm) =2 inmmly o (71
Thus, ¥, (z) = (z — 1)~ 2™ (1), This imply that

cn(z) = (2 — 1)_%(”—m)wF(z—1)

Hence, F(z) = F(z7!) in a neighborhood of 1. As F is real analytic in (0, c0),
F(z) = F(z71) for all z € RT. Equivalently, f(a) = f(a™?) for all a € A. Thus, f
satisfies ().
We want to prove that f satisfies (jj). The function §(log a)_%("_m) is even on
A because
S(H))~2(n=m)

(t
(—t 8(H)~2"=™ by (2.6)
s(loga; )™ 3(n—m)

d(logar)~ 2
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Thus, the function f(a)d(loga)~ 2™ is even. The function f(a)d(loga)=2(m=m)
is smooth because f is real analytic and has a zero of order %(n—m) at 1. Therefore,
we have proved that f € C2° (A). We want to extend f to an element of AY[m)]
Let C*°(G/K)[Tn—m] be the space of smooth complex valued functions on G/K
such that f(kx) = T,—m(k)f(z) for all k € K, z € G.
We need to prove:

Sublemma 2.6.
The restriction map from C*(G/K)[T,—m] to C2°  (A) is biyective.

Proof of sublemma 2.6. : The equallity G = K AK implies that the restriction map
is inyective. To prove that is suryective we appeal to a theorem of Helgason. Let
‘H be the set of harmonic polynomial functions on p,. We consider the usual action
of K on H. That is, the one determinated by the isotropy representation of K in
Po- We now set ourselves in §10 of [H-1], with 6 = 7,_,,. Since n = mmod(2), we
have that 7,,_,, € K,. Let degQ®(\) = p(8). A formula due to Kostant and cited
on pag 203 of [H-1] says that p(d) = d(d) =degree of the harmonic homogeneous
polynomials in the d—isotypic component of H. To compute d(§) we proceed as
follow: If ey, ey is an orthonormal basis for p,, we know that k(6)é; = cos(20)e; —
sin(26)eq, k(0)éy = sin(20)e; + cos(26)es. Since (n —m)/2 is a whole number the
polynomial function on p,, (e1 +iez)™~™/2 is harmonic and has degree (n—m)/2,
moreover k(@)(el +ieg)(PTm)/2 = =m0 (e 4 jey)(m=™)/2 Thus, we have that
p(d) = (n —m)/2. Therefore, our space C2° (A) contains the space D™~ (A)
of page 211 in [H-1]. Hence, lemma 10.1 of [H-1] implies that the restricction map
from D™-m(G/K) into D™~ (A) is a linear homeomorphism. We remark that
Dn-m(G/K) C C*°(G/K)[rpn—m]. A density argument together with the fact that
K is compact imply sublemma 2.6. [

We proceed with the proof of lemma 2.5. For this end, we now have that the
function f admits a smooth extension f: expp, — C which satisfies

Fllak™) = 7,_m (k) f(a)
= Tm(k)_lf(a)Tn(k)

The diffeomorphism between G and exp p, K ensures that the function f G —C
given by

(2.7)

f(pk) = f()Tu(k)™"  forall p € expp,,k € K

is well defined and it is smooth. Also, f is in the K-type 7, of C*(G/K,V,). In
fact, for x € G we write x = kgakz_lkl with k1,ks € K, and a € A, hence

(Lif)(x) = f(k™ koaky k1) = f(k™Yhoaky k) (k™ ey) ™2
= Toem (k" ko) f(a)Tn (k™ ky) ™1
= T (k™) T (k2) (@) (K™ hy) ™
= Toem (k™) f(koaky V)0 (k71 71, (k) 1
= 7o (k™) 7 (k) f(p) T (k™) ™ () ™
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A comutation like the one in [Wa] page 280, implies that

() (&) = Tlhy Yralhs ) (2 o ) = 0

because I satisfies the equation 2.2.
This concludes the proof of lemma 2.5

Proof of the Proposition 2.4. (i) As T is not the zero function and since A #
n+1mod(2) the module I§; , y ((—=1)" ® €*® ® 1) is irreducible. Thus T is inyective.
The K-types 7, which occur in I§; 4y ((=1)" ® eM ® 1) are indexed by all the m
with the same parity as n. Since T' is one-to-one they must occur in AY. By
proposition 2.1 (i), (i), they are exactly the K-types of A%. Thus, T is suryective
at the level of (g, K')-modules.

(44) Since A > 0, I§; 4y ((=1)" ® e7*° ® 1) has only one irreducible submodule F
which is finite dimensional and whose K-types are parametrized by {m : —(A—1) <
m < A—1, m=n(2)}. The structure of I{; 1y ()" ® e M ®1) is

> Wy
I§an (FD)"®@e M ®1) S 2F o0

where W, is the G-submodule spanned by the K-types {—(A—1), —=(A=3),...,A—
IL,A+1,...} and W_ is the one spanned by the K-types {...,A —3,A —1}. As
A > |n| the K-type 7, occur in F. On the other hand, we have verified that T
maps non trivially the K—type 7,, so F' is not a submodule of Ker7'. Since F'is
contained in every nonzero submodule of I§; , y ((=1)" @ e™** @ 1). T is 1:1; by a
similar argument to the one used on (i) we get that 7' is suryective.

(#ii) Suppose that n, A > 0 A < n, A Z n + 1(2). Then the image of T_ is
the discrete serie H)s of infinitesimal character y,s5. We recall that the K-types
of Hys are parametrized by {\ + 1, A + 3,...}. In fact, the nonzero quotients
of 15\}4,41\1 ((—1)" Re Mg 1) are Hys, H_ 5, Hys ® H_)s or itself. Now, the irre-
ducible finite-dimensional submodule occurs in Ker7_, otherwise T (F') would be
an irreducible submodule of A} and do not have the K-type 7, (A < |n|! ), that
contradicts corollary 2.3. This contradiction ensures that 7" is not inyective. By
corollary 2.3, A} has only one irreducible submodule, ImT" # Hys & H_);. Fur-
thermore, since the irreducible submodule contains the K-type 7, ,s0 ImT_ = Hs.
Therefore H s is the irreducible submodule of AY.

The structure of I, 4y ((—=1)" ® e** ® 1) is the following

D Hys

I?JAN ((—1)“@6)‘5@1) D Hys ®H_»s S H_ s D0

T, is not inyective; otherwise T (H_)s) is an irreducible submodule of A} and
does not have the K-type 7,. Also Ker Ty # H)ys & H_)s; otherwise, the finite
dimensional representation F' is a subrepresentation of AY, contradicting corollary
2.3. Thus,

ImTYy 21§ 40 (F1)" @M @1)/H_xs
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This implies that
T = |J  Axlm)
m>—(A-1)
m=n(2)
which is the Verma module of lowest weight —(A — 1). Thus,

E AY[m] #0 forall m > —(\—1)
E_AY[m]#0 for all m > —(A—1) and m # —A +1

By lemma 2.5 there exists a K-type AY[m] # 0 for some m < —A\. This en-
sure that AY[m]| # 0 for all m < —\ and m = nmod(2), on the other hand, A%}
would have a lowest weight submodule with lowest weight less than —Ad. The in-
finitesimal character of this lowest weight submodule would be different from x.s,
giving a contradiction. Following the same argument, E, acts nontrivially on each
A%[m], m < —A.

For the case A = 0 and A + 1 = nmod(2) the proof is easier.

(iv) It has the same proof of (4i7). This concludes the proof of proposition 2.4. [

Remark 1: Given n € Z and A € C, the K-types AY[m] are not zero for all m
with the same parity of n.

Remark 2: In view of [S] , in cases (i) and (i7) AY is equivalent to the maximal
model of I§, , ; which is the induced representation with hiperfunctions coefficients.
In case (i) AY is a quotient of the maximal model of a generalized principal series.

Remark 3: Given n € Z>¢ and A > 0 as in (4i¢) of proposition 2.4 , the G-module
structure of AY is

#£0 #0
L] —(A+1) ° : 0_()\_1) ce A—1@ : ®)\11 °
0 0

the right arrows represent the action of F; and the left ones the action of E_.
That is, we have proved

Corollary 2.6.
Let A € Z>o and A =n+ 1 mod(2). A composition series for A} is

0—-V-—->AY— M —0

where V' is the Verma module of lowest weight —(\ — 1) and M is the irreducible
Verma module of highest weight —(A + 1).

PROPOSITION 2.7.

Given n € Z and X as in (i) of proposition 2.4 (i.e. X = n + 1 mod(2) and
A > 0 an integer), then A% is quotient of a generalized principal series 1§, 4 (Wo)
where Wy = R? and the representation of MAN is

(o 1) (5 D6 1) e (s 1)
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Proof. For f = (f1, f2) € 1§;an(Wo) let
S 15 v (Wo) — C°(G/K,V,,)

defined by
(Sf)(z) = /Kfl(xk)rn(k) dk + /ng(a:k)rn(k) dk

Since I§; 4 ((—1)" ® e*® @ 1) is contained in I, , 5 (Wo) via the map f — F =
(f,0) and S restricted to 1§, 15 (Wo) is equal to T, hence Im(S) contains Im(77.).
An easy calculation shows that Im(S) contains properly Im(7%.). Now, corollary
2.6 implies that any K-finite vector in A} outside of Im(7% ) is cyclic in A} /Im(7%).
Therefore, S is onto. [

Now, consider the Casimir operator acting on the subspace of compactly sup-
ported functions in C*°(G/K,V,,). We denote by 2 the unique essentially selfad-
joint extension of ) to a dense subspace of

= Tn(k)ilf($)

2 = —
PG = fre=C / /|f 2 de < oo

(cf [A-S)).

PROPOSITION 2.8. o

IfWe={feL*(G/K,V,,) | Qf = %f} , then W} is non zero if and only if
A€ Z—-{0}, A\ +1=nmod(2) and || < |n|. Moreover, W* = W™, is isomorphic
to the discrete series of Harish-Chandra parameter \J.

Proof. Suppose that A € Z—{0} , A\+1 = nmod(2) and |A| < |n|. As Q is elliptic, a
Connes-Moscovici result [C-M] ensure that W7 is a sum of discrete series, actually ,
it is irreducible by the Frobenius Reciprocity. The K-finite elements of L?(G/K, V)
are in the set of K-finite elements of C*°(G/K,V,,), so W [m] C A%[m] for all
m € Z. By proposition 2.4, A} has subspaces infinitesimally equivalent to a discrete
series for A such that

ANeZ A=n+1mod(2), 0 < Al < |n

This ”discrete series” subspaces are really contained in L*(G/K,V,,). In fact,
if f € AY[m]| and it belongs to a ”discrete series”, then f satisfies the differential
equation (2.2) or the one which results from the identification of AT with Rsq via
a; <> t. Then the theory of leading exponents as in [K] says that f(a;) e~(A=D?
at t = oo . Now, the integral formula for the Cartan decomposition together with
A > 0 imply that f is square integrable. For negative A we have a similar proof.

For the converse we use the structure of the discrete series, Frobenius Reciprocity
together with proposition 2.4. This concludes proposition 2.8. [
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63.L% and C>™-eigenspaces of the Dirac operator

Let g, = ko, @ po be the Cartan decomposition of g,, then p, is the subspace of
symmetric matrix of g,.

If we fix a minimal left ideal S in the Clifford algebra of p,, the resulting represen-
tation of so(p,) brakes down in two irreducible representations. Such representation
composed with the adjoint representation of k, restricted to p, lift up at a represen-
tation of K called the spin representation of K. Let {X;, X2} be an orthonormal
base of p,, let ¢ be the Clifford multiplication and fix an integer n. The Dirac
operator

D: C¥(G/K, V11 ®S) — C¥(G/K,V,11®085)
is defined by

(3.1) D=> (1®cX;)X;

i=1

where X; act as left invariant operators for all i. The spin representation S de-
compose into a sum of two irreducible subrepresentations S = ST @ S~ (c.f. 4.2
bellow). If X € p,, then ¢(X)S*T = ST, so

(3.2) D* :C* (G/K,V, ® 5F) — C™(G/K,V,® ST)

are well defined.
We also consider

D: L2(G/K,Vp1®8) — LYG/K,Vpy ®5)

Some properties of the Dirac operators D and D are: both are elliptic G-invariant
differential operator. As the Rimannian metric of G/K is complete, D and D? are
essentially selfadjoint in L?(G/K,V, 11 ® S) [W], that is, the minimal extension is
the unique selfadjoint closed extension over the set of smooth compactly supported
funtions. Thus, we consider D equal to this extension which coincides with the
maximal one [A]. The eigenvalues of D are defined as the eigenvalues of the unique
selfadjoint extension.
The following proposition is a corollary to proposition 2.8.

PROPOSITION 3.1.

If o is an eigenvalue of D, then the a-etgenspace Wa(f)) 1s irreducible and it
is a proper subspace of the a-eigenspace W, (D) of D. The eigenvalues of D are
o € R such that o = g(n+2)% — A with X integer and 0 < |\ < n+ 1.

Proof. For G = SL(2, R) The Parthasarathy equality [A-S] is

D2__q4 (D=1,
8
(3.3) ,
D?=_-QO+ w Id

8
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If « is a non-zero eigenvalue of D,

(3.4) Wa2(D?) = W, (D) @ W_, (D)
(cf [G-V]). Because of (3.3), the left hand side of (3.4) is the —a® + (n+1)? =1 =
%()\2 — 1) eigenspace of the Casimir operator. Now, since S = V_; @ V7,

L2(G/K, Vi1 ® S) = L2(G/K, V,)) ® L2 (G/K, Viia)
Hence proposition 2.8 implies that 0 < XA <n + 1 and

s (n+1)2—\°

o =
Moreover,
Wez(D?) = AY N L*(G/K,V,,) @ AT N L*(G/K, Viya)
Thus, 2(~ C 2) is equal to the sum of two copies of the discrete series H)ys.
Since, W, (D) is isomorphic to Hys we get that W, (D) is properly contained in
W.(D). O

Corollary 3.2. )
(T, Vi) and (T2, Viao) are K-types of W (D) for every non-zero eigenvalue
a of D. For the case a = 0, (Tp42, Vaya) is contained in KerD and (7,,,V,,) is not.

84. Szego kernels associated to the eigenspaces off)

In [K-W] Knapp and Wallach gave an integral operator to explicitly obtain a
discrete serie as the image of a nonunitary principal serie when the discrete serie
is realized as the kernel of Schmid operator. In §3 we have obtained that each
eigenspace of the Dirac operator

D: I*(G/K,Vp1®8) — LYG/K,Vpy ®5)

is a discrete serie. The purpose of this section is to give an integral operator for
each non zero eigenvalue o of D which will realize the eigenspace W (D) as a
quotient of an appropiated principal serie. From §3 it is easy to deduce which will
be the principal serie corresponding to each eigenspace Wa(f)), the problem is to
obtain the G-invariant integral operator onto W, (D). Let G = SL(2,R) and K
the maximal compact subgroup defined as in (1.2).

Let V41 be the n+1 irreducible representation of K, we assume that n+1 > 0.
In §3, given an orthonormal base of p, it was defined the Dirac operator D. If we
take {X;}?_, an orthonormal base of the complexification p of p,, another expresion
of D is

(4.1) D=

1

(1®c(X

2
=1
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where bar is conjugation with respect to g,.
One form to obtain the representations S is choosing the left minimal ideals of
the Clifford algebra of p,

ST =CE, S~ =CE_E,

where the product is Clifford multiplication. In Clif f(p) the following set of rela-
tions holds:

(4.2) E?=E*>=0 EE_E =-E,
Hence S = V_1 & V4. Thus, we have that
Vn+1 ® S = Vn D Vn+2

The set of K-finite elements of a principal serie I§; , (¢ ® e’ ® 1) defined in
(2.4), is the representation of K induced by € of M, hence

Ifi(e) = & V; ® Homp (V;, €)
ieK

So, if the representation € occur at V,, and V,,;12 as M-submodule, then € = (—1)".
We denote by i, the inclusions

ij: (6, We) — (73, V)) j=n,n+2
As W, and Vj are one dimensional
W, = Cuw Vi=Cuv®u

where w € W, , v € V,,41 and u € S+,
Then the inclusions ¢; are determined by the constants a; such that

Ey j=n

(4.3) ij(w)=a;v@u Whereu:{E_E+j:n+2

If sg « is the sign of the real number «, fix

A+n+1
an = ———
" “A+n+1
an+2:1

1
2
) sg con 0 #N€Z, A <n

Let G = KAN be the Iwasawa decomposition of G. According to this decom-
position we write an element of G by

z = k(x)e!@n(z)
Let S(z,t) be the function on G x K defined by

(4'4) S(:C, t) = e(A—l)éH(gflt) (Tn(’%(aj_lt))in + Tn+2(’€($_1t))in+2)
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Let 7 =7, + Tpio on V,, & Vi 49, so (4.4) implies
(4.5) S(zk,t) = 7(k)"1S(x,t) for all k € K

We will call S(z,t) the Szegd kernel associated to the parameters (A,n + 1). If
fel$an ((—1)” Qe ® 1), the Szeg6 map associated to the parameters (A, n+1)

is
/Smt

(4.6) )
= [ OO o )+ ) £0)

K
The equation (4.5) ensure that the image of the Szegd map is in C*°(G/K,V, &

Vita). )
Let D defined as in §3

PROPOSITION 4.1. )
Gwen n € Z , a a non zero eigenvalue of D, and A\ a negative integer which
satisfies the equality

N

a=1(-N+(n+1)%)?sga

Then, the Szegé map of parameters (A\,n + 1) is a G-invariant operator onto the
eigenspace W, (D).

Before proving this result we will see that Szegoé map is not the zero map. Let
feC>®(K/M,W,) where e = (—1)", given by

fk) =it (k) tiw

Extend f to G so that f € I,y ((-1)"®eM ®1).

(S(f)AQ),ipw) = /K (T(t)(zn +ipy2) (ZT_Ll Tn(t)_l inWw), inw) dt

_ / (1w + Ty (B)ingn (i1 1 (8) Vi), i) dt

/ linw]2 dt

because Ty, 2 (t)ini2 (i~ 7, (t) "L iyw) € Vi, 12 which is orthogonal to V.
To see that the Szegd map is G-invariant we need next lemma

Lemma 4.2.
Let S be the Szegd map with parameters (A, n+1). If f € 1§ 4y (F1)" ® e @ 1)
then

S(f) (x) = /K 7(£) (i + insa) f(ot) db
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Proof of Lemma 4.2. Using the change of variable

/ h(k)dk = / h(k(z~t))e 20H @) gy
K K
for h(k) = 7(k)(in + int2) f(xk) the following equality holds

/K (k)i + iny) f(ah)dk =

= /}(T(Ii(.f_lt))e_Q(SH(mlt)(in +ingo) flazr(z™t)) dt

As A normalize N,

r = m(mflt)eH(x_lt)n(xflt)
rr(z™'t) = tn(mflt)*le*H(m_lt)

= te_H(w_lt)n/ with n’ € N

So, f (zk(z~1t)) = f <te_H("371t)n’> = ¢WFDSH @) ¢ (1) And

/K P (B) (i + ins2) f(2k)dk = /K k(2 8)) e DHCT O ) F(8) di

- / S(a,t) f(t) dt O
K

Proof of the Proposition 4.1. By the lemma 4.2 the Szego map is G-equivariant for
left regular actions. As D also commute with the action of G, it is enough to see
that if f € 1§ 4y ()" @M ®1)

D(S)(1) = aSf(1)

If felfin((-1)"®eM®1) , the image of f is in W, = Cw with € = (—=1)",
then f(t) = h(t)w with h a complex valued function. So,

Sf(z) = /K Sz, ywh(t) dt
DSF(1) = / D(S(x, t)w)as h(t) dt

from which we only need prove that

D(S(z,t)w)z=1 = aS(1,t)w

=a7(t)(ipw + ippow)
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Let X7, X5 be an orthonormal base of p. Then,

D(S(z,t)w)y=1 =

2
= (I X C) Z(Xi‘g(l‘,t)’w)le X Xz)
1=1
2. d
= (I ® C) Z @ e(>‘_1)6H(eXp(_UXi)t)T(/€(eXp(—UXZ')t)> (Zn + in+2)w ® X@
i=1 u=0
2 d )
= ®c) |y - el AN (1 exp(—uAd(t_l)Xi))>
U
i=1 u=0

(in + int2)w @ X;

:(1®c)(T 1) ® Ad(t) ZAdt_ )S(1, 1)w @ Ad(t- )X )

As {Ad(t71)X;}i=1 2 is another orthonormal base of p, and

T(t) (I ®c)= (I ®c)(T(t) ® Ad(t))

then

D(S(z, t)w)ee1 = 7(t)D(S(z, 1)w)z—1

So we must prove

D(S(z,1)w)z=1 = aS(1, 1w
= a(in + in+2)w

Let %E_, %EJF be the orthonormal base of p given in §1, then
D(S(w, t)w),ms =

:(I@c)(i

1
e(A_l)éH(eXp(_“ﬁE*))T(Ks(exp(—u%E_)))(in + int2)w @ 5E4
u

u=0

1
+ = e(A—l)éH(exp(—u§E+))T(K(exp(_u%E+)))(Z‘n + i)W ® %E+)

du

u=0

By (1.7)

D(S(, hw)o=r = (I @ c) (_()‘ —1)d3 ((1) _01) (in +int2)w ® S By —

1 0 ) .
—(A—1)0% (0 _1) (in + into)w @ B4 —

0 — . .
- <i (z OZ)) (in +in+2)w ® 3 By —
(0 =i\, . )
—T (_Z (Z 0 )) (Zn —|—@n+2)w® §E>

By (4.2) and (4.3) applying I ® ¢, the following holds

(FE4)inw = c(3E_)ippow =0
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and by (4.4)
c(%E_)inw = %an IptoW
c(%E+)in+2w = —%%’iw
So that

D(S(z, t)w)p—1 =
—g(=A+ 1) ~inW + g ( A+ Dapippow + g(n+2)-- —inW + N i 2w

because

Tj(q _Z)v:jv siv e Vs Jj=mn,n+2

The coefficients of i, w and ,,4 2w are

Adn+1
1
=1 (-N+(n+1)?)2sga
a

1
— 1 2
%(A—f—n%—l)i:%()\—f-n—kl) (H—TH_) sg

|

1
(A +n+1a, =% (=N +(n+1)7)*sga
o

That is,
D(S(z,1)w)z=1 = aS(1, 1w

Now, we will prove that the Sezgé map of parameters (A\,n + 1) for negative
A maps onto W, (D). We know by proposition 3.1 that W, (]5) s irreducible.
As S is non zero, if Im(S) is square integrable, then Im(S) = W (D). Im(S) is a
subset of the eigenspace W (D) of the Dirac operator D. But W, (D) is a subset of
W2 (]32) According with the notation of §2, as D2 differ with the Casimir operator
Q) by a constant, Waz(f)z) is isomorphic to A} @& A§+2. But the only quotient of
1§ 4n ((F1)" ® e} ® 1) isomorphic to a subspace of A} & A}T? is infinitesimally
equivalent to a discrete serie. Let ¢ € Im(.S) in a non zero K-type, as the action of
this K-type is one and the set of K-finite elements of the square integrable function
space is a subset of the K-finite elements of the C°°, then ¢ is square integrable.

So Im(S) is a subset of W4 (D). The irreducibility concludes the proof. [
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