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Abstract. In this paper, on the space of smooth sections of a SL(2, R)−homoge-
neous vector bundle over the upper half plane we study the SL(2, R) structure for
the eigenspaces of the Casimir operator. That is, we determine its Jordan-Hölder
sequence and the socle filtration. We compute a suitable generalized principal series
having as a quotient a given eigenspace. We also give an integral equation which
characterizes the elements of a given eigenspace. Finally, we study the eigenspaces
of twisted Dirac operators.

§1. Introduction

Let G = SL(2,R) and K be a fixed maximal compact subgroup K of G. Let
(τ, V ) be a representation of K, we denote

C∞ (G/K, V ) =
{

f : G → V
/

f is C∞ and f(gk) = τ(k)−1f(g) for all k ∈ K
}

L2 (G/K, V ) =
{

f : G → V
/

f(gk) = τ(k)−1f(g) for all k ∈ K, ‖f‖22 < ∞}

where ‖ ‖2 is computed with respect to Haar measure. On L2 (G/K, V ) we fix the
obvious topology. On C∞ (G/K, V ) we fix the topology of uniform convergence on
compacts of the functions and their derivatives. Both spaces are representations of
G under the left regular action Lgf(x) = f(g−1x) for all g, x ∈ G.

Let Ω the Casimir element of the universal algebra U(go) of the Lie algebra go

of G, Ω define a G-left invariant operator on C∞ (G/K, V ). Here, we obtain the
G-module structure of each eigenspace of the Casimir operator

Ω: C∞ (G/K, V ) → C∞ (G/K, V )

whenever V is an irreducible representation of K. Actually, we prove that whenever
an eigenspace is irreducible, then it is infinitesimally equivalent to a principal series
representation, and when an eigenspace is reducible then we have an exact sequence
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0 → W → An
λ → M → 0, where An

λ is the λ−eigenspace of Ω in C∞ (G/K, V ), W
is a Verma module and M an irreducible Verma module.

As a corollary we obtain the eigenvalues and eigenspaces of

Ω̃ : L2(G/K, V ) → L2(G/K, V )

From this, it results that if λ is an eigenvalue of Ω̃ the corresponding eigenspace is
a proper subset of the respective one of Ω. We also compute the L2-eigenspaces of
the Dirac operator D.

Knapp-Wallach [K-W] obtained an integral operator which sends an adjusted
principal series onto the K−finite vector of the L2−kernel of the Dirac operator D.
In this work we obtain a similar result for each L2-eigenspace of D (c.f §4).

Let φλ,n be the Eisenstein function (cf. ***) in C∞ (G/K, V ) that belongs to
the λ−eigenspace of Ω, we prove:

(i) a continuous function that satisfies the integral equation
∫

K

f(gkx)dk = f(g)φλ,n for all g, x ∈ G

is smooth and is an eigenfunction of Ω corresponding to the eigenvalue λ.
(ii) Any λ−eigenfunction of Ω satisfies the integral equation in (i).

Now, we stablish some notations,

(1.2)

K =
{

kθ =
(

cos θ sin θ
− sin θ cos θ

)
: θ ∈ R

}

A =
{

at =
(

t 0
0 t−1

)
: t ∈ R+

}

M =
{
±

(
1 0
0 1

) }

N =
{(

1 x
0 1

)
: x ∈ R

}

A+ = {at ∈ A : 1 < t}
A− = {at ∈ A : 0 < t < 1}

We will use the decompositions G = KAN and G = KAK = KA+K = KA−K
[K]. If we denote by

(1.3) X =
(

0 1
−1 0

)
Y =

(
0 1
0 0

)
H =

1
2

(
1 0
0 −1

)

the Iwasawa decomposition of the Lie algebra go of G is go = ko ⊕ ao ⊕ no where
ko = RX, ao = RH, no = RY . We denote by g, k, a, n their complexifications.

The Casimir operator Ω is an element of the universal algebra U(g) of g, more-
over, the center of U(g) is C[Ω] [L]. It is defined by

(1.4) Ω = 1
2

(
H2 −H − Y X

)
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If

(1.5) W =
(

0 −i
i 0

)
E+ =

1
2

(
1 i
i −1

)
E− =

1
2

(
1 −i
−i −1

)

another expression of Casimir operator is

(1.6) Ω = 1
8

(
W 2 + 2W + 4E−E+

)

W, E+ and E− satisfy the relations

W = −W E± = E∓ [E+, E−] = W [W,E±] = ±2E±

Let θ be the usual Cartan involution on go. Therefore, ko is the subspace of fix
points of θ. Let po be the (−1)−eigenspace of θ.

The Killing form in go is

B(X, Y ) = 4Trace(XY ).

Thus {1
2E+, 1

2E−} is an orthonormal base of p with respect to the hermitian form

−B(X, θȲ )

The Iwasawa decomposition for E+ and E− is

(1.7)

1
2E+ = 1

4W + 1
4

(
1 0
0 −1

)
+ 1

2

(
0 i
0 0

)

1
2E− = − 1

4W + 1
4

(
1 0
0 −1

)
+ 1

2

(
0 i
0 0

)

§2.Eigenspaces of Ω

Since K is abelian, the irreducible representations of K are onedimensional.
They are (τn, Vn) with n ∈ Z, where

dim Vn = 1 and τn(kθ)v = einθv for all v ∈ Vn

Given n ∈ Z, the elements of the center of the universal enveloping algebra of g
will be considered acting on C∞(G/K, Vn) as left invariant operators.

For all λ ∈ C define

(2.1) An
λ =

{
f ∈ C∞(G/K, Vn)

/
Ωf =

λ2 − 1
8

f

}

Since Ω is a continuous linear operator on C∞(G/K, Vn), it follows that An
λ is a

closed subspace of C∞(G/K, Vn). Thus, An
λ is a subrepresentation of C∞(G/K, Vn)

with infinitesimal character χλδ
, where δ is the linear functional of ao such that

δ(H) = 1
2 and χλδ is the character of C multiplication by λ2−1

8 .
We denote by An

λ[m] the K-type τm of An
λ.
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PROPOSITION 2.1.
Given n ∈ Z, λ ∈ C, the representation An

λ of G is admissible and finitely
generated. Moreover,

(i) dim An
λ[m] ≤ 1 for all m ∈ Z

(ii) If An
λ[m] 6= {0}, then n and m have the same parity.

Remark: The converse of (ii) is also true. It follows from proposition 2.4.

We need some results to prove the proposition 2.1
Let f ∈ An

λ[m], f is a spherical function of type (m,n) because

f(kθgkψ) = e−imθf(g)e−inψ for all g ∈ G, kθ, kψ ∈ K

Since G = KAK , the values of f are determined by its values on A. Besides, if
m 6= n then f |K ≡ 0. In fact, the equallity f(kθ) = f(kθ.1) = e−imθf(1), implies
that f |K 6= 0 ⇔ f(1) 6= 0, now since f is spherical of type (m, n) we have that
f(kθ) = f(1.kθ) = f(1)e−inθ = f(1)e−imθ, therefore if f |K were nonzero we would
have that m = n.

The subgroup A is Lie isomorphic to R+ (positive real numbers with the usual
product) by the isomorphism α(at) = t2.

Lemma 2.2.
If f ∈ An

λ[m], the function F : R+ → C associated to f given by F (α(a)) =
f(a) for all a ∈ A satisfy the differential equation

(2.2) z2 d2

dz2
− 2z3

1− z2

d

dz
− z2

(1− z2)2
(m2 + n2) +

z(1 + z2)
(1− z2)2

nm − λ2 − 1
4

= 0

The equation has regular singularities at the points 0,±1,∞.

A proof of this lemma is in [Ca-M].

Proof of the Proposition 2.1. Since Ω is an elliptic operator in C∞(G/K, Vn), if
f ∈ An

λ, f |A is real analytic. Therefore, the function F : R+ → defined in (2.2)
is a real analytic function. Hence there is a holomorphic extension of F to a
neighborhood of R+ in the right half plane.

On the other hand by the Frobenius theory for differential equations with reg-
ular singular points [C-page 132] the equation (2.2) has an analytic solution on a
neighborhood of 1 if and only if m and n have the same parity. Moreover, any
holomorphic solution of (2.2) is a multiple of the power series

(2.3) (z − 1)
1
2 |m−n|

∞∑

j=0

cj(z − 1)j c0 = 1

In fact, the indicial equation of (2.2) is

s(s− 1) + s − 1
4
(m− n)2 = 0
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and its roots are ± 1
2 (m− n). Thus, as the roots differ by an integer, the exponent

of the first term of (2.3) is 1
2 |m−n|, if this number were not an integer the function

(2.3) would not be analytic on a neighborhood of 1, this forces the same parity for
n and m.

As the other singularities of (2.2) are 0,−1,∞, there is an extension of the
analytic solution on a neighborhood of 1 to an analytic solution on a neighborhood
of R+. So (i) and (ii) holds. ¤
Remark. Since An

λ has infinitesimal character χλδ and An
λ is admissible by Propo-

sition 2.1, An
λ has finite length by a known rwsult of Harish-Chandra [V,Corollary

5.4.16].

Corollary 2.3.
Given n ∈ Z, λ ∈ C, the K-type τn occurs in any subrepresentation of An

λ.
Moreover, An

λ has a unique irreducible G-submodule.

Proof. Let W be a nontrivial closed submodule of An
λ and denote by WK the set

of K-finite elements in W , we consider the map

(*)
HomG(W,An

λ) −−−−→ HomK(WK , Vn)

T −−−−→
(
v → T̃ v = Tv(1)

)

This map is well defined. In fact, if v ∈ WK ,

T̃ (kv) = T (kv)(1) = (Lk.T v) (1) = Tv(k−1) = τn(k)Tv(1)

Moreover, it is inyective. In fact, suppose that T̃ ≡ 0, so Tv(1) = 0 for all v ∈ WK .
As T is a continuous linear transformation, WK is a dense subset of W [L-page 24],
and there exists a sequence {vm} in WK such that vm → w for each w ∈ W , then

Tvm → Tw =⇒ 0 = Tvm(1) → Tw(1)

that is, Tw(1) = 0 for all w. Now, for w ∈ W ,

Tw(g) =
(
Lg−1 .Tw

)
(1) = T (g−1w)(1) = 0 for all g ∈ G,

so T ≡ 0. If W is a closed submodule of An
λ, by (*) W [n] 6= 0, and by (i) W [n] =

An
λ[n]. This concludes the first statement of the corollary. The second follows from

the equality W [n] = An
λ[n]. ¤

Fix n ∈ Z, λ ∈ C, let δ be the linear functional on ao such that δ(H) = 1
2 ,

log at = t H, and denote by (−1)n the character of M such that −1 0
0 1 → (−1)n.

As usual, define

(2.4) IGMAN ((−1)n ⊗ eλδ ⊗ 1) =

= {f : G → C C∞ such that

f(xman) = e−(λ+1)δ(log a)(−1)n(m−1)f(x) for all x ∈ G, man ∈ MAN}
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the representation of G induced by the representation (−1)n ⊗ eλδ ⊗ 1 of MAN .
G acts by left translation. Recall that IGMAN ((−1)n ⊗ eλδ ⊗ 1) has infinitesimal
character χλδ and IGMAN ((−1)n ⊗ eλδ ⊗ 1) is irreducible if and only if λ 6≡ (n +
1)mod(2) [B].

Define linear transformations

(2.5)
IGMAN

(
(−1)n ⊗ e±λδ ⊗ 1

) T−−−−→ An
λ

f −−−−→ (
x → Tf(x) =

∫
K

f(xk)τn(k)dk
)

Whenever it becomes necessary to sea which is the domain of the operators, we will
write T±, otherwise we will write T .

The linear transformation T is well defined because

Tf(xk′) =
∫

K

f(xk′k)τn(k) dk = τ(k′)−1

∫

K

f(xk)τn(k) dk.

Besides, since IGMAN

(
(−1)n ⊗ e±λδ ⊗ 1

)
has infinitesimal character χλδ, T is a left

G-morphism and left infinitesimal translation by Ω agrees with right infinitesimal
translation, (LΩ.f = RΩ.f for all f ∈ C∞(G/K, Vn)). Hence the image of T is
contained in An

λ.
T is not zero because

Tτ−n(1) =
∫

K

τ−n(k)τn(k)dk =
∫

K

dk 6= 0

Note that An
λ and An

λ′ is the same eigenspace of Ω if λ2 = (λ′)2. So, if λ ∈ Z we
will always assume that λ ≥ 0 .

PROPOSITION 2.4.
Given n ∈ Z,
(i) If λ ∈ C \ Z, or λ ∈ Z and λ 6≡ (n + 1) mod(2), An

λ is infinitesimally
equivalent to IGMAN

(
(−1)n ⊗ eλδ ⊗ 1

)
.

(ii) If λ ∈ Z≥0 , λ+1 ≡ n mod(2) and λ > |n|, An
λ is infinitesimally equivalent to

IGMAN

(
(−1)n ⊗ e−λδ ⊗ 1

)
.

(iii) If λ ∈ Z≥0, λ + 1 ≡ n mod(2) and λ < n , the (g, K)-module structure of
An

λ is the following
E+An

λ[m] 6= 0 for all m such that An
λ[m] 6= 0

E−An
λ[m] 6= 0 for all m 6= ±λ such that An

λ[m] 6= 0

E−An
λ[±λ + 1] = 0

(iv) If λ ∈ Z≥0, λ + 1 ≡ n mod(2), n < 0 and λ < −n , the (g, K)-module
structure of An

λ is the following
E−An

λ[m] 6= 0 for all m such thatAn
λ[m] 6= 0

E+An
λ[m] 6= 0 for all m 6= ±λ + 1 such thatAn

λ[m] 6= 0

E+An
λ[±λ + 1] = 0.

Remark 1: Under the hypothesis (iii) or (iv) we have that An
λ is not a quotient

of IGMAN

(
(−1)n ⊗ e±λδ ⊗ 1

)
.

Remark 2: An
λ is irreducible if and only if λ 6≡ (n + 1) mod(2).

We need the following lemma to prove (iii) of proposition 2.4.
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Lemma 2.5.
Given n ∈ Z, let λ ∈ Z≥0 , λ + 1 ≡ n mod2 and λ < n, there exist m ∈ Z ,

m < −λ such that An
λ[m] is not zero.

Proof of Lemma 2.5. Let m be an integer such that

(2.6) m ≡ n mod2 m < −λ 1
2 (n−m) is even

The conditions on m and n ensure the existence of a smooth solution F of (2.2)
on the interval (0,∞). In fact, using the Frobenius method for differential equations
with regular singularities, that (2.2) has a analytic solution in a neighbordhood of
1 if and only if m and n have the same parity. Besides, the singularities of (2.2)
are 0,±1, ∞. Therefore, this solution extends to a solution on the interval (0,∞).
Moreover, any smooth solution of (2.2) in the interval (0,∞) is a multiple of the
power series

(z − 1)
1
2 |m−n|

∞∑

j=0

cj(z − 1)j c0 = 1

Therefore, F has a zero of order 1
2 |m− n| at 1.

We have to prove that F extends to an element of An
λ[m]. This will take some

work.
Let NK(A) be the normalizer of A on K.
Consider C∞τn−m

(A) to be the set of smooth funtions on A such that

(j) φ(kak−1) = τn−m(k) φ(a) for all a ∈ A , k ∈ NK(A)
(jj) φ(a)

δ(log a)
1
2 (n−m)

is a smooth function and even on A.

Let f : A → C given by f(a) = F (α(a)) , with α the isomorphism between A
and R+ defined in (2.2). Let’s prove that the function f is in C∞τn−m

(A). In fact,
the normalizer of A on K, is exactly

NK(A) = {±I} =
{
kπ

2
, k−π

2

}

As n−m and 1
2 (n−m) are even numbers,

τn−m(±I) = τn−m(k±π
2
) = e±i(n−m) π

2 = 1

So, f satisfy (j) if and only if f(a) = f(a−1) for all a ∈ A, or equivalently
F (x) = F (x−1) for all x ∈ R+. Let’s prove that F (x) = F (x−1). Let h be
the function given by h(z) = F (z−1), we want to prove that h = F . We claim that
h satisfies the same differential equation that F does. In fact, let w = z−1, then

dh

dz
(z) =

dF

dw
(w)w′

= −w2 dF

dw
(w)

d2F

dz2
(z) = −2ww′

dF

dw
(w) + w4 d2F

dw2
(w)

= 2w3 dF

dw
(w) + w4 d2F

dw2
(w)
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and

− 2z3

1− z2
= − 2w−3

1− w−2
=

2w−1

1− w2

− z2

(1− z2)2
= − w−2

(1− w−2)2
= − w2

(1− w2)2

z(1 + z)
(1− z2)2

=
w−1(1 + w−2)

(1− w−2)2
=

w(w2 + 1)
(1− w2)2

So,

z2 d2h

dz2
(z) − 2z3

1− z2

dh

dz
(z)+

(
− z2

(1− z2)2
(m2 + n2) +

z(1 + z2)
(1− z2)2

nm− λ2 − 1
4

)
h(z) =

= w2 d2F

dw2
(w) +

(
2w − 2w−1

1− w2
w2

)
dF

dw
(w)+

+
(
− w2

(1− w2)2
(m2 + n2) +

w(1 + w2)
(1− w2)2

nm − λ2 − 1
4

)
F (w)

The right hand side is exactly the equation(2.2) on F , so it is zero. Both h and F
are smooth functions on (0,∞) and solutions of the differential equation (2.2). So,
by (2.6) they are multiple of each other in a neighborhood of 1. Hence, we write,

h(z) = (z − 1)
1
2 |n−m|ψh(z)

F (z) = (z − 1)
1
2 |n−m|ψF (z)

with ψh and ψF power series, such that cψh(z) = ψF (z) for a suitable nonzero
complex number. Therefore,

h(z) = F (z−1) = (z−1 − 1)
1
2 |n−m|ψF (z−1) = (z − 1)

1
2 (n−m)z−

1
2 |n−m|ψF (z−1)

Thus, ψh(z) = (z − 1)−
1
2 (n−m)ψF (z−1). This imply that

cψh(z) = (z − 1)−
1
2 (n−m)ψF (z−1)

Hence, F (z) = F (z−1) in a neighborhood of 1. As F is real analytic in (0,∞),
F (z) = F (z−1) for all z ∈ R+. Equivalently, f(a) = f(a−1) for all a ∈ A. Thus, f
satisfies (j).

We want to prove that f satisfies (jj). The function δ(log a)−
1
2 (n−m) is even on

A because
δ(logat)−

1
2 (n−m) = (t δ(H))−

1
2 (n−m)

= (−t δ(H))−
1
2 (n−m) by (2.6)

= δ(log a−1
t )−

1
2 (n−m)
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Thus, the function f(a)δ(log a)−
1
2 (n−m) is even. The function f(a)δ(log a)−

1
2 (n−m)

is smooth because f is real analytic and has a zero of order 1
2 (n−m) at 1. Therefore,

we have proved that f ∈ C∞τn−m
(A). We want to extend f to an element of An

λ[m]
Let C∞(G/K)[τn−m] be the space of smooth complex valued functions on G/K

such that f(kx) = τn−m(k)f(x) for all k ∈ K, x ∈ G.
We need to prove:

Sublemma 2.6.
The restriction map from C∞(G/K)[τn−m] to C∞τn−m

(A) is biyective.

Proof of sublemma 2.6. : The equallity G = KAK implies that the restriction map
is inyective. To prove that is suryective we appeal to a theorem of Helgason. Let
H be the set of harmonic polynomial functions on po. We consider the usual action
of K on H. That is, the one determinated by the isotropy representation of K in
po. We now set ourselves in §10 of [H-1], with δ = τn−m. Since n ≡ mmod(2), we
have that τn−m ∈ K̂o. Let degQδ(λ) = p(δ). A formula due to Kostant and cited
on pag 203 of [H-1] says that p(δ) = d(δ) =degree of the harmonic homogeneous
polynomials in the δ−isotypic component of H. To compute d(δ) we proceed as
follow: If e1, e2 is an orthonormal basis for po, we know that k(θ)ė1 = cos(2θ)e1 −
sin(2θ)e2, k(θ)ė2 = sin(2θ)e1 + cos(2θ)e2. Since (n −m)/2 is a whole number the
polynomial function on po, (e1 + ie2)(n−m)/2 is harmonic and has degree (n−m)/2,
moreover k(θ)(̇e1 + ie2)(n−m)/2 = ei(n−m)θ(e1 + ie2)(n−m)/2. Thus, we have that
p(δ) = (n − m)/2. Therefore, our space C∞τn−m

(A) contains the space Dτn−m(A)
of page 211 in [H-1]. Hence, lemma 10.1 of [H-1] implies that the restricction map
from Dτn−m(G/K) into Dτn−m(A) is a linear homeomorphism. We remark that
Dτn−m(G/K) ⊂ C∞(G/K)[τn−m]. A density argument together with the fact that
K is compact imply sublemma 2.6. ¤

We proceed with the proof of lemma 2.5. For this end, we now have that the
function f admits a smooth extension f̃ : exp po → C which satisfies

(2.7)
f̃(kak−1) = τn−m(k) f̃(a)

= τm(k)−1f̃(a)τn(k)

The diffeomorphism between G and exp po K ensures that the function f̂ : G → C
given by

f̂(pk) = f̃(p)τn(k)−1 for all p ∈ exp po , k ∈ K

is well defined and it is smooth. Also, f̂ is in the K-type τm of C∞(G/K, Vn). In
fact, for x ∈ G we write x = k2ak−1

2 k1 with k1, k2 ∈ K, and a ∈ A, hence

(Lkf̂)(x) = f̂(k−1k2ak−1
2 k1) = f̃(k−1k2ak−1

2 k)τn(k−1k1)−1

= τn−m(k−1k2)f(a)τn(k−1k1)−1

= τn−m(k−1)τn−m(k2)f(a)τn(k−1k1)−1

= τn−m(k−1)f̃(k2ak−1
2 )τn(k−1)−1τn(k1)−1

= τn(k−1)τm(k)f̃(p)τn(k−1)−1τn(k1)−1

= τm(k)f̃(p)τn(k1)−1

= τm(k)f̂(x) ¤
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A comutation like the one in [Wa] page 280, implies that

(Ωf̂)(x) = τm(k−1
2 )τn(k−1

2 k1)(z2 d2F

d2z
+ . . . ) = 0

because F satisfies the equation 2.2.
This concludes the proof of lemma 2.5

Proof of the Proposition 2.4. (i) As T is not the zero function and since λ 6≡
n+1 mod(2) the module IGMAN

(
(−1)n ⊗ eλδ ⊗ 1

)
is irreducible. Thus T is inyective.

The K-types τm which occur in IGMAN

(
(−1)n ⊗ eλδ ⊗ 1

)
are indexed by all the m

with the same parity as n. Since T is one-to-one they must occur in An
λ. By

proposition 2.1 (i), (ii), they are exactly the K-types of An
λ. Thus, T is suryective

at the level of (g, K)-modules.
(ii) Since λ ≥ 0, IGMAN

(
(−1)n ⊗ e−λδ ⊗ 1

)
has only one irreducible submodule F

which is finite dimensional and whose K-types are parametrized by {m : −(λ−1) ≤
m ≤ λ− 1, m ≡ n (2)}. The structure of IGMAN

(
(−1)n ⊗ e−λδ ⊗ 1

)
is

IGMAN

(
(−1)n ⊗ e−λδ ⊗ 1

) ⊃ W+

⊃ W−
⊃ F ⊃ 0

where W+ is the G-submodule spanned by the K-types {−(λ−1), −(λ−3), . . . , λ−
1, λ + 1, . . . } and W− is the one spanned by the K-types {. . . , λ − 3, λ − 1}. As
λ > |n| the K-type τn occur in F . On the other hand, we have verified that T
maps non trivially the K−type τn, so F is not a submodule of KerT . Since F is
contained in every nonzero submodule of IGMAN

(
(−1)n ⊗ e−λδ ⊗ 1

)
. T is 1:1; by a

similar argument to the one used on (i) we get that T is suryective.
(iii) Suppose that n, λ > 0 λ < n, λ 6≡ n + 1(2). Then the image of T− is

the discrete serie Hλδ of infinitesimal character χλδ. We recall that the K-types
of Hλδ are parametrized by {λ + 1, λ + 3, . . . }. In fact, the nonzero quotients
of IGMAN

(
(−1)n ⊗ e−λδ ⊗ 1

)
are Hλδ, H−λδ, Hλδ ⊕ H−λδ or itself. Now, the irre-

ducible finite-dimensional submodule occurs in KerT−, otherwise T−(F ) would be
an irreducible submodule of An

λ and do not have the K-type τn (λ < |n|! ), that
contradicts corollary 2.3. This contradiction ensures that T− is not inyective. By
corollary 2.3, An

λ has only one irreducible submodule, ImT− 6= Hλδ ⊕H−λδ. Fur-
thermore, since the irreducible submodule contains the K-type τn ,so ImT− = Hλδ.
Therefore Hλδ is the irreducible submodule of An

λ.
The structure of IGMAN

(
(−1)n ⊗ eλδ ⊗ 1

)
is the following

IGMAN

(
(−1)n ⊗ eλδ ⊗ 1

) ⊃ Hλδ ⊕H−λδ

⊃ Hλδ

⊃ H−λδ
⊃ 0

T+ is not inyective; otherwise T+(H−λδ) is an irreducible submodule of An
λ and

does not have the K-type τn. Also Ker T+ 6= Hλδ ⊕ H−λδ; otherwise, the finite
dimensional representation F is a subrepresentation of An

λ, contradicting corollary
2.3. Thus,

ImT+
∼= IGMAN

(
(−1)n ⊗ eλδ ⊗ 1

)
/H−λδ
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This implies that
(ImT+)K =

⋃

m≥−(λ−1)

m≡n(2)

An
λ[m]

which is the Verma module of lowest weight −(λ− 1). Thus,

E+An
λ[m] 6= 0 for all m ≥ −(λ− 1)

E−An
λ[m] 6= 0 for all m ≥ −(λ− 1) and m 6= −λ + 1

By lemma 2.5 there exists a K-type An
λ[m] 6= 0 for some m < −λ. This en-

sure that An
λ[m] 6= 0 for all m < −λ and m ≡ nmod(2), on the other hand, An

λ

would have a lowest weight submodule with lowest weight less than −λδ. The in-
finitesimal character of this lowest weight submodule would be different from χλδ,
giving a contradiction. Following the same argument, E+ acts nontrivially on each
An

λ[m], m < −λ.
For the case λ = 0 and λ + 1 ≡ nmod(2) the proof is easier.
(iv) It has the same proof of (iii). This concludes the proof of proposition 2.4. ¤

Remark 1: Given n ∈ Z and λ ∈ C, the K-types An
λ[m] are not zero for all m

with the same parity of n.

Remark 2: In view of [S] , in cases (i) and (ii) An
λ is equivalent to the maximal

model of IGMAN which is the induced representation with hiperfunctions coefficients.
In case (iii) An

λ is a quotient of the maximal model of a generalized principal series.

Remark 3: Given n ∈ Z≥0 and λ ≥ 0 as in (iii) of proposition 2.4 , the G-module
structure of An

λ is

. . . • −(λ+1) • 6=0−→
←−

0

•−(λ−1) . . . λ−1 • 6=0−→
←−

0

•λ+1 • . . .

the right arrows represent the action of E+ and the left ones the action of E−.
That is, we have proved

Corollary 2.6.
Let λ ∈ Z≥0 and λ ≡ n + 1 mod(2). A composition series for An

λ is

0 → V → An
λ → M → 0

where V is the Verma module of lowest weight −(λ − 1) and M is the irreducible
Verma module of highest weight −(λ + 1).

PROPOSITION 2.7.
Given n ∈ Z and λ as in (iii) of proposition 2.4 (i.e. λ ≡ n + 1 mod(2) and

λ ≥ 0 an integer), then An
λ is quotient of a generalized principal series IGMAN (W0)

where W0 = R2 and the representation of MAN is

±
(

1 0
0 1

)(
et 0
0 et

)(
1 x
0 1

)
→ (−1)nexp t

(
λ 1
0 −λ

)
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Proof. For f = (f1, f2) ∈ IGMAN (W0) let

S : IGMAN (W0) → C∞(G/K, Vn)

defined by

(Sf)(x) =
∫

K

f1(xk)τn(k) dk +
∫

K

f2(xk)τn(k) dk

Since IGMAN

(
(−1)n ⊗ eλδ ⊗ 1

)
is contained in IGMAN (W0) via the map f → F =

(f, 0) and S restricted to IGMAN (W0) is equal to T+, hence Im(S) contains Im(T+).
An easy calculation shows that Im(S) contains properly Im(T+). Now, corollary
2.6 implies that any K-finite vector in An

λ outside of Im(T+) is cyclic in An
λ/Im(T+).

Therefore, S is onto. ¤

Now, consider the Casimir operator acting on the subspace of compactly sup-
ported functions in C∞(G/K, Vn). We denote by Ω̃ the unique essentially selfad-
joint extension of Ω to a dense subspace of

L2(G,Vn) =



 f : G → C

/ f(xk) = τn(k)−1f(x)∫

G

|f(x)|2 dx < ∞





(cf [A-S]).

PROPOSITION 2.8.
If Wn

λ = {f ∈ L2(G/K, Vn) / Ω̃f = λ2−1
8 f} , then Wn

λ is non zero if and only if
λ ∈ Z−{0} , λ + 1 ≡ nmod(2) and |λ| < |n|. Moreover, Wn

λ = Wn
−λ is isomorphic

to the discrete series of Harish-Chandra parameter λδ.

Proof. Suppose that λ ∈ Z−{0} , λ+1 ≡ nmod(2) and |λ| < |n|. As Ω̃ is elliptic, a
Connes-Moscovici result [C-M] ensure that Wn

λ is a sum of discrete series, actually ,
it is irreducible by the Frobenius Reciprocity. The K-finite elements of L2(G/K, Vn)
are in the set of K-finite elements of C∞(G/K, Vn), so Wn

λ [m] ⊂ An
λ[m] for all

m ∈ Z. By proposition 2.4, An
λ has subspaces infinitesimally equivalent to a discrete

series for λ such that

λ ∈ Z λ ≡ n + 1 mod(2), 0 < |λ| < |n|

This ”discrete series” subspaces are really contained in L2(G/K, Vn). In fact,
if f ∈ An

λ[m] and it belongs to a ”discrete series”, then f satisfies the differential
equation (2.2) or the one which results from the identification of A+ with R>0 via
at ↔ t. Then the theory of leading exponents as in [K] says that f(at) e−(λ−1)t

at t = ∞ . Now, the integral formula for the Cartan decomposition together with
λ > 0 imply that f is square integrable. For negative λ we have a similar proof.

For the converse we use the structure of the discrete series, Frobenius Reciprocity
together with proposition 2.4. This concludes proposition 2.8. ¤
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§3.L2 and C∞-eigenspaces of the Dirac operator

Let go = ko ⊕ po be the Cartan decomposition of go, then po is the subspace of
symmetric matrix of go.

If we fix a minimal left ideal S in the Clifford algebra of po, the resulting represen-
tation of so(po) brakes down in two irreducible representations. Such representation
composed with the adjoint representation of ko restricted to po lift up at a represen-
tation of K called the spin representation of K. Let {X1, X2} be an orthonormal
base of po, let c be the Clifford multiplication and fix an integer n. The Dirac
operator

D : C∞(G/K, Vn+1 ⊗ S) → C∞(G/K, Vn+1 ⊗ S)

is defined by

(3.1) D =
2∑

i=1

(1⊗ c(Xi)) Xi

where Xi act as left invariant operators for all i. The spin representation S de-
compose into a sum of two irreducible subrepresentations S = S+ ⊕ S− (c.f. 4.2
bellow). If X ∈ po, then c(X)S± = S∓, so

(3.2) D± : C∞
(
G/K, Vn ⊗ S±

) → C∞
(
G/K, Vn ⊗ S∓

)

are well defined.
We also consider

D̃ : L2(G/K, Vn+1 ⊗ S) → L2(G/K, Vn+1 ⊗ S)

Some properties of the Dirac operators D and D̃ are: both are elliptic G-invariant
differential operator. As the Rimannian metric of G/K is complete, D̃ and D̃2 are
essentially selfadjoint in L2(G/K, Vn+1 ⊗ S) [W], that is, the minimal extension is
the unique selfadjoint closed extension over the set of smooth compactly supported
funtions. Thus, we consider D̃ equal to this extension which coincides with the
maximal one [A]. The eigenvalues of D̃ are defined as the eigenvalues of the unique
selfadjoint extension.

The following proposition is a corollary to proposition 2.8.

PROPOSITION 3.1.
If α is an eigenvalue of D̃, then the α-eigenspace Wα(D̃) is irreducible and it

is a proper subspace of the α-eigenspace Wα(D) of D. The eigenvalues of D̃ are
α ∈ R such that α2 = 1

8 (n + 2)2 − λ2 with λ integer and 0 < |λ| ≤ n + 1.

Proof. For G = SL(2, R) The Parthasarathy equality [A-S] is

(3.3)
D2 = −Ω +

(n + 1)2 − 1
8

Id

D̃2 = −Ω̃ +
(n + 1)2 − 1

8
Id
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If α is a non-zero eigenvalue of D̃,

(3.4) Wα2(D̃2) = Wα(D̃)⊕W−α(D̃)

(cf [G-V]). Because of (3.3), the left hand side of (3.4) is the −α2 + (n + 1)2 − 1 =
1
8 (λ2 − 1) eigenspace of the Casimir operator. Now, since S = V−1 ⊕ V1,

ÃL2(G/K, Vn+1 ⊗ S) = ÃL2(G/K, Vn)⊕ ÃL2(G/K, Vn+2)

Hence proposition 2.8 implies that 0 ≤ λ ≤ n + 1 and

α2 =
(n + 1)2 − λ2

8

Moreover,

Wα2(D̃2) = An
λ ∩ L2(G/K, Vn)⊕An+1

λ ∩ L2(G/K, Vn+2)

Thus, Wα2(D̃2) is equal to the sum of two copies of the discrete series Hλδ.
Since, Wα(D̃) is isomorphic to Hλδ we get that Wα(D̃) is properly contained in
Wα(D). ¤

Corollary 3.2.
(τn, Vn) and (τn+2, Vn+2) are K-types of Wα(D̃) for every non-zero eigenvalue

α of D̃. For the case α = 0, (τn+2, Vn+2) is contained in KerD̃ and (τn, Vn) is not.

§4. Szegö kernels associated to the eigenspaces of D̃

In [K-W] Knapp and Wallach gave an integral operator to explicitly obtain a
discrete serie as the image of a nonunitary principal serie when the discrete serie
is realized as the kernel of Schmid operator. In §3 we have obtained that each
eigenspace of the Dirac operator

D̃ : L2(G/K, Vn+1 ⊗ S) → L2(G/K, Vn+1 ⊗ S)

is a discrete serie. The purpose of this section is to give an integral operator for
each non zero eigenvalue α of D̃ which will realize the eigenspace Wα(D̃) as a
quotient of an appropiated principal serie. From §3 it is easy to deduce which will
be the principal serie corresponding to each eigenspace Wα(D̃), the problem is to
obtain the G-invariant integral operator onto Wα(D̃). Let G = SL(2,R) and K
the maximal compact subgroup defined as in (1.2).

Let Vn+1 be the n+1 irreducible representation of K, we assume that n+1 > 0.
In §3, given an orthonormal base of po it was defined the Dirac operator D̃. If we
take {Xi}2i=1 an orthonormal base of the complexification p of po, another expresion
of D̃ is

(4.1) D̃ =
2∑

i=1

(1⊗ c(Xi)) X̄i



SL(2,R)-MODULE STRUCTURE OF EIGENSPACES 15

where bar is conjugation with respect to go.
One form to obtain the representations S± is choosing the left minimal ideals of

the Clifford algebra of p,

S+ = CE+ S− = CE−E+

where the product is Clifford multiplication. In Cliff(p) the following set of rela-
tions holds:

(4.2) E2
+ = E2

− = 0 E+E−E+ = −E+

Hence S = V−1 ⊕ V1. Thus, we have that

Vn+1 ⊗ S = Vn ⊕ Vn+2

The set of K-finite elements of a principal serie IGMAN (ε ⊗ eλδ ⊗ 1) defined in
(2.4), is the representation of K induced by ε of M , hence

IK
M (ε) = ⊕

i∈K̂

Vi ⊗HomM (Vi, ε)

So, if the representation ε occur at Vn and Vn+2 as M -submodule, then ε = (−1)n.
We denote by ij the inclusions

ij : (ε,Wε) → (τj , Vj) j = n, n + 2

As Wε and Vj are one dimensional

Wε = Cw Vj = C v ⊗ u

where w ∈ Wε , v ∈ Vn+1 and u ∈ S±.
Then the inclusions ij are determined by the constants aj such that

(4.3) ij(w) = aj v ⊗ u where u =
{

E+

E−E+

j = n

j = n + 2

If sg α is the sign of the real number α, fix

an =
(

λ + n + 1
−λ + n + 1

) 1
2

sg α con 0 6= λ ∈ Z, |λ| ≤ n

an+2 = 1

Let G = KAN be the Iwasawa decomposition of G. According to this decom-
position we write an element of G by

x = κ(x)eH(x)n(x)

Let S(x, t) be the function on G×K defined by

(4.4) S(x, t) = e(λ−1)δH(x−1t)
(
τn(κ(x−1t))in + τn+2(κ(x−1t))in+2

)



16 ESTHER GALINA JORGE VARGAS

Let τ = τn + τn+2 on Vn ⊕ Vn+2, so (4.4) implies

(4.5) S(xk, t) = τ(k)−1S(x, t) for all k ∈ K

We will call S(x, t) the Szegö kernel associated to the parameters (λ, n + 1). If
f ∈ IGMAN

(
(−1)n ⊗ eλδ ⊗ 1

)
, the Szegö map associated to the parameters (λ, n+1)

is

(4.6)
S(f)(x) =

∫

K

S(x, t) f(t) dt

=
∫

K

e(λ−1)δH(x−1t)τ(κ(x−1t))(in + in+2) f(t) dt

The equation (4.5) ensure that the image of the Szegö map is in C∞(G/K, Vn⊕
Vn+2).

Let D̃ defined as in §3

PROPOSITION 4.1.
Given n ∈ Z , α a non zero eigenvalue of D̃, and λ a negative integer which

satisfies the equality
α = 1

8

(−λ2 + (n + 1)2
) 1

2 sg α

Then, the Szegö map of parameters (λ, n + 1) is a G-invariant operator onto the
eigenspace Wα(D̃).

Before proving this result we will see that Szegö map is not the zero map. Let
f ∈ C∞(K/M, Wε) where ε = (−1)n, given by

f(k) = i−1 τn(k)−1 inw

Extend f to G so that f ∈ IGMAN

(
(−1)n ⊗ eλδ ⊗ 1

)
.

(S(f)(1), inw) =
∫

K

(
τ(t)(in + in+2) (i−1

n τn(t)−1 inw), inw
)

dt

=
∫

K

(
inw + τn+2(t)in+2 (i−1 τn(t)−1 inw), inw

)
dt

=
∫

K

‖inw‖2 dt

6= 0

because τn+2(t)in+2 (i−1 τn(t)−1 inw) ∈ Vn+2 which is orthogonal to Vn.
To see that the Szegö map is G-invariant we need next lemma

Lemma 4.2.
Let S be the Szegö map with parameters (λ, n+1). If f ∈ IGMAN

(
(−1)n ⊗ eλδ ⊗ 1

)
then

S(f) (x) =
∫

K

τ(t)(in + in+2) f(xt) dt
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Proof of Lemma 4.2. Using the change of variable

∫

K

h(k) dk =
∫

K

h(κ(x−1t))e−2δH(x−1t) dt

for h(k) = τ(k)(in + in+2) f(xk) the following equality holds

∫

K

τ(k)(in + in+2) f(xk)dk =

=
∫

K

τ(κ(x−1t))e−2δH(x−1t)(in + in+2) f(xκ(x−1t)) dt

As A normalize N ,

x−1t = κ(x−1t)eH(x−1t)n(x−1t)

xκ(x−1t) = tn(x−1t)−1e−H(x−1t)

= te−H(x−1t)n′ with n′ ∈ N

So, f
(
xκ(x−1t)

)
= f

(
te−H(x−1t)n′

)
= e(λ+1)δH(x−1t)f(t). And

∫

K

τ(k)(in + in+2) f(xk)dk =
∫

K

τ(κ(x−1t))e(λ−1)δH(x−1t)(in + in+2) f(t) dt

=
∫

K

S(x, t) f(t) dt ¤

Proof of the Proposition 4.1. By the lemma 4.2 the Szegö map is G-equivariant for
left regular actions. As D̃ also commute with the action of G, it is enough to see
that if f ∈ IGMAN

(
(−1)n ⊗ eλδ ⊗ 1

)

D̃(Sf)(1) = αSf(1)

If f ∈ IGMAN

(
(−1)n ⊗ eλδ ⊗ 1

)
, the image of f is in Wε = Cw with ε = (−1)n,

then f(t) = h(t)w with h a complex valued function. So,

Sf(x) =
∫

K

S(x, t)wh(t) dt

D̃Sf(1) =
∫

K

D̃(S(x, t)w)x=1h(t) dt

from which we only need prove that

D(S(x, t)w)x=1 = αS(1, t)w

= α τ(t)(inw + in+2w)
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Let X1, X2 be an orthonormal base of p. Then,

D̃(S(x, t)w)x=1 =

= (I ⊗ c)

(
2∑

i=1

(XiS(x, t)w)x=1 ⊗ X̄i

)

= (I ⊗ c)

(
2∑

i=1

d

du

∣∣∣∣
u=0

e(λ−1)δH(exp(−uXi)t)τ(κ(exp(−uXi)t)

)
(in + in+2)w ⊗ X̄i

= (I ⊗ c)

(
2∑

i=1

d

du

∣∣∣∣
u=0

e(λ−1)δH(exp(−uAd(t−1)Xi)τ(κ(t exp(−uAd(t−1)Xi))

)

(in + in+2)w ⊗ X̄i

= (I ⊗ c)

(
τ(t)⊗Ad(t)

2∑

i=1

(Ad(t−1)Xi)S(1, 1)w ⊗Ad(t−1)Xi

)

As {Ad(t−1)Xi}i=1,2 is another orthonormal base of p, and

τ(t)(I ⊗ c) = (I ⊗ c)(τ(t)⊗Ad(t))

then
D̃(S(x, t)w)x=1 = τ(t)D̃(S(x, 1)w)x=1

So we must prove
D̃(S(x, 1)w)x=1 = αS(1, 1)w

= α(in + in+2)w

Let 1
2E−, 1

2E+ be the orthonormal base of p given in §1, then

D̃(S(x, t)w)x=1 =

= (I ⊗ c)
(

d

du

∣∣∣∣
u=0

e(λ−1)δH(exp(−u
1
2E−))τ(κ(exp(−u 1

2E−)))(in + in+2)w ⊗ 1
2E+

+
d

du

∣∣∣∣
u=0

e(λ−1)δH(exp(−u
1
2E+))τ(κ(exp(−u 1

2E+)))(in + in+2)w ⊗ 1
2E+

)

By (1.7)

D̃(S(x, t)w)x=1 = (I ⊗ c)
(
−(λ− 1)δ 1

4

(
1 0
0 −1

)
(in + in+2)w ⊗ 1

2E+−

− (λ− 1)δ 1
4

(
1 0
0 −1

)
(in + in+2)w ⊗ 1

2E+−

− τ

(
1
4

(
0 −i
i 0

))
(in + in+2)w ⊗ 1

2E+−

−τ

(
− 1

4

(
0 −i
i 0

))
(in + in+2)w ⊗ 1

2E−

)

By (4.2) and (4.3) applying I ⊗ c, the following holds

c( 1
2E+)inw = c(1

2E−)in+2w = 0
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and by (4.4)
c( 1

2E−)inw = 1
2an in+2w

c( 1
2E+)in+2w = − 1

2
1

an
iw

So that

D̃(S(x, t)w)x=1 =

= − 1
8 (−λ + 1) 1

an
inw + 1

8 (−λ + 1)anin+2w + 1
8 (n + 2) 1

an
inw + 1

8nanin+2w

= 1
8 (λ + n + 1) 1

an
inw + 1

8 (−λ + n + 1)anin+2w

because

δ

(
1 0
0 −1

)
= 1

τj

(
0 −i
i 0

)
v = jv si v ∈ Vjδ j = n, n + 2

The coefficients of inw and in+2w are

1
8 (λ + n + 1) 1

an
= 1

8 (λ + n + 1)
(−λ + n + 1

λ + n + 1

) 1
2

sg α

= 1
8

(−λ2 + (n + 1)2
) 1

2 sg α

= α

1
8 (−λ + n + 1)an = 1

8

(−λ2 + (n + 1)2
) 1

2 sg α

= α

That is,
D̃(S(x, 1)w)x=1 = α S(1, 1)w

Now, we will prove that the Sezgö map of parameters (λ, n + 1) for negative
λ maps onto Wα(D̃). We know by proposition 3.1 that Wα(D̃) is irreducible.
As S is non zero, if Im(S) is square integrable, then Im(S) = Wα(D̃). Im(S) is a
subset of the eigenspace Wα(D̃) of the Dirac operator D̃. But Wα(D̃) is a subset of
Wα2(D̃2). According with the notation of §2, as D̃2 differ with the Casimir operator
Ω by a constant, Wα2(D̃2) is isomorphic to An

λ ⊕ An+2
λ . But the only quotient of

IGMAN

(
(−1)n ⊗ eλδ ⊗ 1

)
isomorphic to a subspace of An

λ ⊕ An+2
λ is infinitesimally

equivalent to a discrete serie. Let φ ∈ Im(S) in a non zero K-type, as the action of
this K-type is one and the set of K-finite elements of the square integrable function
space is a subset of the K-finite elements of the C∞, then φ is square integrable.
So Im(S) is a subset of Wα(D̃). The irreducibility concludes the proof. ¤
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