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EIGENYALUES AND EIGENSPACES FOR THE TWISTED DIRAC
OPERATOR OVER SU(N, 1) AND Spin(2N, 1)

ESTHER GALINA AND JORGE VARGAS

ABSTRACT. Let X be a symmetric space of noncompact type whose isomeiry
group 15 either SU(n, 1) or Spim{2n, 1}). Then the Dirac operator I} is
defined on L2-sections of certain homogeneous vecior bundles over X . Using
representution theory we obtain explicitly the eigenvalues of D and describe
the eigenspaces in terms of the discrete serics,

1. INTRODUCTION

Let & be a connected real reductive Lie group. From now on we fix a maxi-
mal compact subgroup K of . Let gy = kp®py be the Cartan decomposition
of the Lie algebra of &, with kg the Lie algebra of K, and let hy be a Cartan
subalgebra of ky. We denote by g, &, p, h the complexifications of go, ko, po,
hg, and let (k. g) be the root system of (g, #). Let ®; and @, be the com-
pact and noncompact rootspaces of ®(h, g) respectively; fix ®* =@ UD] , a
positive root system; and denote by p one-half of the sum of the positive roots
of @A, g).

Let {7z, I} be a representation of K. We denote

Co(GIK.V)={f:G=V, C™|flgk)=1(k)""flg) VkeK]},
LAGIK , VI={f:G—V | flgh)=1(k)"'fig) Ykek, |f]}<x}

where || ||» is the L?-norm with respect to a fixed Haar measure. Both spaces

are representations of & under the left regular action,
Let ¥, be an irreducible representation of K with maximal weight ¢ rela-
tive to 47-; . The Dirac operator defines a map

D: LHGIK, V.08 — L}G/IK,V,25)

asin (3.1). D is an elliptic essential selfadjoint (F-invariant operator.

In this paper the eigenvalues of the Dirac operator are explicitly obtained for
G =58U(n, 1} and Spin(2n, 1), and with o far from the walls of the Weyl
chambers. In additions, the respective eigenspaces are expressed as a finite
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98 ESTHER GALINA AND JORGE VARGAS

sum of discrete series using the Harish-Chandra parametrization of the discrete
series. To obtain this we derive specific results for these groups which say when
a discrete series occurs in L2 (G/K, ¥; @ 5); furthermore, its multiplicity is a
power of two, Forthe case of G = Sp(2, R), we give examples of discrete series
which occur in L2(G/K , V, ®§) with multiplicity different from a power of
two. Tn general, we show that each discrete series occurring in an eigenspace
for a nonzero cigenvalue has even multiplicity. For the kernel the multiplicity
is one.

2. NoTaTtioN
In this section we fix notation and give some known results.

2.1. Let G be a connected real reductive Lie group and, from now on, let K
denote a fixed maximal compact subgroup of G. Assume that the rank of G
is equal to the rank of K. Let gy = kg @ pg be the Cartan decomposition of
the Lie algebra of G, with kg the Lie algebra of K'; and let /; be a Cartan
subalgebra of k. Because of the rank condition hy is also a Cartan subalgebra
of G. The complexification of any Lie algebra is denoted without the subscript.
So if ®{h, g) is the root system of g (resp. & }and ®(h, k) that of k (resp.
h), then @(h, k) c®h, g). ®h, k) =, is called the set of compact roots
of ©{h, g). The complement of @, is called the set of noncompact roots and
is denoted by ®,. Let @} be a fixed posilive root system of @,. One can
choose a subset @} of @, such that &' =P LD} isa positive root system of
&®(h, g). The choice of ®! is not unique: there are exactly |Wg|/|Wx| choices,
where W5 is the Weyl group of g and Wy is that of k. When necessary, we
will say explicitly which choice will be taken.

Denote by
1 1
=35 =3 a
aEPy nE®]

and by p = p + p,. When p is not analytically integral in &, fix a twofold
cover of G, which will be also denoted by G without causing confusion, and
call £ the inverse image of K.

2.2. The Killing form is defined at gy by
B{X,Y)=Trace(ad X ad Y).

Its restriction to A is nondegenerate and negative definite, so —B( , ] is an
inner product on kg which gives one on ifig. Let (iky)' be the real dual of thy
and denote by { , ) the inner product at (ihp)’ which comes from the Killing
form. Also, B is positive definite in pp and the K-representation on py i
orthogonal.

Because of the last condition of (2.1), The representation

K = S0(pg) = SO{dim pg)

given by the adjoint representation lifts 1o the universal cover Spin(pg) of
SO(pg); that is, the usual spin representation § of Spin(py) gives rise to a
K-module. Let (5, 5} denote this K-module.
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2.3, Let {m, H) be a representation of & on the Hilbert space H. Without
lost of generality we can suppose that #(K) acts by unitary operators. Hence
H is an orthogonal sum of irreducible representations of X asa K-module

H =P m(n)V,
i

where K is the set of equivalence classes of irreducible representations of K :
the multiplicity mi{t) is a nonnegative integer or +oc . The subspace mi. F; is
the isotypic K-submodule of type r of (x, H). It is usuallv denoted by H|z].

We say that (x, J7) is an admissible representation if #{K) acts by unitary
operators and 1, is finite forall e K.

An admissible representation {m, H) is a discrete series if it is irreducible
and all its matrix cocfficients g — (m(g)u, v) (with u, v € Vg ) are square
integrable.

All discrete series can be parametrized by weights £ € (iky), the dual of
fhy, such that A is nonsingular (ie., (1,a)#0 Yae®h,g)), and i+ p is
integral (i.e., A{H} € 27iZ, YH € ihy such that exp H = 1 ). The discrete series
H; of parameter (or Harish-Chandra parameter) A has infinitesimal character
Xi, and two discrete series are equivalent if and only if their parameters are
conjugate by an element of the Weyl group of K.

24, Let feC=(G/K,V) or feL*G/K, V) and consider the action of
{ given by

n(g)f(x) = fg~'x).
We also require the action of the clements of gy as left-invariant differential
operators, that is, if X ¢ g

d
A fix)= flx exptX).
dr]
Nowif Z=X+iY e pg,wedefine Zf = X/ +iYf. Theneach D €
(#(g)2End(V))* defines a left-invariant differential operator on C=(G/K , V)
[Wa, Chapter 5]. & acts on (#{g) ® End{V))* by Ad ® (repres. of K on
End( ¥ })

2.5. If {X,} i5 an orthonormal base of g (with respect to the Killing form),
the Casimir element 1 is defined by

Q=3 X2%.

It is known that ) belongs to the center of #(g). The Casimir operator acis
on a discrete series H; by the constant ||A]|2 = ||g]|* . An explicii expression for
the Casimir can be computed as follows. Let {H;} be an orthonormal basis of
ihy, and for each o € dik, g}, let

g.={Neg/adlH)=alH)X VYHch}.
Choosing appropriately X, € g,, § is given by

Q=3 Hl+ Y (KXot XouX) =3 HI 4 Y (Ha 4 2X-aXe).
nEdr T
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3. EIGENVALUES oF D

If we fix a minimal left ideal in the Clifford algebra of py, the resulting rep-
resentation of so(py) breakes into two irreducible representations. Composed
with the adjoint action of &k on py, this lifts to a representation S of K,
called the spin representation. Let {X;}?", be an orthonormal base of pg, let

¢ be the operation of left Clifford multiplication and let ¥, be an irreducible
representation of K of maximal weight o { ®}-dominant). The Dirac operator

D: L G/K, V.28 — L*GIK,V:@8)
is defined by

n
(3.1) D= (lee(X)) X
i=]
where the X, act as left-invariant differential operators for all i. The spin
representation § decomposes into a sum of two subrepresentations 5 = 57 &
85— . If X € py, then ¢(X)5* =5%,s0
(3.2) D*: L2 (G/K,V,85%) — L*(G/K,Va3ST)
are also well defined.

We list some properties of the Dirac operator D. D is an elliptic G-invariant
differential operator, and as the riemannian metric of G/K is complete, D and
D? are essentially selfadjoint in L2 (G/K, ¥; ® S) [W]; that is, the minimal
extension is the unique selfadjoint closed extension starting from the set of
smooth compactly supported functions. So, we consider D densely defined by
this extension, which coincides with the maximal one [A]. The eigenvalues of
D are defined as the eigenvalues of the unique selfadjoint extension.

Let L3 be the closure of the sum of all irreducible G-invariant closed sub-
spaces of L?(G/K , V, @ §); Harish-Chandra has proved that L} is the direct
sumn of a finite number of square integrable G-irreducible closed subspaces, that
is a finite sum of discrete series

(3.3) L = P mH,

AeF
with F a finite set and n; the multiplicity of the discrete series H; with
parameter A.

A theorem of Connes and Moscovici [C-M] ensures that if
D: L} G/K,V.®S) — L*G/K,V;28)
is an elliptic G-invariant operator, each cigenspace of D is a finite sum of
discrete series and D has a finite number of eigenvalues.
Take @+ such that ¢ isa ®*-dominant weight. If £ is the Casimir element
of the universal enveloping algebra #(g) of g, the Parthasarathy equality for
the square of the operator D [A-§] is

D =—Q+(0—pn,0— pn+2p).
This equality restricted to an immersion of a discrete series f; {with infinites-
imal character %, )in L} is

(3.4) D, = (=l +1pl? + (0 = pns 0 = po ¥ 2p))1
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because the Casimir acts on H; by the constant ||4]]2 — ||p)? (see (2.5)).
Recall that n; denotes the multiplicity of the diserete series with parameter
A which occur in L2 (G/K, ¥, ® 5), that is
n; = dim Homg (H,; VLAHGIK, Vs ® 5'}) = dim Homy (H, ¥, ® 5)

by Frobenius reciprocity. If the maximal weight o of V; is sufficiently far
from the walls of the Weyl chambers of K, or more precisely, if

{3.5) (g+y,a)>0 VyeP(S), Yacd]
with P(S) the set of weight of 5, then,
(3.6) Voo S="(D Vo

TEPLS)

where ¥4,y is the irreducible K-module with maximal weight o + y. This
happens because the multiplicity of each weight of § is one, and

Xvas = v Xe =8g' D detw eviota) N et

wE Wy FEPE)
AT T detw e oAl TY detw e
we Wy yeEPLY) weWy vEPLS)
= > X, (by (3.5))
rEP(5)
where y, denotes the character of the K-module W . By (3.6}, we have that
(3.7) ny= 3y dimHomg (Hj, Vouy).
YEP(S)

So, we only have to analyse when the isotypic component (Hifo + 7] ). of the
representation ff; restricted 1o X of maximal weight @47 ., is not zero. In the
cases O =SU(n, 1} and G = Spini2n, 1) it is known that if H;[o +7]£0,
then o + ¥] is irreducible because each K-type of any principal series has
this property; that is,
(3.8) n, = |{y € P(5): Hya+7]£0}|.

Denote by Eig(D) the seét of eigenvalues of D, and by W,(D} the eigenspace
of the operator D associated to the eigenvalue .
Proposition 3.1. Ler D be the Dirac operator defined in L (G/K, V., & §).
Then,

(i) If B e Eig(D?), B+#0, and a is the positive square root of f,

WD) =W, (D)eW_,(D) and  Wo(D?) = We(D).

() If @ is a nonzero eigenvalue of D, W,(D) is equivalent to W_,(D)
as a G-module, so that each discrete series which occurs in W2 (D?) has even
multiplicity.

(iii) L2 = ﬂ}ﬂEEmm W (D).

(iv} The set of the eigenvalues of D* is
Eig(D?) = {—l4|P + |l@ + pi|* | & is a ®}-dominant Harish-Chandra

parameter and Hy[o + y] # 0 _for some y € P(S)}
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and the set of the eigenvalues of D is
Eig(D) = {n:: o* € Eig(D?)}.

Note. Using the Atiyah-Schmid result, which ensures that the kernel of D is
equivalent 10 Hy.p, , this proposition says that the multiplicity of each discrete
series which ocours in L] is even except for Ho.p, .

Proof. Since § = ||Df]*/1 1% >0, it makes sense to take the positive square
root .
(i) Since D? is an essentially selfadjoint operator its eigenvalues are real.
If f#0,let /€ Wg(D¥), then fEa~!Df € Wy,(D), with a the positive
square root of f, because
D{f+a 'Df)=Df +o 'D*f =Df £af = ta(xe 'Df + )
Then, since
F=3f+a"'Df) + 3(f—a"'DS)
we have that W2(D*) € W,(D) @ W_, (D).
D? is essentialy selfadjoint, so if f is in the domain of D?, then
(D2f, f)= (DS, Df).
If £ alsois in the kernel of D2, |Df]| =0, that is Df = 0; and as the kernel
of D? is closed, Wg(D?) = Wy(D).
(i) If fe L2(G/K,V,88)=L*G/K,V,®8") 8 L*(G/K,V,®5"),
then f=(/*,f") and Df = (D" f~, D*f*) because of (3.2). The map
WH{D:'""W—'G(D}T (f+,lf—::|_,{f+1 '".f_}
is really an isomorphism between W,(D) and W_,(D). In fact,
D(f*, =)= (=D [, D' )= (~af*,af ") ==al/*, =f7)
(iii) The equality (3.4) implies that each discrete series in L is in an

eigenspace of D?, the eigenvalue depends on the norm of the parameter 4.
Then L is the sum of cigenspaces of D?, and by (i), we have

L= B WD = B WD)
feEigiDY nEEigD)

(iv) The equality (3.7) ensures that n; # 0 if and only if Hile + )] #
0 for some y € P(S). Then by the equality (3.4) and (iii) if H[g + 7] #
0 for some y € P(S). one has that H; € Eig(D?). But

lel? + (e = pa, o —put20)=(p, )+ 20 — pn, p)+ (T —pn, @ — Pu)

—(g—pptp, 06— putp)=llo+pl

Thus,

Eig(D?) = {—[|A1* + o + p4l)* | 4 is a ®f-dominant Harish-Chandra
parameter, and Hi[o +y] #0 forany y € P(Sp}. O
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=8U(n, 1)

Let K be the usual immersion of S{U{n) = U(1)) in &,s50 K isa maximal
compact subgroup of &, Let T be the torus of diagonal matrices of K. s0 T
is also a compact Cartan subgroup of . Let gy, kg, Ay be their Lie algebras
and g, k. ithe complexifications. Choose an orthonormal base {H;, ..., i}
of the real Lie algebra ihy with respect 1o —B(, ), where 8 is the Killing form
of g (B(X,¥)= Li(XV)).

IfH= Efﬁjfﬁ £ihgy , let e € {ihg)" be given by

e;(H)=h;, f=1,...,n0+1.

Denote by (, ) the dual symmetric form to the Killing form of g.
The root sct of (g, k) is

P, gl={es—epid j. ., j=1,....,0n+1}
and
P, ={ei—ei:i#fj,i,j=1,...,n}, Dy = {2(ej—€ny):i=1,...,n0).
Fix
{4.1) D ={ei—ei<j<n+1}

The number of choices of ¥ such that ®f U®d; is a positive root system
of ©h,g) isn+1= |W0|,IT|W;L| because W;, is the set of permutations of
f+ 1 clements and Wy that of 2 elements. The different &} are

(4.2) Wi={ey eyt 1 Si€r= 1} {=&+ i r<i<n}

with l<r<n<+1.
From now on fix r such that @} =¥" , then

Z (e - E;)—-E(n-2;+l}e;,

i<j<n+l

r—1
(4.3) o= % (Eﬂr_zﬂ:+{"-2r+zjeu+l) s

fe=1 iar
r—1 H
p = % (Z(n - 2i+2)e;+ Y (n-2i)e;+(n—2r+ IJEHT.) ;
i=l1 i=r

Let 4 € (ihp)' be an integral weight. Then A satisfies 1 = ¥}, ,'ﬂ.e, with
T4 = 0 because the element H: = Z“' iA;Ej; € fhy such that A =
—B( . H*) has Trace (I1*) = 0. Moreover, ||£_, — ey | =2 gives

2. ei—e. : s y
_['i'u—_—l_l,FJ—E'f+|}=AJ'—J].j+]EE Yi=1,uwo

lle; — el
This implies that forsome s Z, 0 <s<n+1,
5 7
(4.4) Ay = L L mi,SEE ¥Yi=1,...,n+1.

Also note that J isa @} -dominant weight if and only if
(4.5) An Sdp_1 L0 <4
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and it is ¥'-dominant if and only if
(4.6} Ar S Anil S Ae-re

Supposz A is a @*-dominant Harish-Chandra parameter. Then as A+p and
p are integral (as SU{n, 1) is simply connected, p is integral for any positive
root system ), A satisfies (4.4), and since A also is nonsingular, at (4.3) and
{4.6) the strict inequalities hold.

To determine when a K-type occurs at a discrete series of @, fix $* =
®, U . Denote by m;{t) the multiplicity of the irreducible representation of
highest weight 1 in H;.

Proposition 4.1. Let A= Y"*! A,e; be a Harish-Chandra parameter of a discrete
series of the group SUin, 1) which is (@7 U )-dominant, and let © = Z:’_",‘ Tie;
be a ®F-dominant weight. If = A+ pp— pp = L1\ wei, then

mi(rj=1 #{I“E'“"i:r"'l5"'5rr5Fr‘:Hr—iSfr—rﬂ---i,ﬁlifl,
tReT - e?  Wi=1,....n

Proof. If " = t+ g and u' = g + p , then the inequality of the proposition
is equivalent to

(47) TS < S < EM < ST < S <H ST

because (@b = (Pp)i+1 for each i .
The Blattner formula is

my(1) = dets Q(s™'v' = u')

where Q(c) is the number of expressions of the weight o as a sum of positive
noncompact roots,

Suppose m;(t} # 0,50 @, = Q(s~'v' — p') # 0 for some 5 € Wy . Since
@ =@ U, from (4.2} we get (s7'v-p',e)eE and

4.8 {—]l‘ ' }{2{3; IE!IEF—].:

{} § T I E'D- r<icn,

because s~'1' — ' = 0, nile; — epsy) with n; >0 for i <r and n, <0 for
r<i<n+ 1. Now Wy is the permutation set of the elements {ey, ..., &},
so if 7 is a permutation of n elements, then

f:rm}'#:':"n ILigr—1;

Tyn —#: <0, r<i<n

(4.9) (s7'7 =) = {

Since m, < 4y | < - < ,u1 . (4.8) ensures that 7 leaves invariant the sets
{,...,r=1} and {r ;:} because if 1 <i<r and r € j < n {because
1 is dominant), then Tm:” < | < M) < Ty, implies x(j) > x(f) Vi, j inthe

given intervals.
Let /7 be the permutation set that permute the 7} s in cach interval [u;,

Hi_y) with 1<i<r (uh==). For 5 € H, since Qs = Qs
) = 3 dets 0, = 3 dets Qo = Y dets(n)" @, = detis) ()
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H always coniains a transposition unless H = 1, and the sign of a transposition
{its determinant) is —1, so H = 1. Then, because of the decreasing order of
Ti's (f#n+1) and (4.8)
By ST S S <y S T).
The same argument for the intervals (g}, ,, uj] with r<i<n+1 {(ay,, =
—o0) yields
Th Sy <ty S <7 Sl

Thus, the unique 5 such that @, #0 is s=1,50 miri=detl &y =1. O

The proposition will be vsed for 1 =g +7 with ¢ a @}-dominant weight
and y a weight of 5. In this case

PS)={Hzoy oyt - tag): ;s € ¥}

= {{(xe) £--- L e, + Megy): m = number of (—} — number of (+)}

mil
fi=m;+5
urzzmef, 'T_}_*l_._,s,m.EE.{]is{n+l.
=1

a4l
U+:|'=Z|:ﬂ"+3r']f“. £r={?:el}={
i=]
We retain the notation of §3.

Proposition 4.2. Let i =Y de, be a ¥'-dominant Harish-Chandra param-
eter, and let Lj be the discrete part of L2{G/K .V, ®5) asin (3.3) and o be
as in §3. Then

{i)

+1, i#n+1,
— Trai Bis f=n+1

(e+ppe—ALeEZ, i(=1,...,n,
iiElmm+in=2i=1), 0+ 4n=-2i+1)], 1<i<r-1,
n Qe E.,.qE{ﬁ,+%{n—2r+l],ﬂ,,1+{r{n—2r+31],
ic€lo,+4n—2r+1), 2y,
Lielg+in-2i+1). 0 +3Hn-2i+3)], r<i<n

(i) myZ20=nm=2", 0<m<n.
(iii) my=1lei=0+p.

Remark, If @ + p; is a Harish-Chandra parameter, then Wy{D?} = Wy(D) 2
H,.p, by (iii) of the last proposition and {iv) of Proposition 3.1 . Actually, the
equality is true by the irreducibility of Wg(D) [A-S].

Proaf. (i) Suppose that n; # 0, then mylo+7) # 0 forsome y € P(§), so by
Proposition 4.1 and (4.3)

g+t pi—mi=0i+a+(pli—(Liti el vi
ifand only if o; 4+ ()i —4; €Z ¥i and
AElGi+en+3n—20),q+&+3n-2), 1<i<r-1,
At €O +E+Ln—20r— 1)), 0oy + &y + Ln—20r = 1)),
ir€lor+e+Hn—20r— 1)), 4).
A €[y + &+ §(n =200 = 1)), gy + &=y + ¥{n = 2(i - 1))], r<i<an.
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As & =4 the components of A are in the given intervals.
Conversely, we want to know when there exist y € P({S) such that
myle+¥) # 0. Denote

for i<r—1

Ni=[ou +3(n—2i- 1), o +1n =20 + 1)),
Bi =015+ 3(n =2+ 1), 0: + §{n - 2i - 1)],
Mi=(oi+3{n—2i—1),0,+ 3(n-2i+ 1)];

fori=r-1

Noy=(o +3n=-2r=1)=1), 0+ 4n=20r= 1)+ 1)),
Beoy=lam+in=-2r=1)+1), 00+ Hn=-2(r-1)=1)],
Moy =(Oray+ 3 =20r=1)=1), 01+ Lin =20 = )+ 1));

fori=r

Ne=[or+5n=20r—1)= 1), g+ 3n—2(r— 1} + 1)),
Bi=[o+3(n—2(r—1)+ 1), A,_,).
M =2,

forr<i<n

Ni=loi+5n=20i-1)=1), o0+ Hr =20 - 1) + 1)),
Bi=loi+dn=20i—1)+1), 0.+ ${n=2(i = 1) = 1],
Mi=(gia+3n-20-1)-1), qic1 + §(n—2( - 1) + D].

Observe that the intervals N; and A; have length one, except when they
are empty. Suppose Hi[o + 7] # 0. When A, € N, for | < r, sel 2;4(7) =
—3 and for i = r, set g(y) = -4 . Similarly, for 1; € M;, put &(y) =
4, when i < r and é.,(y) =  when i > r. If i is a Harish-Chandra
parameter whose components satisfy the conditions on the right-hand side of
(i), then two consecutive componenis 4; and A;,; of i cannot be at N; and
My respectively. So, either case determines the value of the corresponding
component of y. If 4 € B;. &(y) can take either value. So, there exista y
such that Hylo +y] #0.

(ii) Suppose that 4; @ B; , j=1,...,m,and 4; € By for k # i;. Then
4y, € N;,UM; |, sothis determines exactly m components values of the 7 s such
that m;(a +y) # 0. Thus there exist 2"~™ weight y such that m;(e+y) #0.

(iii} n; = 1 is equivalent to the existence of a unique y € P(S) such that
myla + ¥} # 0, so the components of 1 determine every components of ¥, or
equivalently 4; € MjuM; vi=1,...,n . Notethat M, = @, s0 i, € N,.
This implies that 4, € N; Vi> r. The component A,_, € M,_, , because

Arey 244l 2 o+ H(n=2(r=1)=1)+1 = right extreme of the open set N,_,.



EIGEMVALLUES FOR TWISTED DIRAC 17

So A; € M; for [ < r. Again, as the lengths of &; and Af; are one,
[a+ppr—A) €L Yi=1,...,n,
(0 + )i €M, {<r,
(o + pp)i €N, i=zr,
so the conclusion is A=o+4 p; .
The converse is true because each component of 4 isin &; U M, and this
determine exactly y = pf by a similar argument to that used before. This y
gatisfies M[e+9]#£0,thatis m;=1. O

5. G=Spin(2n, 1}

In this case the maximal compact subgroup K is Spin(2n). Fix T a max-
imal torus in K with Cartan subalgebra /y , and an ordered orthonormal base
{Hy, ..., H,} of the real Lic algebra ihg. Let {e,, ..., ey} be the dual base
to {Hy,..., H,}.s0
{5-[} E_;'(H;':I =C$jj.

The root system @{h, g} lies in (ikp)', the real dual of ikp. It is known
that

Oy ={esxe:i#f,i,j=1,...,n}, Py={ze:i=1,... , n}.
Fix
(5.2} D] ={e e i< j}

Now we have two choices of ®; such that &~ =@} UP; is a positive root
system, these are
{53} ! ={E[,...,l?"}, "Pz={?|,.“,l?ﬂ_1,—€n},

With (5.1) in mind

g o i fad
(5.4) e = E{n ~ 1§y P:I: =3 ? €y, .PEE = (sz: & — fﬂ)
where pi correspond to choice of W' as positive noncompact root system. Let
A€ (ihy)" be an integral weight, so0 A=3 Ae; with 4, €Z ¥Yi=1,...,n or
Ai=4(2k;+ 1) with ;€ Z ¥i=1,...,n. Note that 4 is @} -dominant, is
equivalent to
(5.5) Ol 8dpr g 24
because (i, g —e) =4 —A; =20 i< j,and (i, e+g)=4;+4; =0 .
A is @} -dominant is equivalent 10 i, = sgne,|4,| having in mind the choice
made in (5.3). Recall that A is a Harish-Chandra parameter of a discrete scries
if A is nonsingular and 4+ p is integral. Thus, when A is ®*-dominant, this
is equivalent to having strict inequalities at (5.4) and A being integral (because
p is integral). The restriction that 4 is ®*-dominant is equivalent to be ®f-
dominant. From now on, A shall be @;-dominant.

The next proposition gives a necessary and sufficicnt condition for when a
K-type occurs in a discrete series of Spin(2n, 1) of parameter 4. Denote by
m;(7) the multiplicity of the irreducible component of maximal weight 7 in
this discreie series,
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Proposition 5.1, Let 1 =Y | ie; be a ©*-dominant Harish-Chandra param-
eter (for either of the two choices of @} ). Let t= Y], t;e; be a ®f-dominant
weight and set u =i+ ps— pp =Y.1, mie; . Then,

Ti— ;€ E,

mit)=1 Hnl""%ghnlg#n-—lﬂfn—lE'“EFI‘_:TI.

sgn i, = sgn Ty
Proof. Fix ®f ="', and let 1 be ¥'-dominant, or equivalently 4, >0 . Let
T'=t+p and p' =+ p, =i+ p,, then we have to prove

my(t)=1 ifandonly if u;<t)<u),, i=1,.0, 0 (g =2}
In this case the Weyl group Wy of K is the set of maps
o En} =t (ieﬂ'tli: rew g :l:'en:[n}}

with an even number of minus signs where x is a permutation of a set of n
elements; the determinant of 5 is the sign of x. The Blattner formula say that

my(t) =y dets Q(s™'v — ')

TE Wy
where (o) is the number of expressions of o as a sum of positive noncompact
roots. If s € Wy, one has that O, = Q(s~'7'— ') # 0 if and only if E£Th 00— M
is 2 nonncgative integer for all k. Since the number of minus sign is even, and
iy o T; =0, except for 1, , then s cannot change signs, so 1, > 0 . Besides,
since u, < g, ¥j, it follows that frj >y, Wi (otherwize O, = 0 ¥s).
Suppose that m(r) # 0. s0 0. # 0 for some 5. Let & be the permutation
subgroup which changes the elements 1, which are in the interval [u} . g _,).
Since the order of 7, in the interval is irrelevant, if m € H and 5, € Wy
corresponds to n, then Q. =0, .

mr)= chu Q= Zdets s, = Edct.r[s,}" O, =det(s)) ' my(t).

But H always has a transposition, except when H = {1}, in which case there is
only one 7, in each interval [u;, #; ) . This holds for k=1, ..., n where
Mg = oo . Since T, = u). and the coefficients 1, are ordered, m;(t) # 0 only
if the condition of the propasition holds.

Conversely if the condition of the proposition holds, T:IUH —uj, 2 0 if and
onlyif #=1,50 Qy=1and @, =0 if s # 1, thatis my(t) =det1 Q = |
{we know that in the case of Spin{2n, 1) that nz(1) is at the most 1).

Now consider 4, < 0, or equivalently 1 is ¥*-dominant. If we change the
positive noncompact root sel ¥! to %2, then 4 = Yoiw) A€+ (—An){—es) with
—An > 0, so the conditions are the same as in the first part of the proof. In this
situation we must have

-7y 2 [Aul +3>01,<0=>sgn d, =sgn 1,
and the proof is complete. O

We will use the last proposition in thecase T =0+ with ¢ a @/ -dominant
weight and 7 a weight of S, because that is what we need to obtain the set of
¢lements of Eig(D?) (see Proposition 3.1{iv}). In this case

P(S)={i({ze, £---+e,)).
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Let
o= g, o, €Z Vi, or 2o;isodd Vi
Thus, |
E+T=E{ﬂ;+£;]€f, E|=|:‘}',€f}=:|:ii
Proposition 5.2. Let A=Y Ae; be a ®}-dominant Harish-Chandra param-
eter, and let L} be the discrete part of L* (G/K, ¥, ® S) asin (3.3). and o as

in (3.5). Then,
(i)

le[gm+n—i—1,m+n-0, i<n,
n £ 0e
* Al € (0, laa]],

A and o are in the same Weyl chamber for @,
(ii) mp#0=m=2", 0<ms=n.
Gily my=lai=0+p.
(iv) 1P < llo+ pell and AP =llo+pull & A=+ p.
Remark. Using the notation of the Proposition 3.1, the equality Wo(D?) =
WalD) = Hyyp, holds.
Proof. (i) Suppose that n; # 0, so ;o + ) # 0 for some y € P(5), so
o +e—p=0+&—(M+3 €L ¥i & o-Lel Vi,
A € [T + & +H—f—%,ﬂ:+ﬂj+ﬂ—f—%] fori<n,
lixl € (0, |on + 80| — 31,
sgn A = g0 (O + &) = 58N Ty
by the last proposition and (5.4). Note that |A,] + 1 <|0x+ 2|, 4 integral and
nonsingular, ensures that sgn (o, + £;) = SgN @, .
Conversely, we want to find y € P(S) such that #;(o +7) # 0 . Denote
fori<n N=logg+n—-i-1,aqu+n-i),
Bi=[oi +n—i,q+n—-i—-1],
Mi={(o;+n—i-1,0;+n—il;

fori=n Nymg,
Bpl = EU1 |d';|| . ]}u
M, = (lgy| — 1, |oal].
This is the situation graphically:
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If A; € N;, this fixes the value of g,(y) = —1 for y's such that Hj[o +7] #
0. Similarly, 4;y € M;., ensures Hjfg +y] = 0 for eiz1{y) = 3. But both
cannot occur simultaneously, because N; and M., have both length one and
equal extremes, and A;.; —A; € @, that is that only one of the cases determines
the value of £.,(y) . So there is a ¥ such tha mile+y1£0.

(11) Suppose that 4, € B, j=1,...,m,and i, € B, for k # {;, Then
4, € Ny UM; , this determines exactly m component values of the »'s for
which my(e+3) # 0. So there exist 27— weights p such that my(a+7) £ 0.

(iii) n; = 1 is equivalent to the existence of a unique ¥ € P{5) such that
my(a +7) # 0, so that the components of i determine every component of y,
or equivalently 2; € N;UM,; Wi . Now note that Ny = @ and this ensures that
An € M, . But two consecutive components of A cannot be in the same interval
( M; and N;_| have the same €xtremes), 50 4,_; € M},_; . Repeating the same
argument we obtain that A; € M; ¥i. Then,as 4, —g; €2, l=g + Pe.

(iv) By (i) [A] < |{e + pi)| Vi, so

IA1F =3" 4 < 3 (0 + pe)} = llo + i

and the equality holds if and only if =g+ p, . O

6. G=Sp(2.R)

In the cases G = SU(n, 1) and G = Spin(2n, 1} we proved that the
multiplicity #n; of the discrete series H, of parameter i which occurs in
LYG/K, ¥, ® 5) is a power of 2 with exponent less than or equal n. For
the & = §p(2, R} we will show that there exist parameters 4 's such that ny is
nonzero and is not a power of 2. By (3.7) we know that

ny= Y dimHomg (H;, V,y,).
yEP(S)

We will give some examples where the number of elements y € P(8) such that
H;la +y] # 0 is not a power of 2,
Let &= Sp(2. B). The Lie algebra is

XY, X - ’ ;
gn:{(x; ;_}1): X, X2, X3 e R¥%2 Xz, Jt;s}rmmrﬂnc}.

Let gy = kg + pp be the Cartan decomposition of &0 . where

X
we{(% B): mmonnen)

ﬂu={(§; _,75}]): X "IXI-XEErXZ}-

There is an algebra isomorphism ky = go M #(4) = u(2) given by

g — ui2), (_‘i‘.ﬂ ;?)—-J]-FI'XL
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A Cartan subalpebra of &y and gy is

0 0 10 0 01 0
BBl 0 00 -1
hh=R| 1 o 0 0|®%|l-1 00 0

0 -1 00 0 10 0

where the first summand is the center zp of ky . Let g, k, p, h, z be
the complexifications of &, %, Po, fo. Zo respectively. The root system of
(g.h) is

(6.1} Dk, g) = {ze| e} U {£2e, £2e2}
where

0 0 i O

o —E&L g b ;gi =k, J=112

0 —h: 0O O

Let
Dy = {£(e) — 1)}, b, = {xle +€1), £2e;, £263}

and fix

(62) ®t={(e-e), ®={e+er,2e, 20}, PT=PUPL

Let E, be the root vectors such that B(E,, E-.} = 2|le|?, where B is the
Killing form. Define H, = [E., E_.], so H, satisfies a(H,) =2 . Thus

h=z®CH, ¢, =CHe 10, SCHp\ sy
Let (ihy)" be the dual space of iy ;if p€ (ihg)', then
g = wie +e)+ uaie — el

Pr=Y 2 =2 s
achy =L o

It is known that if 4 is @*-dominant with ®* asin (6.2), ff; is a holomor-
phic discrete series of $p(2, R). Then (see [S]) the restriction of the represen-
tation to K of the X-finite clements of Hj is equivalent to the representation
S(p*)® V,, where S(p*) is the symmetric algebra of p* and A = A+ 05— Pk .
To obtain the irreducible representations of K that occur at S(p*) we will
need the fact that S(p*) is the dual of S(p~) and the result of [S]. Select
the maximal ordered subset A= {a;, ..., o} of p~ selected such that m is
the small root of p—. and if @, ..., a; has been chosen, gy Is the small
root of p- strongly orthogonal 10 ay, ..., (e xay § P, i=1,..,95).
Then, the results of [S] says any irreducible representation of K which occurs
in S(p*) has multiplicity one and its maximal weight is kot ey ki€
Z>p; 7i = —a; — -+ —a;. Moreover, this representation occurs in polynomials
of degree at most k) + 2k; +---+ 7k, . In our case A= {-2¢, 263}, 50

n=2e, =2 +2a
and the highest weight of the irreducible representations of S(p*) is
B =k 2e + ke + 2e3)
= {ky + 2ka)(ey +€2) + kiley — e2), ki € L0

Denote
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Therefore,
5= B Crrstiersen ® Vo)
ki kg2 0l
where ¥/ ey 15 an SU(2)-module of maximal weight k(e; — e2), and

Cir, s 2ky)e,+er) 18 the one-dimensional representation of the center of U{2) given
by det()+%*: . The U/(2)-module ¥, is equivalent to Cypprey @ Viiacay X
A = ale; + #2) + ble; — e;), 50 using the Clebsh-Gordon formula for the tensor
product of two SU(2)-modules,

SpheV= P (Cikﬂ-nﬂffﬁf‘.‘]}’;{h e ® Catey ren Ve, —ﬂ])

k>0
s i ¥
= EB c{kl'l'zkri'ﬂfﬂl"'ﬁl [I’Juleﬁ -] @ Pi.u(e. —e;])
ky k20
mini2k; . 25)
= EB @ Coiey 420 +aliey 2oy Vi, +b—thie—es) | -
&y k=0 =0

If the discrete series H; occurs in L}{G/K, V; @ §) where ¥ is the irre-
ducible representation of K of maximal weight & = g, + g2¢;, where o is
sufficiently far from the walls as in {3.5); then the K-type Hi[e+ y] is nonzero
for some y € P(5).

Denote the noncompact roots by

=28 = (e +e1) + (g —e1),
m=12=(a+e)- (e ~-e),
ny = € + £,
Then P(S)={py— 2 mjo;: mi=0, 1}.
We will give one example of a parameter A such that »n; is not a power of
2. In the cases of Spin(2s, 1) and SU{2n, 1) 11 happens that

ny=|{y € P(5): Hila + 7] # 0}|

but for Sp(2, R) this is not true,
Take A=+ py —ay —as with ¢ chosen so that 1 is ®*-dominant.
The highest weight of the minimal &-type of H, is

A=itp—pp=0+p,—a)—ay.

Since gy —a; —ax € P(S), H, occurs in L2 (G/K, V¥, ®8). The multiplicity
of each K-type is equal to the number of expressions of its maximal weight in
the form

(kg + 2k +a)ey + &) + (b + b—t)(e, — &)
with &, > 0 and 0 < ¢ € min{2k;, 2b), Since ¢ is nonsingular and ®*-
dominant, b = oy —g; > 0 . To obtain #; we need the multiplicity of each
K-type o+ in Hy with y € P(S).

O+ pu—y —xy = aley + &)+ bley —es),
k1=ﬂ, k2=ﬂ, t=0,
multiplicity = 1,
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T+ pn = (2+a)le; + &2) + bley — &),
ky =0, ka=1, =0,
k1=2, k=0, =2,
multiplicity = 2,
g+py—ay={1+a)e +e}+{-1+ ke —ez),
k=1, ka=10, t=2,
multiplicity =1,
O+ ps—oay=(1+a)e +e)+ (L+b)(ey—e),
kel ky =10, t=20,
multiplicity = 1,
G+ pn— a3 = (1l +a)(e +e)+ ble —e),
JIE]=1, k2=ﬂ, E=1,
multiplicity =1,
0+ pn—0a—a3=ale,+e)+(1+b)e —e),
multiplicity = 0,
@+ pp— oy —ay=dle +ez) + (=1 +b)(ey — &),
multiplicity = 0,

O+ pPu—2pn = (=1 +a)(es +e2) +biey — &2),
multiplicity = 0,

Then my=6#2™ and |{y € P(5): Hilo +7y]£ 0} =5 2™,
The authors wish to thank the referee for pointing out serious grammatical
mistakes in the paper,
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