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Abstract

We develop the Keldysh formalism for the polarization dynamics of an open spin system. We apply it to the swapping between

two qubit states in a model describing an NMR cross-polarization experiment. The environment is a set of interacting spins. For fast

fluctuations in the environment, the analytical solution shows effects missed by the secular approximation of the quantum master

equation for the density matrix: a frequency decrease depending on the system-environment escape rate and the quantum quadratic

short time behavior. Considering full memory of the bath correlations yields a progressive change of the swapping frequency.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

The characterization and control of spin dynamics in

open and closed spin systems of intermediate size remain

a problem of great interest [1]. Recently, such systems

have become increasingly important in the emerging

field of quantum information processing [2]. The quan-

tum interferences of these systems become damped by

the lack of isolation from the environment and one visu-
alizes this phenomenon as decoherence. Indeed, the

inclusion of the degrees of freedom of the environment

may easily become an unsolvable problem and requires

approximations not fully quantified. This motivates a

revival of interest on previous studies in various fields,

such as nuclear magnetic resonance [3], quantum trans-

port [4] and the quantum-classical correspondence prob-

lem [5,6] with a view on their application to emergent
fields like the quantum computation [7–9] and molecular

electronics [10–13].
0009-2614/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.cplett.2004.11.056

* Corresponding author. Fax: +54 351 4334 054.

E-mail address: horacio@famaf.unc.edu.ar (H.M. Pastawski).
The most standard framework adopted to describe
the system-environment interaction is the use of the

quantum master equation, derived from the Liouville–

von Newman equation [14,15] in a fast fluctuation

approximation. Interactions with the environment occur

at a rate given by the Fermi Golden Rule (FGR) provid-

ing a dissipative mechanism that could induce a non uni-

tary dynamics into the system. An overall (conservation)

balance condition is obtained by imposing a conver-
gence into the thermal equilibrium state. While sufficient

for most traditional applications, this approximation

leaves aside important memory effects and interferences

in the time domain produced by the coherent interaction

between the system and the bath which are becoming of

increasing interest [16].

The present work focuses on two spin correlation

functions in small open systems with environmental
interactions under conditions where the dynamical feed-

back effects, that go beyond the FGR, become relevant.

For this, we will resort to the Keldysh non-equilibrium

formalism which leads to an integral solution of the

Schrödinger equation. While this novel situation is
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presented here for the first time, the formalism already

inspired original experimental and theoretical develop-

ments in coherent spin dynamics involving quantum

interferences in the time domain. In particular, it was

used to develop the notion of polarization waves leading

to mesoscopic echoes [17,18], to establish the influence
of chaos on time reversal (Loschmidt echoes) [19,20]

and to establish the possibility of a spin projection chro-

matography [21]. A rough account of many-body deco-

herence enabled the interpretation of anomalies in spin

�diffusion� experiments as a manifestation of the quan-

tum Zeno effect [22]. We now make a leap forward in

the development of this formalism by showing how it

deals with open systems. The application to a case with
an exact analytical solution [23] and where more stan-

dard approximations can be obtained [3] will show the

potential of our proposal.
2. The Keldysh formalism for open systems

In this section we make a brief introduction to the
Keldysh formalism, summarizing our results for closed

systems of [21]. Our aim is to extend them to open sys-

tems. Let us start considering a system with M spins 1/2.

The spin correlation function,

Pm;nðtÞ ¼
Weq

� ��bSz

mðtÞbSz

nð0Þ Weq

�� �
Weq

� ��bSz

nð0ÞbSz

nð0Þ Weq

�� � ; ð1Þ

gives the amount of the z component of the local polar-

ization at time t on mth site, provided that the system

was, at time t = 0, in its equilibrium state with a spin

�up� added at the nth site. Here, bSz

mðtÞ ¼ eiHt=�hbSz

me
�iHt=�h

is the spin operator in the Heisenberg representation
and jWeqi ¼

P
NaN jWðNÞ

eq i is the thermodynamical

many-body equilibrium state constructed by adding

states with different number N of spins up with appro-

priate statistical weights and random phases. The Jor-

dan–Wigner transformation (JWT) [24,25] bSþ
n ¼bcþn expfip

Pn�1

m¼1bcþmbcmg, establishes the relation between

spin and fermion operators at site n. Symbols bcþn andbcn, stand for the fermion creation and destruction oper-
ators, and bS�

n are the rising and lowering spin operatorbS�
n ¼ bSx

n � ibSy

n, where bSu

n ðu ¼ x; y; zÞ represents the

Cartesian spin operator. The initial polarized state is de-

scribed by the non-equilibrium state jWn:e:i ¼ bcþn jWeq:i
formed by creating an excitation in the nth site at

t = 0. Its further evolution is contained in the particle

density function [26,27] in the Keldysh formalism

G<
m;nðt2; t1Þ ¼ i

�h hWn:e:jbcþmðt1Þbcnðt2ÞjWn:e:i which can be split
into contributions G

<ðNÞ
m;n ðt2; t1Þ from each subspace with

N particles (or equivalently N spins up). Considering

that we are in the high temperature regime, i.e., kBT is

much higher than any energy scale of the system, this en-

ables us to re-write Eq. (1) as [21]
Pm;nðtÞ ¼
2�h
i
G<

m;mðt; tÞ � 1; ð2Þ

with

G<
m;mðt; tÞ ¼

XM
N¼1

M � 1

N � 1

� �
2M�1

G
<ðNÞ
m;m ðt; tÞ ð3Þ

Notice that the non-equilibrium density G<
m;mðt; tÞ de-

pends implicitly on the index n that indicates the site
of the initial (t = 0) excitation. The expression for this

initial condition is

G
<ðNÞ
k;l ð0; 0Þ ¼ i

�h
N � 1

M � 1
dk;l þ

M � N
M � 1

dk;ndn;l

� �
: ð4Þ

Here the first term is the equilibrium density and it can

be seen that is identical for all the sites. The second term

represents the non-equilibrium contribution where only

the nth site is different from zero. In general, this density

function evolves under the Schrödinger equation ex-

pressed in the Danielewicz form [28], which becomes

G
<ðNÞ
m;m ðt2; t1Þ ¼ �h2

X
l;k

G
RðNÞ
m;k ðt2; 0ÞG

<ðNÞ
k;l ð0; 0ÞGAðNÞ

l;m ð0; t1Þ

þ
X
l;k

Z t2

0

Z t1

0

G
RðNÞ
m;k ðt2; tkÞR

<ðNÞ
k;l ðtk; tlÞ

� G
AðNÞ
l;m ðtl; t1Þdtk dtl: ð5Þ

Here G
RðNÞ
m;k , and G

AðNÞ
k;m are the exact retarded (t2 < t1 < 0)

and advanced (0 > t2 > t1) two particle propagators or

Green�s functions of the many-body system.

The first term in the rhs of Eq. (5) can be seen as a gen-

eralization of the integral form of the (reduced) density

matrix ðqðtÞ ¼ e�iHt=�hqð0ÞeiHt=�hÞ projected over a basis
of single particle excitations in its real space representa-

tion. This term is all one needs to solve systems such as

a finite or infinite one dimensional chain with nearest

neighbors XY interaction [21]. In contrast, systems with

topological defects [23], long range interaction or Ising

terms in the spin Hamiltonian present complex many-

body effects in the particle description. These lead to

mean-life, ImRR, of the single particle states, producing
the non-conservation of probability on the retarded

and advanced propagators, GR and GA. In this case,

the second term would collect incoherent reinjections, gi-

ven by R<, that compensate any eventual �leak� from the

coherent evolution. They also can account for processes

not conserving the spin projection. A key idea in this Let-

ter is that a similar effect of density non-conservation ap-

pears when one attempts to reduce the whole XY system
into a �system� of 2 spins and an �environment� withM�2

spins. Under these conditions the sum in Eq. (3) will run

only over the subspaces allowed within the �system�,
N = 1, 2. The effects of the �environment� will be included
in the form of self-energy terms, R<

k;lðtk; tlÞ and RR
k;lðtk; tlÞ,

modifying the reduced �system�.
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If we replace Eq. (5) into Eq. (3) and perform the

summation in the N index only over the �system�, the re-
sult can be seen as the sum of two contributions repro-

ducing the structure of Eq. (5). Then, the first term will

be called the coherent contribution because it is related

to the initial condition within the �system�. The evolution
of this initial density decays with time t as a consequence

of its escape towards the region called the �environment�.
The second term will account for the thermodynami-

cal nature of the �environment� when M ! 1. It can be

seen as a boundary condition that modifies the density

of the �system�. If the mean occupation of the �environ-
ment� is lower than that of the �system�, there will be a

flux of probability from the �system� to the �environment�
included in the formalism through the retarded and ad-

vanced propagators. On the other hand, if the �environ-
ment� mean occupation were higher than that of the

�system�, it would establish a probability flow from the

�environment� to the �system� and this could be seen as

if the �environment� were injecting probability into the

�system�. The evolution of this injected probability is de-

scribed by the second term in Eq. (3) which will be called
the incoherent contribution. Thus, the probability within

the �system� would be fed by the �environment�.
In general terms Eqs. (3) and (5) involve two time

functions. In order to take profit of the information hid-

den in the time correlations, it is convenient to use the

new time-energy variables [t,e] [29]. This is inspired in

the Wigner coordinates that exploit the spatial correla-

tions to define the position-momentum variables [x,px].
Appendix A shows how this procedure is performed.

Applying this technique to Eq. (5) we obtain

G
<ðNÞ
m;m ðt; tÞ ¼ h�2

Z 1

�1

Z 1

�1

X
k;l

G
RðNÞ
m;k eþ h�x

2

� �
G

<ðNÞ
k;l ð0;0Þ

�G
AðNÞ
l;m e� h�x

2

� �
expð�ixtÞdx

2p
de
2ph�

þ
Z t

0

Z 1

�1

Z 1

�1

X
k;l

G
RðNÞ
m;k eþ h�x

2

� �
R

<ðNÞ
k;l ðe; tiÞ

�G
AðNÞ
l;m e� h�x

2

� �
� expf�ixðt� tiÞg

dx
2p

de
2ph�

dti:

ð6Þ

We will apply this formalism to a system of M spins 1
2

arranged in a chain. Their interaction through an XY

coupling enables the swapping between nearest neighbor
spins. In the presence of a magnetic field, the Hamilto-

nian iscHchain
¼
XM
n¼1

�hXn
bSþ
n
bS�
n � 1

2

� �
þ 1

2

XM�1

n¼1

Jnþ1;nðbSþ
nþ1

bS�
n þ c:c:Þ;

ð7Þ
which has a Zeeman part, cHZ , proportional to bSz

n with
�hXn the Zeeman energy; and a swapping (flip-flop) term,cHXY , where Jn+1,n is the coupling between sites n and

n + 1.
This simplified model can be used as an approxima-

tion to real 13C�1H systems in an NMR cross-polariza-

tion (CP) experiment [30,3]. We will model the 13C and
1H nuclei, close to the Hartmann–Hahn condition, as

the first two sites of the linear chain and the rest of

the chain would represent the proton spin bath or
�environment�.

Instead of solving a high dimensional spin Hamilto-

nian (7) describing the �system� plus the �spin bath�, the
JWT provides a map into a fermionic system. For a

one dimensional chain or ring with nearest neighbor

interactions the dimension of the Hilbert space can be

reduced from 2M to M enabling the calculation of differ-

ent aspects of spin dynamics [17,18,23] and quantum
coherences [31]. Since the interaction is restricted to

nearest neighbors, the only non-zero coupling terms

are proportional to bcþn bcnþ1 ¼ bSþ
n
bS�
nþ1. Each subspace

with
M
N

� �
states of spin projection h

PM
n¼1

bSz

ni ¼

N �M=2 is now a subspace with N non-interacting ferm-

ions. The eigenfunctions jWðNÞ
c i of these sub-spaces are

expressed as single Slater determinants built-up with

the single particle wave functions ua of energy ea. Under
these conditions G

RðNÞ
m;n ¼ GR

m;n for all N.
3. A two-spin system connected to a spin bath

We label the �system� sites with the numbers �1 for

the 13C and 0 for the 1H containing the initial excitation.

Thus, we want to obtain an analytical expression for the
local polarization at each site of the �system� that,

according to Eq. (2), is proportional to the particle den-

sity Green�s function G<
i;iðtÞ (for i = �1, 0).

In these conditions, the effective (reduced) Hamilto-

nian is

~H ¼
E�1 V

V E0 þ RR
0

� �
; ð8Þ

where E�1 ” �hX�1 and E0 ” �hX0, are site energies and

V = J/2 represents the swapping strength. For simplicity

we will take E�1 = E0. The self-energy RR
0 renormalizes

the site energy of the 0th site due to the action of the rest

of the chain [32]. This procedure makes possible to trace
out all the degrees of freedom of the environment with-

out loss of information. It satisfies

RR
0 ðeÞ ¼

V 0

V c

� �2

RR
1 ðeÞ;

where V0 is the system-environment coupling through

the 0th site. In a finite chain RR
1 ðeÞ can be calculated

using the recurrence relations

RR
i ðeÞ ¼

V 2
c

e� Ec � RR
iþ1ðeÞ

; ð9Þ



Fig. 1. (a) Schematic representation of the spin system at time t = 0.

The shaded region stands for the thermodynamic equilibrium state at

high temperature and establish a background probability level. The

black filling represents the excess of probability over the equilibrium

state which is responsible for the observed dynamics. In (b) the same

system as in (a) after the JWT, that is, under the particle point of view.

Note that in this situation the background contribution is removed and

the dynamics is described by the excess of probability DP. In (c) we

represent the complementary problem of the case (b). Here the black

filling stands for the hole that represent the excitation. In this

representation it is easier to calculate the memory effects in the bath

(see text).
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starting with RR
MðeÞ ¼ 0. Here Ec is the center of the en-

ergy band of the homogeneous linear chain that is acting

as the environment, Vc is the nearest neighbor hopping

within the chain. In this case, RR
0 ðeÞ is the ratio between

polynomials of degree M � 3 and M � 2 on e. The roots
of the denominator are the M � 2 eigen energies of the
environment. This functional dependence accounts ex-

actly for the memory effects in the �environment� and de-

scribes a variety of interference phenomena such as

quantum beats and mesoscopic echoes. In order to in-

clude the effect of irreversible loss of information and

simplify the calculations, we let the number of spins con-

forming the linear chain tends to infinity, that is,

M ! 1. On that situation, RR
i ðeÞ ¼ RR

iþ1ðeÞ ¼ RR and
Eq. (9) becomes a Dyson equation [4]. When the energy

e lies within the band of propagating excitations,

|e � Ec| 6 2|Vc|, the solution is

RRðeÞ ¼ DcðeÞ � iCcðeÞ

¼ e� Ec

2
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

c �
e� Ec

2

� �2
s

: ð10Þ

For the present problem we will work with the assump-

tion that |E0 � E�1|, V, V0 � Vc. This means that the

temporal fluctuations of the environment are faster than

any characteristic time of the adopted model. This

approximation allows us to consider that ImRR
0 ðeÞ

’ ðV 0

V c
Þ2CcðE0Þ ¼ C and the level E0 becomes broaden

according to the FGR. Since typically, E0 . Ec, the cor-
responding shift ReRR

0 ðeÞ ’ ðV 0

V c
Þ2DcðE0Þ is a small cor-

rection that can be neglected.

In order to obtain the contribution of the coherent

term in Eq. (6), we need to compute the Fourier trans-

form of the product of two propagators

GR
m;kðeþ 1

2
�hxÞGA

l;mðe� 1
2
�hxÞ obtained as matrix elements

of the resolvent GðeÞ ¼ jeI � ~H j�1
. One then integrates

over the energy variable e.
The evaluation of the incoherent contribution re-

quires some explanation about the model for the

R<
k;lðe; tiÞ function. Following Eq. (3.15) in [29]

R<
k;lðe; tiÞ ¼ i2C0ðeÞf1ðe; tiÞdk;0d0;l;

with C0(e) = C as was previously presented and

fnðe; tiÞ ¼ ð1
2
þ DP ÞhðtiÞ stands for the occupation factor

of the spin bath. Initially, all the 1H nuclei are equally
polarized and this represents the initial condition at

t = 0 for the environment. A schematic representation

of this situation can be seen in Fig. 1a. All the dynamics

arises from the excess of probability DP at the 1H sites.

It is interesting to note, as will be explained later, that

the background probability (shaded region) does not

contribute to the dynamics of the system, neither in

P0,0(t) nor in P�1,0(t). Having this in mind, the initial
condition, in the particle language can be expressed with

a normalized occupation factor fn(e, ti) = 1 · h(ti) for the
0th site (1H nucleus) and the spin bath, while the �1th
site is empty of excitation f�1(e,ti) = 0 · h(ti), as can be

seen in Fig. 1b. At t = 0 we allow the environment to

interact with the system and starts injecting probability

into the system through the 0th site. Then we have

R<
k;lðe; tiÞ ¼ ihðtiÞ2Cdk;0d0;l: ð11Þ

To evaluate Eq. (2) we need G<
0;0ðt; tÞ from Eq. (6) which

is determined by Eq. (11). Taking into account that for a

two spin system the sum in Eq. (3) has only two terms,

N = 1 and N = 2, we obtain

P 0;0ðtÞ ¼ 1�
expf� tC

�h g
2cos2ð/Þ þ

expf� tC
�h g

2cos2ð/Þ cosðatÞ; ð12Þ

where we have defined a ¼ 2V
�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð C

2V Þ
2

	 
r
and

/ ¼ arctan 2V
C

� �2 � 1
	 
�1

2

 �
.

The same calculations for G<
�1;�1ðt; tÞ leads to

P�1;0ðtÞ ¼ 1�
expf� tC

�h g
2cos2ð/Þ �

expf� tC
�h g

2cos2ð/Þ cosðat � 2/Þ:

ð13Þ
For both, P0,0(t) and P�1,0(t), the �1 term in the r.h.s. of

Eq. (2) cancels out with the sum of the coherent evolu-

tion of the first term in Eq. (4) and the term correspond-

ing to the injection in the N = 2 sub-space. This justifies

Fig. 1b.
Note that for C ! 0 the above expressions tend to the

dynamics of two isolated sites
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P 0;0ðtÞ ¼
1

2
þ 1

2
cosð2Vt=�hÞ

� �
; ð14Þ

P�1;0ðtÞ ¼
1

2
� 1

2
cosð2Vt=�hÞ

� �
¼ 1� cosðVt=�hÞj j2: ð15Þ

It is also interesting to note that the characteristic time

for the decay of the probability, s2 ¼ �h
C, is exactly twice

that of a single site with the same environment. The

interpretation of this is that due to the symmetry

adopted (E0 = E�1) the particle is half of the time on
each site being less affected by the interaction with the

spin bath.

Fig. 2 shows the behavior of the 13C polarization. It

can be seen that it reaches the value of 1 periodically,

converging to the equilibrium value of 1 at the exponen-

tial rate 1/s2. The first maximum occurs at a relatively

short time compared with s2. This feature is used in

the spin swap operation by stopping rf irradiation
(and hence the interaction) at a maximal transfer. The

maxima in our curves of P�1,0(t) are always equal to

one because of the symmetry adopted (E0 = E�1). How-

ever, only the first maxima of the coherent component

decaying as exp[�t/s2], i.e., about 0.7 for our choice of

parameters, would be useful in quantum information
Fig. 2. The 13C polarization (solid line) is composed by the sum of a

coherent part (dash-dotted line) and an incoherent contribution

(dashed line). For comparison, the evolution obtained with the secular

approximation of [3] (dotted line) is shown denoted as MKBE.

Parameters: C/V = 0.25.
processing. The incoherent component of the polariza-

tion, having no definite phase relation with respect to

the original state, bears no information on the quantum

evolution. This can be observed by NMR interferometry

as done in [18,19]. In this case the observed polarization

at 13C presents high frequency oscillations consequence
of the interference between the polarization amplitude

that survived at the 13C and the component returning

after wandering in the 1H system. This interference

would be diminished if, in the last CP, one uses the sec-

ond maximum.

Another interesting feature of Eqs. (12) and (13) is

that they have zero slope for t = 0 as can be seen in

Fig. 3. This expresses that the quantum nature of the
problem has not disappeared within the present approx-

imation, in contrast with the result obtained by using the

secular approximation C � V, standard in NMR calcu-

lations [3]. Performing the same approximation as in [3],

but considering XY coupling between the system and the

spin reservoir, we obtain for the normalized polarization

of the 13C nucleus
P�1;0ðtÞ ¼ 1�
expf� tC

�h g
2

�
expf� tC

�h g
2

cosð2Vt=�hÞ: ð16Þ
Fig. 3. It is shown the short time regime for the polarization function

for the 13C nucleous obtained within the Keldysh formalism (solid line)

in contrast with the the evolution obtained with the seccular

approximation (MKBE) of [3] (doted line). Parameters: C/V = 0.25.
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Both Eqs. (13) and (16) are obtained considering the

fast fluctuations approximation which leads to

Cc(e) = constant. However, comparing Eqs. (13) and

(16) it can be seen that the main differences between

them are the decrease of the swapping frequency and

the extra phase that result from the Keldysh formalism.
The frequency decrease is a natural effect of the damping

in an harmonic oscillator and hence its meaning is clear.

The extra phase provides the correct quadratic behavior

for short times. Both effects would introduce corrections

up to a 10% if one attempts an estimation of the dipolar

frequency (here 2V/�h) from the first experimental maxi-

mum. However, if the frequency is evaluated from the

FT of the signal it differs from the dipolar one in a factor
of ð1� ð C

2V Þ
2Þ1=2. This can have important consequences

when one attempts to perform a quantification of the
13C�1H average distances [33].
4. Memory effects of the spin bath

The 13C polarization, P�1,0(t), in the Keldysh formal-
ism arises from the coherent evolution of the initial par-

ticle density, for which the environment is a �sink�, and an

incoherent contribution where the bath acts as a particle

�source�. This can be compared with the complementary

framework. Instead of dealing with a �particle� problem
let us consider it as a �hole� problem (Fig. 1b and c,

respectively). On these grounds, at t = 0, all the sites

are occupied except for the �hole� excitation at the �1th
site. See Fig. 1c where the black color stands for the hole

excitation. At later times this excitation evolves in the

system and also propagates through the reservoir. The

�environment� does not have holes to inject back into

the �system� but those evolved coherently from the initial

hole (i.e. R< ” 0). Here the environment is a perfect �sink�.
Thus all the dynamics would be coherent, in the sense

previously explained. If we add the result obtained in this
case with that of Eq. (13) we obtain a one for all times

consequence of the particle–hole symmetry. This is a par-

ticularly good test of the consistency of the formalism be-

cause in each result the �environment� is set in a different

framework. It also shows that the background polariza-

tion does not contribute to the dynamics.

This �hole� picture can help us to get a very interesting

insight on the dynamics in a case where the memory on
the environment becomes relevant. Consider, for exam-

ple, the case V = V0 = Vc and E0 = E�1. The finite ver-

sion of this effective Hamiltonian applies to the actual

experiments reported in [34]. In this case, the simplifying

approximations of the fast fluctuations regime are not

justified. However, the exact dynamics of the system

can be analytically obtained if one considers an infinite

chain. This enables the use of Eq. (10) to evaluate the
propagator in the first term of Eq. (6). The integration

gives the first Bessel function, hence
P�1;0ðtÞ ¼ 1� �h
tV

J 1ð2tV =�hÞ
���� ����2: ð17Þ

A first observation is that the frequency above is
roughly increased by a factor of two as compared with

that in Eq. (15). Since the maxima of P�1,0 are zeroth

of the Bessel function it is clear that the frequency in-

creases slightly with time. These are memory effects of

the environment that are dependent on the interplay be-

tween the spectral density of the bath and that of the

system.

We notice that the memory effect can also appear in
other condition for the bath. For example, if the proton

nuclei have random polarizations and the density excita-

tion is at site �1, i.e., in Fig. 1a fnðeÞ ¼ ð1
2
Þ for n = 0,1,. . .

representing the 1H sites filled up to the shaded region;

and the 13 C site with an occupation 1
2
þ DP . In this case

the excitation propagates over a background level

(shaded region) that does not contribute to the dynam-

ics. The schematic view of this initial condition is equiv-
alent to that of Fig. 1c, where now the black filling

represents a particle excitation. The solution of the

polarization is the first Bessel function, P�1;�1ðtÞ ¼
J 1ð2tV =�hÞ�h=ðtV Þj j2. Apart from the finite size meso-

scopic effect, this is precisely the situation observed in

[34], although without enough resolution for a quantita-

tive comparison. The effect of a progressive modification

of the swapping frequency is often observed in many
experimental situations such as CP experiments.

Depending on the particular system, the swapping fre-

quency can accelerate or slow down. Reported examples

are Fig. 5 in [19] and Fig. 4 in [35]. This simple example

solved so far shows that environmental correlations

have fundamental importance in the dynamics and de-

serve further attention.
5. Conclusions

Summarizing, we have solved the Schrödinger equa-

tion within the Keldysh formalism with a source bound-

ary condition which results in an injection of quantum

waves without definite phase relation with the initial

state. The model proposed allowed us to consider the ef-
fect of the environment over the system via the decay of

the initial state followed with an incoherent injection.

We obtained analytical expressions for the polarization

of each of the components of a 13C�1H system coupled

to a spin bath, improving the result obtained through

the application of the secular approximation [3] in stan-

dard density matrix calculation.

Of particular interest is the inclusion of temporal cor-
relations within the spin bath in a model which has exact

solution. On one side, it enabled us to show a novel re-

sult: memory effects can produce a progressive change of

the swapping frequency. On the other side, this results
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will serve to test approximate methods developed to deal

with complex correlations.

In general, our analytical results based in the spin–

particle mapping, allow a deeper understanding of the

polarization dynamics. They may constitute a starting

point for the study of other problems, such as different
topologies [23] with XY interaction and the extension

to dipolar and isotropic couplings.
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Appendix A

Let us define the function

G
<inc:ðNÞ
0;0 ðt2; t1Þ ¼

X
n;m

Z t2

0

Z t1

0

G
RðNÞ
0;m ðt2; tmÞR

<ðNÞ
m;n ðtm; tnÞ

� G
AðNÞ
n;0 ðtn; t1Þdtm dtn; ðA:1Þ

which is the second term in Eq. (5). A similar expression
holds for the coherent part. The manipulation that fol-

lows is independent on the subspace index (N), and we

will keep it implicit. Rewriting the integrand in Eq.

(A.1) as

GR
0;mðt2; tmÞR<

m;nðtm; tnÞGA
n;0ðtn; t1Þ

¼ GR
0;m t2 � tm;

t2 þ tm
2

	 

R<

m;n tm � tn;
tm þ tn

2

	 

�GA

n;0 tn � t1;
tn þ t1

2

	 

¼

Z Z Z
GR

0;m eR;
t2 þ tm

2

	 

R<

m;n e0;
tm þ tn

2

	 

GA

n;0 eA;
tn þ t1

2

	 

� exp �ieRðt2 � tmÞ=h�½ � exp �ie0ðtm � tnÞ=h�½ �

� exp �ieAðtn � t1Þ=h�½ � deR
2ph�

de0

2ph�
deA
2ph�

: ðA:2Þ

Let us define the macroscopic time as t ¼ 1
2
ðt2 þ t1Þ

and the quantum correlation time dt = t2 � t1 which

have related time scales of the injection processes as

ti ¼ 1
2
ðtm þ tnÞ and dti = tm � tn. These time scales are

associated with e ¼ 1
2
ðeR þ eAÞ, the energies characteriz-

ing the quantum correlation, and x ¼ 1
�h ðeR � eAÞ the fre-

quencies in the observables. The argument in the

exponential function becomes

eRt2 � eRtm þ eAtn � eAt1 ¼ eRt þ eR
dt
2
� eRti � eR

dti
2

þ eAti � eA
dti
2
� eAt þ eA

dt
2

¼ �hxðt � tiÞ þ edt � edti
and also

e0ðtm � tnÞ ¼ e0dti:
The Green�s functions take the form

GR
0;m eR;

t2 þ tm
2

	 

¼ GR

0;m eþ �hx
2

;
t þ ti
2

þ dt þ dti
4

� �

GA
n;0 eA;

tn þ t1
2

	 

¼ GA

n;0 e� �hx
2

;
t þ ti
2

� dt þ dti
4

� �

R<
m;n e0;

tm þ tn
2

	 

¼ R<

m;nðe0; tiÞ:

Finally, due to the fact that the transformation have the

property that its Jacobian is equal to one, we have

dtmdtn = dtiddti and deRdeA = �hdedx. Replacing all

these expressions in the integral of Eq. (A.1) we haveX
n;m

Z t2

t0

Z t1

t0

GR
0;mðt2; tmÞR<

m;nðtm; tnÞGA
n;0ðtn; t1Þdtm dtn

¼
Z Z Z Z Z

GR
0;m eþ �hx

2
;
t þ ti
2

þ dt þ dti
4

� �
� R<

m;nðe0; tiÞGA
n;0 e� �hx

2
;
t þ ti
2

� dt þ dti
4

� �
� expf�i½�hxðt � tiÞ þ edt � edti þ e0dti�=�hg

� dti ddti
de
2p�h

de0

2p�h
dx
2p

:

Then, we can express Eq. (A.1) as

G<inc:
0;0 ðt; dtÞ ¼

Z
G<inc:

0;0 ðe; tÞ exp �iedt=�h½ � de
2p�h

and using the last two expressions we can identify

G<inc:
0;0 ðe; tÞ ¼

Z Z Z Z
GR

0;m eþ �hx
2

;
t þ ti
2

þ dt þ dti
4

� �
� R<

m;nðe0; tiÞGA
n;0 e� �hx

2
;
t þ ti
2

� dt þ dti
4

� �
� exp �i½ �hxðt � tiÞ � edti þ e0dtið Þ=�h½ �

� dti ddti
dx
2p

de0

2p�h
:

A similar expression holds for the coherent term.

Integrating in energy we obtain G<
0;0ðt; tÞ: If we con-

sider that the system Hamiltonian is time independent
the last complex expression simplifies to

G<inc:
0;0 ðt; tÞ ¼

Z t

t0

Z 1

�1

Z 1

�1

X
n;m

GR
0;m eþ �hx

2

� �
R<

m;nðe; tiÞ

� GA
n;0 e� �hx

2

� �
exp �ixðt � tiÞ½ � dx

2p
de
2p�h

dti;

which is similar to the second term in Eq. (6).
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[34] Z.L. Mádi, B. Brutscher, T. Schulte-Herbrüggen, R. Brüschweiler,
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