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An environment interacting with portions of a system leads to multiexponential interaction rates. Within the
Keldysh formalism, we fictitiously homogenize the system-environment interaction yielding a uniform decay
rate facilitating the evaluation of the propagators. Through an injection procedure we neutralize the fictitious
interactions. This technique justifies a stroboscopic representation of the system-environment interaction which
is useful for numerical implementation and converges to the natural continuous process. We apply this proce-
dure to a fermionic two-level system and use the Jordan-Wigner transformation to solve a two-spin swapping
gate in the presence of a spin environment.
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I. INTRODUCTION

The control of open quantum systems has a fundamental
relevance for fields ranging from quantum information pro-
cessing �QIP� �1� to nanotechnology �2–4�. Typically, the
system whose coherent dynamics one wants to manipulate,
interacts with an environment that smoothly degrades its
quantum dynamics. This process, called “decoherence,” can
even be assisted by the own system’s complexity �5�. Since
environment-induced decoherence �6–8� constitutes the main
obstacle towards QIP, a precise understanding of its inner
mechanisms �2,9,10� is critical to develop strategies to con-
trol the quantum dynamics.

The usual way to obtain the dynamics is to solve a gen-
eralized Liouville–von Neumann differential equation for the
reduced density matrix. There the degrees of freedom of the
environment are traced out to yield a quantum master equa-
tion �QME� �11�. A less known alternative is provided by the
Keldysh formalism �12� in the integral representation pro-
posed by Danielewicz �13�. On one side, it uses the well
known perturbation to infinite order in selected terms pro-
vided by the Feynman diagrams. On the other, this integral
representation has the advantage of being able to profit from
a Wigner representation for the energy-time domain. This
last representation is particularly meaningful in the fermionic
case since it allows one to define energy states and their
occupations simultaneously with the physical time �14�. In
that case, one can transform the Danielewicz equation into
the generalized Landauer-Büttiker equation �GLBE� �14,15�
to solve the quantum dynamics of the system. When the
system-environment �SE� interaction is spatially homoge-
neous, i.e., it has an equal interaction with each component
of the system, the dynamics becomes particularly simple be-
cause there is a uniform SE interaction rate. However, there
are many situations where one should incorporate multiple
rates as different subsets of the system could suffer diverse
interaction processes. While this might not possess a great
challenge to the evaluation of steady state transport proper-
ties, in quantum dynamics, one is confronted with what ap-

pears to be a much more difficult problem. Here, we present
a procedure to convert a nonhomogeneous problem with
multiple SE interaction rates, into one that has a common
rate. Through a reinjection procedure, we instantaneously
neutralize the fictitious decays restoring the populations and,
eventually, the coherences. In order to illustrate the proce-
dure, we apply this technique to a model that represents a
single fermion that can jump between two states while an
external fermionic reservoir is coupled to one of them. This
provides decoherence due to a through space Coulomb inter-
action and can feed with an extra particle through tunneling
processes. While the parameters and approximations in-
volved in this model are especially designed to be mapped to
a problem of spin dynamics, it could also be adapted to rep-
resent a double quantum dot charge qubit �16�. In that case a
double dot is operated in the gate voltage regime where there
is a single electron which can jump between the two coupled
states, where only one of these states is coupled to an elec-
tron reservoir. This inhomogeneous SE interaction yields a
multiexponential decay rate. We introduce fictitious interac-
tions to obtain a common interaction rate which leads to a
homogeneous non-Hermitian effective Hamiltonian. In the
specific model considered, we analyze how different SE in-
teractions, e.g., tunneling to the leads and through space
Coulomb interaction, modify the quantum evolution. A par-
ticular advantage of the fictitious symmetrization is that it
leads naturally to a stroboscopic representation of the SE
processes. This leads to a very efficient numerical algorithm
where the quantum dynamics is obtained in a sequence of
time steps. Finally, we resort to the Jordan-Wigner mapping
between fermions and spins to apply the procedure to a spin
system. This allows us to give a first-principle derivation of
the self-energies used in the stroboscopic model introduced
in Ref. �17� to explain the puzzling experimental dynamics
observed �18� in a spin swapping gate �19�.

II. SYSTEM

Let us consider an electron in a two-state system asym-
metrically coupled to an electron reservoir, as shown in Fig.

1�a�, with the total Hamiltonian Ĥ=ĤS+ĤE+ĤSE. The sys-
tem Hamiltonian is*horacio@famaf.unc.edu.ar
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ĤS = E1ĉ1
†ĉ1 + E2ĉ2

†ĉ2 − V12�ĉ1
†ĉ2 + ĉ2

†ĉ1� , �1�

with ĉi
† �ĉi� the standard fermionic creation �destruction� op-

erators. The Ei are the energies of the ith local state whose
spin index is omitted. The hopping interaction V12 gives the
natural frequency �0=2V12/� of the transition between the
states 1 and 2. The environment has a similar Hamiltonian,

ĤE = �
i=3

�

Eiĉi
†ĉi − �

i,j=3

i�j

�

Vij�ĉi
†ĉj + ĉj

†ĉi� , �2�

where the Vij determines the topology of the interaction net-
work in the environment states. The system-environment in-
teraction is described by

ĤSE = �
�=↑,↓

� �
�=↑,↓

U23
�dir�ĉ2�

† ĉ2�ĉ3�
† ĉ3� + U23

�exch�ĉ2�
† ĉ3�ĉ3�

† ĉ2�

− V23�ĉ2�
† ĉ3� + ĉ3�

† ĉ2��� . �3�

The first two terms on the right-hand side represent the Cou-
lomb interaction of an electron in site 2 with an electron in
site 3, the first site of the reservoir. U23

�dir� is the standard
direct integral and U23

�exch� is the small exchange integral
which we include for completeness. The third term is the
hopping interaction between sites 2 and 3.

III. SYSTEM EVOLUTION

A. Quantum dynamics in the Keldysh formalism

We are interested in the study of the evolution of an initial
local excitation in the system. Let us consider the initial ex-
citation with a particle on site 2 and a hole in site 1 which is
described by the nonequilibrium state,

��n.e.	 = ĉ2
†ĉ1��eq	 , �4�

where ��eq	 is the thermodynamical many-body equilibrium
state at high temperatures which is the regime of NMR spin
dynamics. In this condition ��eq	 is the mixture, with equal
weight, of all the possible Slater determinants �20�. The evo-
lution in a complete norm preserving solution is described by
the particle and hole density functions

Gij
��t2,t1� =

i

�

�n.e.�ĉj

†�t1�ĉi�t2���n.e.	 �5�

and

Gij
	�t2,t1� = −

i

�

�n.e.�ĉi�t2�ĉj

†�t1���n.e.	 , �6�

that describe spatial and temporal correlations. In these ex-
pressions, the creation and destruction operators are in the
Heisenberg representation. Notice that in contrast with the
equilibrium definitions of Gij


�t2 , t1�, now they have an im-
plicit dependence on the initial local excitation. The prob-
ability amplitude of finding a particle in site i at time t2 when
it initially was in site j at time t1 is described by the retarded
Green’s function of the whole system

Gij
R�t2,t1� = ��t2,t1��Gij

	�t2,t1� − Gij
��t2,t1�� = �Gji

A�t1,t2��*.

�7�

The reduced density function G��t , t�, where matrix indices
are restricted to i , j� �1,2�, is equivalent to the single par-
ticle 2�2 density matrix and GR�t2 , t1� is an effective evo-
lution operator �21�. If the system is isolated, the Green’s
function in its energy representation is obtained by a Fourier
transform �FT� with respect to the time interval t= t2− t1,

G0R��,t� = G0R�t +
1

2
t,t −

1

2
t�exp�i�t/��dt , �8�

where t= 1
2 �t2+ t1�. In a time independent system

FIG. 1. �Color online� �a� System-environment �SE� representa-
tion. Dashed circles and solid circles represent the system and the
environment states, respectively. Dashed lines are hopping interac-
tions while wiggly lines are through-space Coulomb interactions.
�b� Self-energy diagram summing up the different interactions with
the environment in a local basis. The lines with arrows are exact
Green’s functions in the absence of SE interactions. The double
dashed line represents the effective SE interaction. �c� Retarded
Green’s function at site 1. The interaction with the environment is
to infinite order in the self-energy given in �b�. �d� Particle density
function at site 1. The double dashed lines represent the effective
interactions local in time and space summed up to infinity order.
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G0R��,t� � G0R��� = ��I − HS�−1. �9�

After including SE interactions, the Green’s function defines
the reduced effective Hamiltonian and the self-energy �R���
�22�,

Heff��� � �I − �GR����−1 = HS + �R��� . �10�

Here, the exact perturbed dynamics is contained in the non-
linear dependence of the self-energy �R on �. For infinite
reservoirs the evolution with Heff is nonunitary, hence, the
Green’s function has poles at the “eigenenergies,” ��, that
have imaginary components �23�,

− 2 Im �R����/� = 1/�SE = 2�SE/� . �11�

These account for the “decay rates” into collective SE eigen-
states in agreement with a self-consistent Fermi golden rule
�FGR� �24�. Similarly, Re �R����=Re ��−��

0 represent the
“shifts” of the system’s eigenenergies ��

0.
The evolution of the density function for the reduced open

system is described using the Keldysh formalism �12,13�.
The density function in the Danielewicz form �13� is

G��t2,t1� = �2GR�t2,0�G��0,0�GA�0,t1�

+ 
0

t2 
0

t1

dtkdtlG
R�t2,tk����tk,tl�GA�tl,t1� .

�12�

The first term is the “coherent” evolution while the second
term contains “incoherent reinjections” through the self-
energy function ��. This compensates any leak from the
coherent evolution reflected by the imaginary part of �R �see
�14��. We remark that this expression is valid for a noncor-
related initial state which is our case of interest. For a corre-
lated state see Ref. �25�. The key to solve Eq. �12� is to build
up an expression for the particle �hole� injection and retarded
self-energies ���	��t1 , t2� and

�R�t1,t2� = ��t1,t2���	�t2,t1� − ���t2,t1�� . �13�

For this purpose, we use a perturbative expansion on ĤSE
like that used in Ref. �26� for the Coulomb interaction and in
Ref. �27� for the hopping interaction. The first order in the
perturbation expansion is the standard Hartree-Fock energy
correction which does not contribute to �� because it is real.
We focus on the second-order terms, with Feynman diagrams
sketched in Fig. 1�b�.

The injection self-energy is

�ij

�tk,tl� = �U23�2�2G33


 �tk,tl�G33
� �tl,tk�G22


 �tk,tl�i22j

+ �V23�2G33

 �tk,tl�i22j , �14�

where U23=−2U23
�dir�+U23

�exch� is the net Coulomb interaction
between an electron in the system and one in the reservoir.
The direct term contributes with a fermion loop and an extra
spin summation which is represented in the −2 factor �13�.
The first term in Eq. �14� corresponds to the direct and ex-
change self-energy diagrams shown in the last line of Fig.
1�b�. The first two diagrams schematize the creation of an
electron-hole pair in the environment and its later destruc-
tion. The last term in Eq. �14� and the last diagram of the

same figure is the hopping to site 3 which allows the electron
to perform a full exploration inside the reservoir. To take into
account the different time scales for the dynamics of excita-
tions in the system and in the reservoir, we use the energy-
time variables: the physical time ti=

1
2 �tk+ tl�, and the domain

of quantum correlations ti= tk− tl. This last is related to an
energy � through a FT �14�. Thus, in equilibrium,

G33
� ��,ti� = i2�N3���f3��,ti� , �15�

G33
	 ��,ti� = − i2�N3����1 − f3��,ti�� , �16�

where N3��� is the local density of states �LDoS� at the sur-
face of the reservoir. Assuming that the environment stays in
the thermodynamical equilibrium and kBT is much higher
than any energy scale in the bath �high temperature limit�,
the occupation factor is

f3��,ti� = f3. �17�

Fourier transforming on � one obtains

G33
��ti +

ti

2
,ti −

ti

2
� = i2�g3�ti�f3 �18�

and

G33
	�ti +

ti

2
,ti −

ti

2
� = − i2�g3�ti��1 − f3� , �19�

where

g3�ti� = N3���e−i�ti
d�

2��
. �20�

Replacing in Eq. �14�

�ij

�ti +

ti

2
,ti −

ti

2
� = �U23�2�2�2��2�g3�ti��2f3�1 − f3�

�G22

�ti +

ti

2
,ti −

ti

2
�i22j

± �V23�2i2�g3�ti�� f3

1 − f3
�i22j ,

�21�

where the � f3

1−f3
� associates f3 with �� and �1− f3� with �	.

In summary, we are left with the task to evaluate the time
dependent self-energies and the integral in Eq. �12�. We will
focus on the parametric regime corresponding to the experi-
mental conditions of the spin swapping gate.

B. Environment in the wide band or fast fluctuations regime

As occurs with the generalized Landauer-Büttiker equa-
tions for linear transport, an essential ingredient is the possi-
bility to assign a Markovian nature to the environment. We
are going to see that this appears naturally from the formal-
ism when the dynamics of excitations within the environ-
ment is faster than the time scales relevant to the system. In
order to separate the different physical time scales involved
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in the problem, we start changing to the energy-time vari-
ables in Eq. �12�. Evaluating in t2= t1= t, the integrand be-
comes


0

t

dti
−t

t

dtiG
R�t,ti +

ti

2
����ti +

ti

2
,ti −

ti

2
�

�GA�ti −
ti

2
,t� . �22�

The environment unperturbed Green’s function g3�ti� de-
cays within the time scale � /VB where VB is the characteris-
tic interaction inside the reservoir. In the wide band regime
�VB�V12� � /VB becomes much shorter than the characteris-

tic evolution time of G22

 �ti+

ti

2 , ti−
ti

2
� given by � /V12. Then,

as the main contribution to the integral on ti of Eq. �12� is
around the time scale � /VB we can replace G22


 �ti+
ti

2 , ti

−
ti

2
� by G22


 �ti , ti�. Following the same assumption we re-

place GR�t , ti+
ti

2
� by GR�t , ti� and GA�ti−

ti

2 , t� by GA�ti , t�. In

this fast fluctuation regime, only �ij

�ti+

ti

2 , ti−
ti

2
� depends

on ti leading to

�ij

�ti� = 

−t

t

�ij

�ti +

ti

2
,ti −

ti

2
�dti

= �U23�2�2�2��2�
−t

t

�g3�ti��2dti�
�f3�1 − f3�G22


 �ti,ti�i22j ± �V23�2i2�

��
−t

t

g3�ti�dti�� f3

1 − f3
�i22j , �23�

which is local in space and time. Here, because of the limit
V12/VB→0, the correlation function of site 3 becomes a rep-
resentation of the Dirac delta function. Thus, any perturba-
tion at site 3 is almost instantaneously spread all over the
environment �as compared with the time scale of the system
dynamics� and hence the occupation at site 3 remains con-
stant. This assumption for the time scales can be seen in Fig.
1�b� as a collapse of a pair of black dots, along a vertical
line, into a single point. This justifies the expansion of Fig.
1�c� and the use of the ladder approximation containing only
vertical interaction lines in Fig. 1�d�.

A generalized decay rate is given by

1/�SE��,ti� � 2�SE��,ti�/� � − 2 Im �R��,ti�/� �24�

=
i

�
��22

A ��,ti� − �22
R ��,ti�� �25�

=
i

�
��22

	 ��,ti� − �22
� ��,ti�� , �26�

where

�ij

��,ti� = 

−�

�

�ij

�ti +

ti

2
,ti −

ti

2
�ei�ti/�dti. �27�

We start assuming Ei=0 for i=1, . . . ,�, so the only relevant
energy scale of the system is V12�VB. As mentioned above,
in the wide band limit the correlation function g3�ti� be-
comes a representation of the Dirac delta function. In this
way, the term ei�ti/� of the integrand of Eq. �27� is evaluated
for ti=0 giving a value equal to 1. Thus, using Eq. �23�, we
obtain for the decay rate which in the wide band limit is
constant in time and independent of energy,

1

�SE
=

WB

i

�
��22

	 �ti� − �22
� �ti��

= �U23�2�2��2�
−t

t

�g3�ti��2dti� f3�1 − f3� �28�

+
1

�
�V23�22��

−t

t

g3�ti�dti� �29�

=
2

�
��U + �V� , �30�

where we have used t�� /VB to equal �ij

�� , ti�=�ij


�ti� and
define

�U = ��U23�22�2�
−�

�

�g3�ti��2dti� f3�1 − f3� , �31�

the Coulomb decay rate, and

�V = �V23�2��
−�

�

g3�ti�dti� , �32�

the hopping decay rate. If one assumes that the environment
�2� can be represented by a linear chain with near-neighbor
hoppings equal to VB and Ei�0, the LDoS is �see Ref. �27��

N3��� = 1/��VB��1 − � �

2VB
�2

. �33�

Thus, the Green’s function

g3�ti� =
1

2�VB

J1�2VB

�
ti�

ti
�34�

is proportional to the first-order Bessel function and decays
within a characteristic time � /VB. Assuming that f3=1/2 and
the integration limits in the �’s expressions are taken to in-
finity because t�� /V12�� /VB �wide-band approximation�,
one obtains

2

�
�U =

2�

�
�U23�2

2

3�2VB
�35�

and
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2

�
�V =

2�

�
�V23�2

1

�VB
. �36�

Since the interaction is local in time, the reduced density
results as follows:

G��t,t� = �2GR�t,0�G��0,0�GA�0,t�

+ 
0

t

dtiG
R�t,ti����ti�GA�ti,t� , �37�

which is complemented with

���ti� = �0 0

0 2�U�G22
� �ti,ti� + 2�V�� i

�
f3� � . �38�

Here, the propagators GR�t ,0� and GA�0, t� that enter in both
terms are obtained from the effective Hamiltonian of the re-
duced system,

Heff = � 0 − V12

− V12 − i�SE
� , �39�

where �SE is energy independent and the assumption Ei=0
for all i assures that the self-energies are purely imaginary.
This effective Hamiltonian is obtained from Eq. �10� and
using Eq. �13� previously converted into the energy-time
variables. This means that we first change the variables
�t1 , t2� to �ti ,ti� and then based on a Fourier transform on ti

we obtain the energy-time representation which results in the
independence on both � and ti.

The above procedure results in an equation of the form of
the GLBE. However, the Hamiltonian is asymmetric in the
SE interaction complicating the form of the associated
propagator. The apparent complexity to solve this equation
contrasts with the homogeneous case where the evolution of
the GLBE was obtained �15� through a Laplace transform.
Our strategy will be to induce such a form of symmetry.

C. Fictitious homogeneous decay

The main difficulty with Eq. �37� is that it involves mul-
tiple exponentials. In order to create propagators with an
homogeneous decay, i.e., a single exponential factor, we in-
troduce fictitious interactions �fic

R , with the environment. The
symmetric Hamiltonian becomes

Hsym = Heff + �fic
R = � 0 − V12

− V12 − i�SE
�

+�− i
1

2
�SE 0

0 i
1

2
�SE
�

=�− i
1

2
�SE − V12

− V12 − i
1

2
�SE
� . �40�

Here �fic
R includes the fictitious interactions which, in the

present case, produce a leak of probability in site 1 at a rate
�SE /� while in site 2 inject probability at the same rate. Both
states of Hsym interact with the environment independently
with the same characteristic decay rate �SE /�. Note that this
rate is half the real value. The propagators of Eq. �12� have
now a simple dependence on t as

GR�t,0� = G0R�t,0�e−�SEt/�2��, �41�

where

G11
0R�t,0� = G22

0R�t,0� =
i

�
cos��0

2
t� �42�

and

G12
0R�t,0� = G21

0R�t,0�* =
i

�
sin��0

2
t� �43�

are the isolated system propagators. The reduced density
evolution is now,

G��t,t� = �2G0R�t,0�G��0,0�G0A�0,t�e−t/�2�SE�

+ 
0

t

dtiG
0R�t,ti��sym

� �ti�G0A�ti,t�e−�t−ti�/�2�SE�,

�44�

which is similar to the GLBE �14,15�. It is easy to see that
the introduction of negative �positive� imaginary parts in the
diagonal energies of the effective Hamiltonian produces de-
cay �growth� rates of the elements of the density function
which, being fictitious, must be compensated by a fictitious
injection self-energy

�fic ij
� �ti� = − � Im��fic ii

R + �fic j j
R �Gij

��ti,ti� . �45�

In our case, this results in an injection that includes the com-
pensation effects for the symmetrized interaction

�sym
� �ti� = ���ti� + �fic

� �ti�

= �0 0

0 2�V�� i

�
f3� + 2�U�G22

� �ti,ti� �
+ ��SE�G11

� �ti,ti� 0

0 − �SE�G22
� �ti,ti�

� . �46�

Here, the second term is proportional to the system density
functions Gii

��ti , ti� injecting and extracting density on sites 1
and 2, respectively, to restore the real occupation. It is im-
portant to remark that the escape �V given by V23 in Hamil-
tonian �3� or the process of current leads of Refs. �14,25� are
only compensated at a constant rate by the reservoirs. In this
case, the injection self-energy is proportional to the density
function in the environment. In contrast, for voltage probes,
electron-phonon self-energies �as in Ref. �14�� or our Cou-
lombic �U require an immediate charge compensation. The
same is true for the fictitious processes and this is indeed the
situation of Eq. �46� where the injection self-energy is pro-
portional to the instantaneous system density function. Thus,
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the fictitious injection self-energy compensates instanta-
neously the fictitious leak and injection of Eq. �40�. This is
more easily seen once Eq. �44� is integrated into a Trotter-
type form, as we will discuss in connection to Eq. �76�. The
symmetrization method is, in essence, a redistribution of
terms in the evolution equation �12� that has a simpler reso-
lution.

We can rewrite the last expression to separate the pro-
cesses that involve density relaxation �through injection and
escape processes� and pure decoherence �through local en-
ergy fluctuations� as follows:

�sym
� �ti� = �i

��ti� + �m
��ti�

= i�SE�2pV�0 0

0 � f3 −
�

i
G22

� �ti,ti�� �
+�

�

i
G11

� �ti,ti� 0

0
�

i
G22

� �ti,ti� �� . �47�

Here

�

i
G22

� �ti,ti� �
�

i
 G22

� ��,ti�
d�

2��
= f2�ti� �48�

and

�

i
G11

� �ti,ti� = f1�ti� , �49�

while, remembering that according to Eqs. �24� and �30�,
�SE=�U+�V, we define

pV = �V/�SE �50�

as the weight of the tunneling rate relative to the total SE
interaction rate. Since the initial state has the site 2 occupied
we have that

�

i
Gij

��0,0� = i22j . �51�

Introducing Eq. �47� into Eq. �44� and using

1

�SE
�

2

�
�SE, �52�

we get two coupled equations for G11
� and G22

� as follows:

�

i
G11

� �t,t� = ��G12
0R�t,0��2e−t/�2�SE�

+ ��G12
0R�t,ti��2e−�t−ti�/�2�SE�2pV

�
dti

2�SE
� f3 −

�

i
G22

� �ti,ti��
+ ��G11

0R�t,ti��2e−�t−ti�/�2�SE� dti

2�SE
��

i
G11

� �ti,ti��

+ ��G12
0R�t,ti��2e−�t−ti�/�2�SE� dti

2�SE
��

i
G22

� �ti,ti�� ,

�53�

�

i
G22

� �t,t� = ��G22
0R�t,0��2e−t/�2�SE�

+ ��G22
0R�t,ti��2e−�t−ti�/2�SE2pV

�
dti

2�SE
� f3 −

�

i
G22

� �ti,ti��
+ ��G21

0R�t,ti��2e−�t−ti�/�2�SE� dti

2�SE
��

i
G11

� �ti,ti��
+ ��G22

0R�t,ti��2e−�t−ti�/�2�SE� dti

2�SE
��

i
G22

� �ti,ti�� .

�54�

In each equation, the first term is the probability that a par-
ticle initially at site 2 be found in site 1 �or 2� at time t
having survived the interactions with the environment with a
probability e−t/�2�SE�. The second term describes the process
of injection �escape� of particles enabled by the hopping
from �towards� the reservoir, where the last of such processes
occurred in the time range �ti , ti+dti� with a probability

2pV
dti

2�SE
. The injection �escape� at site 2 fills �empties� the site

to level it to the occupation factor f3. The third and fourth
terms take into account the last process of measurement at
time ti due to the SE interaction with a probability

dti

2�SE
. This

confirms our interpretation that in Eq. �47� the dissipation
processes are in �i

��t� while �m
��t� involves pure decoher-

ence. It is clear that by iterating this formula, one gets a
series in the form represented in Fig. 1�d�.

In summary, Eqs. �53� and �54� are valid within the fol-
lowing assumptions: �a� The system is in the high tempera-
ture limit V12,U23,V23,VB�kBT. �b� The environment is as-
sumed to have a very fast dynamic as compared with that of
the system V12,U23,V23�VB �fast fluctuation regime�. This
is achieved through a specific model of the environment with
a very wide band where this property shows up as a flat and
broad local density of state at the “surface” site 3. These two
are the central assumptions. The consequences of them are
the following limits: �c� The self-energy is described by the
self-consistent second-order term. �d� The environment re-
mains in equilibrium. �e� The retarded and advanced Green’s
functions are calculated from a non-Hermitian effective
Hamiltonian which is independent of energy and constant in
time.

The previous conditions allow us to develop a different
strategy for the solution of the spatially inhomogeneous evo-
lution equation �GLBE�: We fictitiously symmetrize the ef-
fective Hamiltonian to impose an homogeneous decay of the
coherent dynamics. Consequently, we compensate the result-
ing artificial injections and/or leaks based on a fictitious part
in the injection self-energy.
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D. Dynamics of a swapping gate

The solution of the coupled Eqs. �53� and �54� involves a
Laplace transform. We consider a parameter range compat-
ible with the spin problem where f3�1 while we allow the
tunneling relative weight pV in the range �0, 1�. In a compact
notation, the density function results as follows:

�

i
G11

� �t,t� = 1 − a0e−R0t − a1 cos��� + i��t + �0�e−R1t.

�55�

Here, the decay rates R0, R1, and �, and the oscillation fre-
quency � are real numbers associated with poles of the
Laplace transform. The amplitude a0 is also real while, when
�=0, the amplitude a1 and the initial phase �0 acquire an
imaginary component that warrants a real density. These ob-
servables have expressions in terms of adimensional func-
tions of the fundamental parameters in the model. Denoting

x = �0�SE, �56�

and remembering that

pV = �V/�SE, �57�

we define

��pV,x� =
1

3
�x2 − pV

2 −
1

3
�1 − pV�2� , �58�

and

��pV,x� = �4�1 − pV��9x2 − 2�1 − pV�2 + 18pV
2� + 12�3�4x6

− ��1 − pV�2 + 12pV
2�x4 + 4pV

2�5�1 − pV�2 + 3pV
2�x2

− 4pV
2��1 − pV�2 − pV

2�2��1/2�1/3. �59�

The observable “frequency,”

� + i� =
�3

2x
�1

6
��pV,x� + 6

��pV,x�
��pV,x� ��0, �60�

is purely real or imaginary, i.e., ���0. Also,

R0 = �6
��pV,x�
��pV,x�

−
1

6
��pV,x� + pV +

1

3
�1 − pV�� 1

�SE
,

�61�

R1 =
3

2
�pV +

1

3
�1 − pV�� 1

�SE
−

R0

2
, �62�

and

a0 =
1

2

2��2 − �2� + 2R1
2 − �0

2

��2 − �2� + �R0 − R1�2 , �63�

a2 =
1

2�� + i��
�2R0R1 − �0

2��R0 − R1� + 2��2 − �2�R0

��2 − �2� + �R0 − R1�2 ,

�64�

a3 =
1

2

�0
2 + 2R0

2 − 4R0R1

��2 − �2� + �R0 − R1�2 , �65�

a1
2 = a2

2 + a3
2, tan��0� = −

a2

a3
. �66�

The oscillation frequency � in Eq. �60� has a critical point xc
at a finite value of x showing a quantum dynamical phase
transition for which � and � in Eq. �55� exchange their roles
as being zero and having a finite value, respectively. A full
discussion of this issue for a spin system is presented in Ref.
�17�. Here, the dynamical behavior changes from a swapping
phase to an overdamped phase. This last regime can be as-
sociated with the quantum Zeno effect �28� where frequent
projective measurements prevent the quantum evolution.
Here, this is a dynamical effect �29,30� produced by interac-
tions with the environment that freeze the system oscillation.

Figure 2 shows typical curves of �

i G11
� �t , t� in the swap-

ping phase. The different colors correspond to different SE
interactions, pV=0, 0.5, and 1, which are Coulomb ��V=0�,
isotropic ��V=�U�, and pure tunneling ��U=0� interactions
rates. The hopping interaction does not conserve the net en-
ergy in the system inducing a dissipation which is manifested
through the nonconservation of the number of particles in the
system. This is the case of pV�0 where the final state of the
system has the occupation probability of the sites equili-
brated with the bath occupation �f3�. In Fig. 2, this is mani-
fested as the asymptotic normalized density �occupation
probability� of 1. However, if pV=0, tunneling is forbidden
and the system goes to an internal quasiequilibrium, i.e., the
local excitation is spread inside the system. In this case the
asymptotic occupation probability of site 1 is 1 /2.

IV. STROBOSCOPIC REPRESENTATION
OF THE INTERACTION PROCESSES

Equation �37� has two main difficulties for a numerical
implementation: The first is the evaluation of the system
nonunitary propagators under inhomogeneous perturbations;
the second is to keep track of all the previous states of the
system to enable the integration over past times. We will
show that the decay homogenization enables the implemen-
tation of an efficient numerical algorithm. First of all, we

FIG. 2. �Color online� Occupation probability iG11
� �t� /� to find

at site 1 a particle initially at site 2. Each line corresponds to dif-
ferent kinds, pV, of SE interactions. The plots correspond to x
=V12�SE /�=10 belonging to the swapping phase and f3=1.
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identify in expression �44� that e−t/�2�SE�=s�t� is the system’s
survival probability to the environment interruption, i.e., the
probability that the system remains coherent, and dti / �2�SE�
=q�ti�dti is the “interruption” probability in a differential
time around ti. The interaction of the environment is dis-
cretized in intervals �str where it acts instantaneously. This
stroboscopic interaction leads to

s�t� = �1 − p�n�t�, �67�

q�t� = �
m=1

�

p�t − m�str� , �68�

where

n�t� = int�t/�str� . �69�

Here, the stroboscopic interruptions may occur at the discrete
times m�str with a probability p. At time t there were n�t�
possible interruptions. In the joint limit �str→0 and p→0
such that

p/�str = 1/�2�SE� , �70�

we recover the continuous expression �see the Appendix�.
Introducing Eqs. �67� and �68� into the reduced density

expression �44� we obtain

G��t,t� = �2G0R�t,0�G��0,0�G0A�0,t��1 − p�n�t�

+ 
0

t

dti�SE�
m=1

�

�ti − tm�G0R�t,ti��sym
� �ti�

�G0A�ti,t�p�1 − p�n�t−ti�, �71�

and rewriting we have

G��t,t� = �2G0R�t,0�G��0,0�G0A�0,t��1 − p�n

+ �2�
m=1

n

G0R�t,tm�Ginj
� �tm,tm�G0A�t,tm�p�1 − p�n−m,

�72�

where n=n�t� tm=m�str, and

Ginj
� �t,t� =

2�SE

�2 �sym
� �t� . �73�

In this picture, the evolution between interruptions is gov-
erned by the system’s propagators

G0R�t,0� = −
i

�
exp�− iHSt/�� �74�

and

G0A�0,t� = G0R�t,0�†. �75�

The spin bath stroboscopically interrupts the system evolu-
tion producing the decay of the coherent beam. This decay is
compensated through the reinjection of probability �or even-
tually of coherences� expressed in the instantaneous inter-
ruption function Ginj

� �t , t� which also contains actual injec-
tion �decay� from �to� the bath.

The first term in the right-hand side of Eq. �72� is the
coherent system evolution weighted by its survival probabil-
ity �1− p�n. This is the upper branch in Fig. 3. The second
term is the incoherent evolution involving all the decoherent
branches. The mth term in the sum represents the evolution
that had its last interruption at m�str and since then survived
coherently until n�str. Each of these terms is represented in
Fig. 3 by all the branches with an interrupted state �gray dot,
red online� at the hierarchy level m after which they survive
without further interruptions until n�str. This representation
has an immediate resemblance to that introduced by Pascazio
and Namiki to justify the dynamical Zeno effect �30�.

As mentioned above, the solutions of Eqs. �72� and �44�
are both computationally demanding since they involve the
storage of all the previous steps and reiterated summations.
Thus, taking advantage of the self-similarity of the hierarchy
levels in the interaction with the environment, we rearrange
expression �72� into a form optimized for numerical compu-
tation,

1

�2G��tn+1,tn+1� = G0R�tn+1,tn�G��tn,tn�G0A�tn,tn+1��1 − p�

+ G0R�tn+1,tn�Ginj
� �tn,tn�G0A�tn,tn+1�p .

�76�

This equation provides a new computational procedure that
only requires the storage of the density function at a single
previous step. Besides, it avoids random averages required in

5τstr
tτstr 4τstr3τstr2τstr0

p

p
p p

(1-p)1 (1-p)2
(1-p)3 (1-p)4

( )0<G

Interrupted state

Coherent state Isolated evolution

Instantaneous
Interruption

( )tG <

FIG. 3. �Color online� Quantum branching sequence for the
stroboscopic evolution. Gray �red� dots represent states with inter-
rupted �incoherent� evolution while the black dots are coherent with
their predecessor. The horizontal continuous arrows represent the
isolated evolution and the vertical dashed lines are the instanta-
neous interruptions. Notice the self-similar structure.

ÁLVAREZ et al. PHYSICAL REVIEW A 75, 062116 �2007�

062116-8



models that include decoherence through stochastic or
kickedlike perturbations �31,32�. This strategy is being
implemented in our group in various cases involving quan-
tum dynamics of many spin systems in the presence of dis-
sipation processes and decoherence. Equation �76� manifests
that the fictitious self-energy, proportional to Gii

��tn , tn�, com-
pensates instantaneously the fictitious leaks and injection of
Eq. �40�. The conceptual consistency of the approach is il-
lustrated by choosing Ginj

� �tn , tn��G��tn , tn�: one recovers a
coherent isolated evolution.

V. APPLICATION TO SPIN SYSTEMS

We apply this procedure to the spin system of Ref. �17�
providing a first principle derivation of the phenomenologi-
cal equations employed there. We consider a system with
M =2 spins 1/2 coupled to a spin environment with the fol-

lowing Hamiltonian Ĥ=ĤS+ĤE+ĤSE, where the system

Hamiltonian ĤS is

ĤS = ��L�Î1
z + Î2

z� +
1

2
b12�Î1

+Î2
− + Î1

−Î2
+�

= ��L�Î1
z + Î2

z� + b12�Î1
xÎ2

x + Î1
yÎ2

y� . �77�

Here, the first term is the Zeeman energy and the second
term gives a flip-flop or XY spin-spin interaction. The envi-
ronment Hamiltonian is described by

ĤE = �
i�3

��LÎi
z + �

i�3

j	i

1

2
bij�Îi

+Î j
− + Îi

−Î j
+� , �78�

and for the SE interaction we have

ĤSE = a23Î2
z Î3

z +
1

2
b23�Î2

+Î3
− + Î2

−Î3
+� , �79�

where this spin-spin interaction is Ising if b23/a23=0, and
XY, isotropic �Heisenberg�, or the truncated dipolar �secular�
if a23/b23=0 ,1 ,−2, respectively.

We map the spin system into a fermionic system using the
Jordan-Wigner transformation �JWT��33�,

Îi
+ = ĉi

† exp�i��
j=1

i−1

ĉj
†ĉj� . �80�

The previous Hamiltonians become

ĤS = ��L�ĉ1
†ĉ1 + ĉ2

†ĉ2 − 1� +
1

2
b12�ĉ1

†ĉ2 + ĉ2
†ĉ1� , �81�

ĤE = �
i�3

��L�ĉi
†ĉi −

1

2
1� + �

i�3

j	i

1

2
bij�ĉi

†ĉj + ĉj
†ĉi� , �82�

ĤSE = a23�ĉ2
†ĉ2 −

1

2
��ĉ3

†ĉ3 −
1

2
� +

1

2
b23�ĉ2

†ĉ3 + ĉ3
†ĉ2� .

�83�

Here, the system interacts with the environment through site
3 �the surface site of the bath�. In the last Hamiltonians, the
terms proportional to the identity do not contribute to the
dynamics because they only change the total energy by a
constant number. This Hamiltonian describes a standard
cross polarization experiment �swapping gate� in NMR
�17,19�. In this experiment, site 1 is a 13C and site 2 is a 1H
while the environment is a 1H spin bath. The typical experi-
mental Hartmann-Hahn condition �17,19� equals the values
of the effective energies at the 13C and the 1H sites to opti-
mize the polarization transfer. The SE interaction has terms
linear in the number operators ĉ2

†ĉ2 and ĉ3
†ĉ3, that only

change the energy of sites 2 and 3, respectively. Thus, the
Hartmann-Hahn implementation, compensates the change of
energy produced by the environment through these linear
terms. Finally, we have Hamiltonians equivalent to those in
Eqs. �1�–�3�, where the site energies are equal, and V12=
−

b12

2 , Vij =−
bij

2 , U23
�dir�=a23, and U23

�exch�=0.
The spin dynamics of the system is described by the spin

correlation function �20,27� as follows:

Pi2�t� =

�eq�Îi

z�t�Î2
z�0���eq	


�eq�Î2
z�0�Î2

z�0���eq	
, �84�

which gives the local polarization at time t on the ith spin
with an initial local excitation on the 2nd spin at time t=0.
Here, ��eq	 is the thermodynamical many-body equilibrium
state and

Îi
z�t� = eiĤt/�Îi

ze−iĤt/� �85�

are the spin operators in the Heisenberg representation. After
the JWT, the initial local excitation on site 2 is described by
the nonequilibrium state

��n.e.	 = ĉ2
†��eq	 . �86�

In the experimental high temperature regime, kBT much
larger than any energy scale of the system, the spin correla-
tion function becomes

Pi2�t� =
2�

i
Gii

��t,t� − 1. �87�

Notice that Gii
��t , t� implicitly depends on the initial local

excitation at site 2. Here, Gii
��t , t� is the reduced density

function of sites 1 and 2 and can be split into the contribu-
tions G

ii
��N��t2 , t1� from each subspace with N particles �or

equivalently N spins up� in the following way �27�:

Gii
��t,t� = �

N=1

M �M−1

N−1
�

2M−1 Gii
��N��t,t� , �88�

and analogous for the hole density function. The initial con-
dition in this picture is described by
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Gij
��N��0,0� =

i

�
� N − 1

M − 1
ij +

M − N

M − 1
i22j� , �89�

where the first term is the equilibrium density �identical oc-
cupation for all the sites� and the second term is the nonequi-
librium contribution where only site 2 is excited. Thus, we
have an expression such as �12� for each Nth subspace �see
Ref. �27��. For this two-spin system, as we showed in �27�,
the −1 term of Eq. �87� is canceled out by the background
evolution, i.e., the evolution of the first term of Eq. �89� plus
the evolution of the second term of Eq. �12� for the N=2
subspace. As a consequence, the observable dynamics only
depends on the initial local excitation at site 2,

Gij
��1��0,0� =

i

�
i22j , �90�

and evolves in the first particle subspace,

Pi2�t� =
�

i
Gii

��1��t,t� . �91�

Finally, the solution of the polarization P12�t� is the same as
that obtained in Eq. �55�.

By substituting in the present microscopic model
�XY ↔�V and �ZZ↔�U, we obtain the same dynamics as
that found in Ref. �17� for a phenomenological spin model.
There, we showed that such a solution presents a quantum
dynamical phase transition in fair agreement with the phe-
nomenon observed experimentally �18�.

VI. CONCLUSIONS

We have shown a method that involves the transformation
of the density function expressed in the Danielewicz integral
form into a generalized Landauer-Büttiker equation. This
was possible by resorting to Wigner energy-time variables to
perform the fast fluctuation approximation for the environ-
ment which leads to interactions local in time. Further on, we
effectively symmetrized the system-environment interactions
transforming them into a spatially homogeneous process.
This has a uniform system-environment interaction rate lead-

ing to a simple non-Hermitian propagator. The original mul-
tiexponential decay processes are recovered by an injection
density function. Moreover, through discretization of the
GLBE, we built a stroboscopic process which is the basis for
an optimal numerical algorithm where the quantum dynam-
ics is calculated in discrete time steps. Finally, we applied
these techniques to a spin system giving a microscopic deri-
vation that justifies the stroboscopic model used in Ref. �17�
to explain the experimentally observed quantum dynamical
phase transition.

APPENDIX: RECOVERING THE CONTINUOUS PROCESS

In order to recover the continuous expression �44� from
the stroboscopic one �72� we notice that if n�t�=n, we can
write Eq. �67� as

s�t� = �1 − p��n�str�/�str = �1 −
�str

2�SE
��n�str�/�str

. �A1�

If t=n�str then

s�t� = �1 −
�str

2�SE
�t/�str

. �A2�

By taking the limit �str→0 the variable t becomes continuous
yielding

s�t� = lim
�str→0

�1 −
�str

2�SE
�t/�str

= exp�− t/�2�SE�� , �A3�

recovering the continuous expression for s�t�.
By substituting p=�str / �2�SE� in Eq. �68� we have

q�t� =
1

2�SE
�
m=1

�

�str�t − m�str� . �A4�

In the limit �str→0, tm=m�str becomes a continuous variable
and we can convert the sum into an integral, leading to

q�t� =
1

2�SE


0

�

�str�t − tm�
dtm

�str
=

1

2�SE
. �A5�

The continuous expression of the GLBE �44� is then ob-
tained.
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