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The loss of coherence in quantum mechanical superposition states limits the time for which quantum

information remains useful. Similarly, it limits the distance over which quantum information can be

transmitted. Here, we investigate in a nuclear spin-based quantum simulator, the localization of the size of

spin clusters that are generated by a Hamiltonian driving the transmission of information, while a variable-

strength perturbation counteracts the spreading. We find that the system reaches a dynamic equilibrium

size, which decreases with the square of the perturbation strength.
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Introduction.—Quantum information processing has the
potential of solving computational problems for which no
efficient solution exists on classical computers [1].
Transfer and exchange of quantum information and quan-
tum entanglement can be used for secure transmission of
information [2,3]. Realization of this potential for practical
applications requires precise control of large quantum
registers. However, as the number of qubits increases, the
quantum mechanical superposition states of the system
become more fragile [4]. This degradation of quantum
superpositions, called decoherence [5], is due to extra
degrees of freedom (the environment) that interact with
the system, and to imperfections of the gate operations.
Overcoming decoherence is clearly one of the key factors
for implementing large scale quantum computers. Several
techniques have been proposed for this purpose, including
dynamical decoupling [6], decoherence-free subspaces [7],
and quantum error correction [8,9]. These proposals have
been tested on small systems of nuclear spins [10], trapped
ions [11], or spin model quantum memories [12].

Tests on larger systems, comprising hundreds or thou-
sands of qubits, are more difficult. So far, the only physical
system that offered this possibility is nuclear magnetic
resonance (NMR) of dipolar coupled spins [4,13].
Processes that transfer quantum information over large
distances can also be studied in spin chains [3]. An ex-
ample of such a linear spin system was studied by solid-
state NMR [14]. These model systems do not allow ad-
dressing of individual qubits, but they allow one to study
some aspects of decoherence and information transfer. In
particular, they can be used for studying the effect of the
finite precision of experimental quantum gate operations
on the transfer of quantum states: it was predicted that
quantum information cannot be transmitted over arbitrary
distances, but that it will become localized [15,16].

In this Letter, we present the first experimental study
trying to answer the following question: How far can
quantum information be transmitted with quantum gate
operations of finite precision? For this purpose, we use a
NMR quantum simulator. Starting from individual, uncor-

related spins, we measure the buildup of clusters of corre-
lated spins of increasing size. Introducing a perturbation to
the Hamiltonian that generates these clusters, we find that
the size of the clusters reaches an upper bound. This upper
bound appears to be a dynamic equilibrium: if the cluster
size is initially larger than this equilibrium value, it de-
creases under the effect of the perturbed Hamiltonian,
while the unperturbed Hamiltonian leads to an increase.
The equilibrium size decreases with increasing strength of
the perturbation.
Growth of spin clusters.—All the spins of the system are

equivalent and they are in a strong magnetic field. In its
Zeeman rotating frame, the Hamiltonian of the spin system
used for the quantum simulations is the high-field homo-
nuclear dipolar interaction [17]

Ĥ dd ¼
X

i<j

dij½2ÎizÎjz � ðÎixÎjx þ ÎiyÎ
j
yÞ�; (1)

where Îix, Î
i
y, and Îiz are spin-1=2 operators and dij the

coupling constants. The quantum simulations start from

the high-temperature thermal equilibrium [17], �̂0 / Îz ¼P
Îiz. In this state, the spins are uncorrelated.
We generate states with correlated spin clusters whose

density operator terms are of the form Îiu . . . Î
j
vÎ

k
w

(u; v; w ¼ x; y; z), by letting the system evolve under the
effective Hamiltonian

Ĥ 0 ¼ �X

i<j

dij½ÎixÎjx � ÎiyÎ
j
y�: (2)

This Hamiltonian is prepared by means of a standard NMR
sequence [18,19] shown in the upper part of Fig. 1. This
Hamiltonian flips simultaneously two spins with the same
orientation. Accordingly, the z component of the magneti-
zationMz changes byM ¼ �Mz ¼ �2. At the same time,
the number K of correlated spins changes by �K ¼ �1.
To determine the average number of correlated spins, we

use standard NMR techniques developed by Baum et al.
[19]. The technique relies on the fact that in a system of K
spins, the number of transitions with a given M shows a
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binomial distribution. For K � 1, the binomial distribu-
tion can be well approximated with a Gaussian of width

/ ffiffiffiffi
K

p
. To determine the effective size of the spin clusters

in a given state, we decompose its density operator � into
components of coherence order M. They can be distin-
guished experimentally by rotating the system around the z

axis: a rotation �̂z ¼ e�i�Îz by � changes the density
operator to

�̂ð�Þ ¼ �̂z�̂�̂
�1
z ¼ X

M

�̂Me
iM�; (3)

where �̂M contains all the elements of the density operator
involving coherences of order M. The terms with M ¼ 0
are zero quantum coherences and populations.

If the system evolves under the Hamiltonian (2), the
cluster size increases indefinitely, as shown in Fig. 2. The
figure also shows two examples of �̂M distributions.

This evolution can be reversed completely by changing

the Hamiltonian from Ĥ 0 to �Ĥ 0. Experimentally, this
is achieved by shifting the phase of all rf pulses by ��=2
[18]. This indefinite growth of the cluster size, as well as
the reversibility of the time evolution, is no longer possible

if the effective Hamiltonian deviates from the ideal
form (2). This allows us to experimentally induce local-
ization effects by concatenating short evolution periods

under a perturbation Hamiltonian �̂ with evolution periods

under the ideal Hamiltonian Ĥ 0. For the present experi-

ments, we choose �̂ ¼ Ĥ dd, and we label the durations of
the two time periods �� and �0, as shown in Fig. 1. When
the duration �c ¼ �0 þ �� of each cycle is short compared
to the inverse of the dipolar couplings dij, the resulting

evolution can be described by the effective Hamiltonian

Ĥ eff ¼ ð1� pÞĤ 0 þ p�̂; (4)

where the relative strength p ¼ ��=�c of the perturbation
can be controlled by adjusting the duration ��. Since the

Hamiltonian Ĥ 0 is generated as an effective Hamiltonian,
it always deviates from the ideal Hamiltonian. In the
experiment, we compare the artificially perturbed evolu-

tion of Ĥ eff with the Ĥ 0 evolution with its intrinsic
errors. Note that the intrinsic errors do not produce local-
ization on the time scale of our experiments (see Fig. 2).
Taking this perturbation into account, and starting from

thermal equilibrium, the state of the system at the end of N
cycles is

�̂H eff ðN�cÞ ¼ Ûy
NÎzÛN; (5)

where ÛN ¼ expf� i
@
Ĥ effN�cg is the evolution

operator for the perturbed evolution. The NMR signal,

which is measured after the backward evolution V̂N ¼
expfi

@
Ĥ 0N�0g, can be written as SðN�cÞ ¼

TrfÂ�̂H eff ðN�cÞg, where
Â ¼ V̂NÎzV̂

y
N ¼ �̂H 0ðN�0Þ (6)

is the effective observable and �̂H 0 the density operator of
the unperturbed evolution. We again determine the cluster

size by applying rotations �̂z around the z axis, as in
Eq. (3). The resulting NMR signal is then

Sð�;N�cÞ ¼
X

M

ei�MAM

¼ X

M

ei�M Trf�̂H 0

M ðN�0Þ�̂H eff

M ðN�cÞg: (7)

For ideal evolution (p ¼ 0), the individual terms AM in
the last equation correspond to the squared amplitudes of

density operator elements �̂H 0

M ðN�0Þ with coherence order
M. For perturbed evolution (p � 0), they are reduced by
the overlap of the actual density operator elements

�̂H eff

M ðN�cÞwith the ideal ones. To extract these amplitudes
from the experimental data, we perform a Fourier trans-
form with respect to �. Two examples for the resulting AM

are shown in the insets of Fig. 2.

FIG. 2 (color online). Time evolution of the cluster size of

correlated spins with the unperturbed Hamiltonian Ĥ 0.
Distributions of the squared amplitudes AM of density operator
components as a function of the coherence order M are shown
for two different cluster sizes. The latter are obtained from the

half-width 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð2KÞp

of the distribution function AM.

FIG. 1 (color online). NMR sequence for the quantum simu-
lations. An unperturbed evolution is achieved when �� ¼ 0. The

effective Hamiltonian Ĥ 0 is generated by the sequence of �=2
pulses shown in the upper part of the figure.
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Experimental results.—Experiments were performed on
a homebuilt solid-state NMR spectrometer with a 1H reso-
nance frequency of 300 MHz. The spins are the protons of
polycrystalline adamantane where the strength of the di-
polar interaction, quantified by the second moment of the
resonance line, is 7.9 kHz. In the experiments we chose
�0 ¼ 57:6 �s. The black squares of Fig. 3(a) show the
averaged number of correlated spins as a function of time
for an unperturbed evolution, p ¼ 0. The observed cluster
size KðN�cÞ grows almost exponentially over the range
considered here [20]. The other symbols of 3(a) show the
evolution of the number of correlated spins for different
values of p. Initially, the cluster size KðN�cÞ starts to grow
as in the unperturbed evolution, but then it saturates after a
time that decreases with increasing perturbation strength p.
We consider this as evidence of localization due to the
perturbation. The size of the cluster at which this saturation
occurs is also determined by the strength of the perturba-
tion: increasing perturbation strength reduces the limiting
cluster size. Figures 3(b) and 3(c) visualize this localiza-
tion directly by comparing the generation of high-order
multiple quantum coherences for unperturbed [3(b)] and
perturbed [3(c), p ¼ 0:108] evolution: they give a color-
coded representation of the amplitudes AMðN�cÞ as a func-
tion of evolution time N�c. While the distribution spreads
continuously in 3(b), it reaches a limiting value in 3(c).

While these experiments show that the cluster size
reaches a stationary value, they leave open the question
of whether this limiting size results from a slow down in
the growth [16] or if it represents a dynamic equilibrium

state. We therefore repeated the above experiment for a
series of initial conditions corresponding to different clus-
ters sizes. Figure 4(a) shows the corresponding pulse se-
quence: The initial state preparation, consisting of an
evolution of duration N0�0 under the unperturbed Hamil-

tonian Ĥ 0, generates clusters of size K0. During the sub-
sequent perturbed evolution of duration N�c, these initial
clusters grow or shrink. Figure 4(b) shows the results for
two perturbation strengths, p ¼ 0:034 and p ¼ 0:065. The
filled symbols correspond to uncorrelated initial states and
the empty symbols to various initial cluster sizes K0. The
experimental results clearly show that, for a given pertur-
bation strength, the size of the spin clusters tends towards
the same limiting value, independent of the initial condi-
tion. We verified this behavior for additional perturbation
strengths (data not shown in the figure).
Figures 3(a) and 4(b) indicate that the size of the result-

ing clusters decreases with increasing strength of the per-
turbation. To establish this dependence in a quantitative
manner, we determined the size of the localized clusters
from the data shown in Fig. 3 and plotted them against the
perturbation strength (black squares in Fig. 5). The diago-
nal line in Fig. 5 represents a linear fit to the experimental
data represented by the black squares; its width indicates
the error of the fit. A functional dependence Kloc �
p�1:86�0:05 is obtained, indicating that the size of the
localized clusters decreases with the square of the pertur-
bation strength. The limiting value for p ¼ 1 is Kloc � 1,
indicating that the system becomes completely localized if
the perturbation strength is significantly larger than the

FIG. 3 (color online). (a) Time evolution of the cluster size.
The black squares represent the unperturbed time evolution and
the other symbols correspond to different perturbation strengths
according to the legend. (b),(c) Distributions of the amplitudes
AMðN�cÞ for unperturbed dynamics [(b), p ¼ 0] and a perturbed
evolution [(c), p ¼ 0:108], respectively. The perturbed evolution
in (c) shows localization at a cluster size Kloc ’ 56 spins.

FIG. 4 (color online). (a) NMR pulse sequence for preparing
different initial cluster sizes and subsequently evolving them in
the presence of a perturbation. (b) Time evolution of the corre-
lated cluster size starting from different initial sates. Filled
symbols are evolutions from an uncorrelated initial state for
two different perturbation strengths given in the legend. Empty
symbols start from an initial state with K0 correlated spins.
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unperturbed Hamiltonian. The figure also summarizes the
evolution of the cluster size before the static (localized)
size is reached: If the initial size is larger than the sta-
tionary value for the given perturbation strength, K0 >
Kloc, the cluster shrinks [inset (a) in Fig. 5, above the
diagonal]. If it is smaller, K0 <Kloc, the size increases
[inset (b) in Fig. 5, below the diagonal].

Discussion and conclusions.—Decoherence has long
been recognized to limit the time for which quantum
information can be used. Here, we have shown that it
also limits the distance over which quantum information
can be transferred. To demonstrate this effect, we have
compared the spreading of information in a system of
nuclear spins under the influence of a Hamiltonian that
transfers information and a perturbation Hamiltonian of
variable strength. In combination, these opposing forces
result in a quantum state that becomes localized. The
localization size decreases with increasing strength of the
perturbation. Our experimental result of a dynamic equi-
librium size of the localized state differs from theoretical
predictions that only indicate a slow down of the spreading
[16]. The experiments were performed with nuclear spins,
which we use as a quantum simulator, and the perturbation
is taken as a model for the disorder considered in the
discussion of localization [15,16].

These results may also be connected to our earlier find-
ings that the decoherence rate of quantum states with many
correlated qubits increases with the size of the system [4],
indicating that larger systems are more sensitive to pertur-
bations. As the system size increases, the tendency for the
system to spread is therefore balanced by the restriction
due to the perturbation. As a heuristic argument, we note
that in a suitable interaction representation, the perturba-
tion will cause a decay whose rate may be calculated by

second order perturbation theory. We expect there a qua-
dratic dependence on the perturbation strength that could
be the source of the dynamic equilibrium size behavior.
The results presented here provide information about the
spatial bounds for transferring quantum information in a
spin network and indicate how precise manipulations of
large quantum systems have to be.
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FIG. 5 (color online). Localized cluster size Kloc (square sym-
bols) of correlated spins versus the perturbation strength p.
Three dynamical regimes for the evolution of the cluster size
are identified depending on the number of correlated spins
compared with the perturbation dependent localization value:
(a) a cluster size decreases, (b) a cluster size increases,
(c) stationary regime.
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