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Decoherence is one of the most important obstacles that must be overcome in quantum information

processing. It depends on the qubit-environment coupling strength, but also on the spectral composition of

the noise generated by the environment. If the spectral density is known, fighting the effect of decoherence

can be made more effective. Applying sequences of inversion pulses to the qubit system, we developed a

method for dynamical decoupling noise spectroscopy. We generate effective filter functions that probe the

environmental spectral density without requiring assumptions about its shape. Comparing different pulse

sequences, we recover the complete spectral density function and distinguish different contributions to the

overall decoherence.
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Introduction.—Quantum information processing relies
on the robust control of quantum systems, which are al-
ways influenced by external degrees of freedom that dis-
turb the quantum information by a process called
decoherence [1]. Many strategies were developed to fight
this degradation of information. These methods are based
on error correction [2,3] or they decouple the environment
[4–7]. Fighting decoherence successfully requires knowl-
edge of the spectral distribution of the noise to design
robust quantum processes [8–11].

One simple decoupling strategy is called dynamical
decoupling (DD) [7,12]. It is based on the application of
a sequence of control pulses to the system to effectively
isolate it from the environment. Different DD sequences
were developed [7,12–14] and tested experimentally
[15–20]. If the pulses are ideal, the spectral density of
the system-environment (SE) interaction becomes
the dominant factor for the decoherence rate
[8,14,15,19,21–26]. Consequently, a DD sequence has to
be judiciously designed according to the particular noise
spectral density to be decoupled [14,15,23–26]. The infor-
mation obtained from the measurement of the noise spec-
tral density can be very useful for developing a suitable
error model and directing the search for an effective DD
sequence [10,11,27,28].

In this Letter, we present a method to determine the
spectral density of the SE interaction. The method is based
on previous results that the decay rate of a qubit during DD
is given by the overlap of the bath spectral density function
and a filter function generated by the DD sequence
[14,15,19,21–26]. The filter function is given by the
Fourier transform of the SE interaction modified by the
control pulses: each � pulse changes the sign of the SE
coupling. When many DD cycles are applied to the system,
the filter functions become a sum of � functions [19] and
the decoherence rate is given by a discrete sum of spectral
densities. A judicious choice of the DD sequence thus
allows one to probe the environmental spectral density at

selected frequencies. Combining several measurements, it
is possible to obtain a detailed picture of the noise spectral
distribution. In the following, we describe an exact and
simple method for obtaining general spectral density func-
tions. This DD noise spectroscopy method extends recent
approximate solutions that can be used only for specific
cases [10,27].
A qubit as the noise probe.—We consider a single qubit

Ŝ as the probe. It is coupled to the bath to be studied with a
purely dephasing interaction. In a resonantly rotating
frame of reference [6], the free evolution Hamiltonian is

Ĥ f ¼ Ĥ SE þ Ĥ E, where Ĥ E is the Hamiltonian of the

environment and Ĥ SE ¼ bSEŜzÊ is a general pure dephas-

ing interaction between system and environment. Ê is some
operator of the environment and bSE the SE coupling
strength. This type of interaction is encountered in a
wide range of solid-state spin systems, as, for example,
nuclear spin systems in NMR [4,5,17,19], electron spins in
diamonds [18], electron spins in quantum dots [29], donors
in silicon [30], etc.
We consider the application of a sequence of short,

strong pulses that invert the probe qubit [4,5,7,12]. We
assume N instantaneous pulses at times ti, with delays
�i ¼ ti � ti�1 between the pulses for i ¼ 2; . . . ; N þ 1
and �1 ¼ t1 � t0, where t0 ¼ 0 and tNþ1 ¼ �c.
While such a sequence can refocus a static system-

environment interaction completely, any time-dependence
reduces its efficiency. We calculate the remaining decay
rate for the case where the environment can be well de-
scribed by stochastic noise. This is also valid for a quantum
second order approximation of the time-dependent SE
interaction [6]. We now eliminate the environment-

Hamiltonian Ĥ E by using an interaction representation
with respect to the evolution of the isolated environment.
The system-environment Hamiltonian then becomes

Ĥ
ðEÞ
SE ðtÞ ¼ bSEŜze

�iĤ EtÊeiĤ Et. Since Ĥ E does not

commute with Ĥ SE, the effective system-environment
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interaction Ĥ
ðEÞ
SE is time-dependent and the system

experiences a fluctuating coupling with the environment.

Tracing over the bath variables replaces bSEe
�iĤ EtÊeiĤ Et

by the stochastic function bSEEðtÞ. For simplicity we as-
sume that this random field has a Gaussian distribution
with zero average, hEðtÞi ¼ 0. The autocorrelation func-
tion is hEðtÞEðtþ �Þi ¼ gð�Þ and the spectral density Sð!Þ
of the system-bath interaction is the Fourier transform
of b2SEgð�Þ.

The free evolution operator for a given realization of

the random noise is expf�i�ðtÞŜzg, where �ðtÞ ¼
bSE

R
t
0 dt1Eðt1Þ is the phase accumulated by the probe

spin during the evolution. Considering now the effect of

the pulses, they generate reversals of Ĥ SEðtÞ. If the pulses
are applied during the interval �c as described above, the
accumulated phase �ðM�cÞ after M cycles becomes

�ðM�cÞ ¼ bSE
RM�c
0 dt0fNðt0;M�cÞEðt0Þ, where the modu-

lating function fNð�0;M�cÞ switches between �1 at the
position of every pulse [23]. We set the initial state of

the probe spin to �̂0 ¼ Ŝx;y and calculate the evolution of

the normalized magnetization under the effects of DD by

taking the average over the random fluctuations: hsx;yðtÞi ¼
e�ð1=2Þh�2ðtÞi. The resulting decay can be quantified by the
exponential’s argument

1
2 h�2ðtÞi ¼ RðtÞt ¼

ffiffiffi
�
2

q Z 1

�1
d!Sð!ÞjFNð!;M�cÞj2; (1)

where FNð!;M�cÞ is the Fourier transform of fNðt0;M�cÞ
[21–23]. The decay function RðtÞt is thus equal to the
product of the spectral density Sð!Þ of the system-
environment coupling and the filter transfer function
FNð!;M�cÞ. We have recently shown that FNð!;M�cÞ is
a sum of sinc functions centered at the harmonic frequen-
cies k!0 ¼ 2�k=�c of the Fourier series of fNðt0;1Þ [19],
which corresponds to the limit M ! 1. Hence, for t ¼
M�c � �B, the noise correlation time, the filter function
jFNð!; �MÞj becomes an almost discrete spectrum given by
the Fourier transform of fNðt0;1Þ; i.e., Fð!; tÞ becomes a
series of � functions centered at k!0. Thus, in the limit of
many cycles, the decay is exponential and RðtÞ becomes
time independent

RðtÞ ¼ R ¼ X1
k¼1

A2
kSðk!0Þ; (2)

with A2
k ¼

ffiffiffiffiffi
2�

p
�2c

jFNðk!0; �cÞj2, where for a CPMG se-

quence [4,5] with �2 ¼ 2�1 ¼ 2�3 ¼ �, Ak / 1=k for odd
k and 0 otherwise. This is the basis for the DD noise
spectroscopy methodology presented in this Letter.
Examples of the probe spin signal decay are shown in the
inset of Fig. 1.

DD noise spectroscopy.—Assuming for the moment that
the sum in Eq. (2) collapses to the k ¼ 1 term, we can scan
the bath spectral density by varying the delay between the

pulses as in Refs. [10,27]. However, for real DD sequences,
we always have an infinite series, where all harmonics
contribute to the decay rate with the weight Ak.
Determining the spectral density function therefore re-
quires the inversion of Eq. (2) and thus the consideration
of only the k ¼ 1 term is a rough approximation. The main
difficulty here is that a single measurement depends on an
infinite number of unknown spectral density values. We
solve this problem by a two-step procedure: in the first
step, we combine m measurements with different pulse
delays, which we choose such that they probe the spectral
density function at a discrete set of harmonic frequencies
with different sensitivity amplitudes Ak. In this step, we
neglect contributions from the tail of Sð!>m!minÞ. This
yields a square matrix that we can invert to obtain the
values of Sðj!minÞ, j ¼ 1 . . .m. From the resulting spectral
density function, we estimate a functional form for the tail
of the distribution and correct the data for the contributions
from the tail. Inverting the matrix again, with the corrected
values, gives the final spectral density distribution.
A natural choice for the probing sequence is the CPMG

or equidistant sequence, which has harmonics at frequen-
cies !0 ¼ �=�. To simplify the inversion of Eq. (2), we
choose the pulse delays in the different measurements such
that all relevant frequencies, including all harmonics, are
multiples of a minimal frequency !min. We therefore start
with a maximum delay �max ¼ �=!min, which determines
the frequency resolution with which we probe the spectral
density function. If the maximum frequency at which we
want to probe the spectral density function directly is
m!min, then we need to apply sequences with delays �n ¼
�max=n ¼ �minm=n. If we neglect the contribution from
frequencies >m!min, the relaxation rates Rn for the
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FIG. 1 (color online). Experimental relaxation times of the
probe spin under the application of CPMG (squares) and KDD
(circles) sequences. The black solid line represents a power law
fitted to the CPMG data and the green dotted line the asymptotic
free evolution decay rate. The black dashed line is a fit to
the KDD data with an expression ðR13C þ C0��Þ�1. Inset:

Experimental signal decays of the probe spin as a function of
the evolution time under CPMG dynamical decoupling.
Different curves correspond to different pulse delays. The
straight lines represent exponential fits.
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different experiments are given by a system of m linear
equations

Rn ¼
X½m=n�

k¼1

A2
kSðnk!minÞ ¼

Xm
j¼1

UnjSj; (3)

where [m=n] denotes the integer part of m=n and j ¼ nk.

The elements A2
k form an upper triangular matrix Unj ¼P½m=n�

k¼1 A2
k�j;nk, and Sj ¼ Sðj!minÞ represent the unknown

spectral density values, which can formally be calculated
as Sj ¼

P
m
n¼1ðU�1ÞjnRn

We now correct for the omitted contributions from the
high-frequency tail of the infinite sum by approximating it
with a suitable functional form, which depends on the
system being studied. Typical examples include a power
law decay, Lorentzian or Gaussian decay, or a sudden cut
off like in an Ohmic bath. In the system that we used as an
example (see below), the experimental data can be ap-
proximated very well by a power law dependence, as
shown in Fig. 1 (squares).

If the tail satisfies a power law Sj ¼ C
j� for j > np, then

Rn>np ¼
X1
k¼1

A2
kC

ðnkÞ� ¼ C

n�
X1
k¼1

A2
k

k�
¼ C��

n�
: (4)

This relation is represented by the black solid line in Fig. 1.
We can now modify Eq. (3) by adding the neglected terms
and then the relaxation rates satisfy

Rn ¼
Xm
j¼1

UnjSj þ
�
��C

n�
� Xm

j¼1

Unj

C

j�

�
; (5)

where ð��C
n� �P

m
j¼1 Unj

C
j�Þ ¼ C

n�
P

k>m�nþ1
A2
k

k� represents

the effective spectral density summing the contribution
from all harmonics k > m� nþ 1. The spectral density

is now determined from Sj¼P
m
n¼1ðU�1ÞjnðRn���C

n� Þþ C
j� .

Equation (4) shows that for a power law dependence, the
relaxation rate and the spectral density are proportional and
thus for a qualitative description of Sð!Þ considering only
the k ¼ 1 term is enough validating the results of
Refs. [10,27].

Experimental determination of Sð!Þ.—For an experi-
mental demonstration of this method, we chose 13C nuclear
spins (S ¼ 1=2) as probe qubits. We used polycrystalline
adamantane where the carbon nuclear spins are coupled to
an environment of 1H nuclear spins (I ¼ 1=2) that act as a
spin-bath. The natural abundance of the 13C nuclei is about
1%, and to a good approximation each 13C nuclear spin is
surrounded by about 150 1H nuclear spins. The interaction
with the environment is thus dominated by the 13C-1H
magnetic dipole coupling [6]. To determine the bath spec-
tral density we applied the equidistant sequences CPMG
and KDD [20] to the probe spin for different delays
between pulses �n ¼ �max=n, with n ¼ 1 . . . 40 and
�max ¼ 2 ms. Delays are measured between the center
of the pulses. For CPMG, we chose an initial state

longitudinal to the rf field of the refocusing pulses because
then pulse error effects can be neglected [5,17]. The inset
of Fig. 1 shows examples of the 13C signal decays. The
lines in the inset show the fitted exponential decays, which
agree very well with the data points in this range. This
demonstrates that we are in the regime where the filter
functions are discrete. KDDwas shown to be robust against
pulse errors, independent of the initial condition (see
Ref. [20] for details). For ideal pulses, both sequences
have the same filter function. As shown in Fig. 1 (squares)
the observed relaxation times for this system depend on the
pulse spacing like / ��3:59 for the CPMG sequence over
the range � ¼ ½50 �s; 110 �s�. We only used the data
points for � > 50 �s to determine the parameters C and
�, since Fig. 1 indicates that other processes contribute to
the relaxation at shorter delays. From the fitting process,
we found � ¼ 3:59� 0:08 and �� � 1:002. Here, the
contribution of the infinite series of 2� 10�3 is almost
negligible. Figure 1 also shows that the dependence of the
decoherence rates changes at � * 100 �s. This agrees
with the value that we determined earlier for the correlation
time of the bath �B [17] in adamantane.
If KDD is used for decoupling, we observe that the

relaxation time saturates for � shorter than 50 �s and in
general is shorter than for CPMG (Fig. 1, circles). This
difference can be attributed to the effect of 13C-13C cou-
plings. Because in the CPMG sequence all pulses generate
the same rotation, the overall effect of the pulse cycle is to
first order equivalent to a constant effective field, which
stabilizes the observable magnetization against the effect
of 13C-13C couplings [31]. In the KDD case, the state is not
longitudinal to the pulses and no spin-lock effect is ob-
served. The saturation of the relaxation time for the CPMG
case for � < 50 �s can be attributed to the finite rf field
strength or, equivalently, to the finite duration of the pulses.
Pulse errors may also contribute in this regime.
In the KDD case, the 13C-13C interaction dominates over

the effect of the proton bath for short pulse delays. To
verify this, we assumed a 13C-13C relaxation rate R13C

independent of the pulse delays and fitted the expression
ðR13C þ C0��Þ�1 over the range [50 �s, 110 �s] where the

CPMG data follow a power law (dashed line in Fig. 1). We
obtained R13C ¼ ð75� 1Þ s�1 and � ¼ 3:7� 0:3, which

perfectly matches with the CPMG result. If we subtract the
R13C contribution, we obtain the spectral density repre-

sented by the empty circles in Fig. 2, which are almost
identical to the result obtained with the CPMG sequence
(solid squares).
We demonstrate with Eq. (4) that the qualitative behav-

ior of the power law tail can be well obtained by the first
harmonic approximation (k ¼ 1) that is proportional to the
exact solution derived from (5). For lower frequencies, the
corrections from our exact method can be relevant (squares
vs rombuses in Fig. 2). However, because Sð!Þ decays
rapidly, the difference is small in this case.

PRL 107, 230501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

2 DECEMBER 2011

230501-3



This is not always true, as we now show with a specific
example: We modulate the system-environment interaction
by applying a resonant radio-frequency field to the
proton spins, which periodically inverts them. Using the
same measurement procedure, we obtained the data shown
in Fig. 3.

The approximate solution Sðn!minÞ ¼ Rn=A
2
1, where

only the first harmonic (k ¼ 1) is considered, shows a
main peak at the modulation frequency � and some satel-
lite peaks at at lower frequencies that are integer fractions
of�. These satellite peaks are artefacts of the data analysis
that neglects contributions from higher harmonics of the
filter function of Eq. (2). Using our method, we obtain an
improved solution where the satellite peaks are eliminated.
The spectral density distribution for this case is qualita-
tively different from that of the unmodulated case. In
particular, the value at zero frequency is reduced, but a
maximum has appeared at the modulation frequency. This
has important consequences for implementing dynamical

decoupling: For� ¼ 7:69 kHz, good decoupling perform-
ance is expected for �� 0:12 ms, where the first harmonic
is at the spectral density minimum near 4 kHz. Increasing
the decoupling rate then would drastically reduce the de-
coupling performance, in stark contrast to the usual expec-
tation that it should increase with the decoupling rate.
Conclusions.—We have developed a method to deter-

mine the noise spectral density generated by a bath. It is
based on modulating the system-environment interaction
by applying sequences of inversion pulses to the system. If
the sequence consists of many repetitions of a basic cycle,
the resulting decays are exponentials and the decay rates
are given by the spectral density at discrete frequencies.
This allows one to build a linear system of equations that
can be inverted to obtain the unknown spectral density
function. We applied the method to obtain the spectral
density of the 13C-1H interaction in adamantane.
Applying this method to other systems will help fighting
decoherence, e.g., by optimizing DD sequences by reduc-
ing the overlap of their filter functions with the noise
spectral density [14,15,23–26]. In particular, in the natural
spin-boson model where the spectral density grows with
the frequency until a cut off, our high order method be-
comes important. Moreover, many naturally occurring sys-
tems, also contain discrete features in the noise spectrum,
such as the Larmor precession of the 13C nuclei, which are
the dominant source of decoherence for the electrons of the
diamond NV center [18]. In this case, neglecting the higher
harmonics leads to erroneous additional resonances. Our
method also complements standard NMR techniques that
use CPMG sequences to distinguish between different
sources of inhomogenities [32] or measuring diffusion
rates [33–35] as well as protein dynamics rates [36] in
liquid state NMR. Those methods determine correlation
times but assume specific spectral density functions, while
our technique is suitable for the determination of spectral
densities with unknown shape.
This work is supported by the DFG through Su 192/24-
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