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Optimal pulse spacing for dynamical decoupling in the presence of a purely dephasing spin bath
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Maintaining quantum coherence is a crucial requirement for quantum computation; hence protecting quantum
systems against their irreversible corruption due to environmental noise is an important open problem. Dynamical
decoupling (DD) is an effective method for reducing decoherence with a low control overhead. It also plays
an important role in quantum metrology, where, for instance, it is employed in multiparameter estimation.
While a sequence of equidistant control pulses [the Carr-Purcell-Meiboom-Gill (CPMG) sequence] has been
ubiquitously used for decoupling, Uhrig recently proposed that a nonequidistant pulse sequence [the Uhrig
dynamic decoupling (UDD) sequence] may enhance DD performance, especially for systems where the spectral
density of the environment has a sharp frequency cutoff. On the other hand, equidistant sequences outperform
UDD for soft cutoffs. The relative advantage provided by UDD for intermediate regimes is not clear. In this
paper, we analyze the relative DD performance in this regime experimentally, using solid-state nuclear magnetic
resonance. Our system qubits are 13C nuclear spins and the environment consists of a 1H nuclear spin bath whose
spectral density is close to a normal (Gaussian) distribution. We find that in the presence of such a bath, the CPMG
sequence outperforms the UDD sequence. An analogy between dynamical decoupling and interference effects in
optics provides an intuitive explanation as to why the CPMG sequence performs better than any nonequidistant
DD sequence in the presence of this kind of environmental noise.
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I. INTRODUCTION

Quantum-information processing (QIP) relies on storing
and manipulating information in quantum-mechanical states
associated with accessible subunits called qubits [1]. For
reliable QIP, the information encoded in the quantum register
(the collection of qubits) must be retained for an arbitrarily
long time [2]. However, in any physically realizable QIP
architecture, the qubits cannot be completely isolated, but are
weakly coupled to a large number of degrees of freedom of
their environment (bath). This causes the corruption of the
quantum state associated with the qubit, a process known as
decoherence [3]. This process limits the time scale over which
quantum information can be retained [3] and the distance over
which it can be transmitted [4–7].

Combating this decoherence process to extend the lifetime
of quantum states or processes and the distance bounds to
transmit them is a necessary step in building a quantum
computer [8]. One of the simplest and most effective tech-
niques suggested for this purpose is dynamical decoupling
(DD) [9,10]. It also has several applications in quantum
metrology, for example in the magnetometry using single
spins [11–13] and multiparameter estimation [14]. DD consists
of the application of π pulses to the qubits, which revert
the decay due to the system-environment interaction. The
simplest implementation of this method is the Hahn echo
experiment [15]. It is employed in the case in which the
system-environment (SE) interaction is a pure dephasing
process, i.e., there is no net exchange of energy between the
system and the bath.
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However, it is immediately obvious that any component
of the interaction with the bath that varies on a time scale
shorter than τ , the delay between the pulses, cannot be
refocused [16,17]. Hence the effectiveness of the Hahn echo
and its generalization as a train of equidistant pulses—the Carr-
Purcell (CP) [16] and Carl-Purcell-Meiboom-Gill (CPMG)
[17] sequences—depend crucially on keeping the delays τ

between the pulses sufficiently short. However, this delay is
always limited by hardware or the maximum power deposition
in the sample. Moreover, rapid DD pulsing interferes with
the controls that are necessary for computation [18,19]. For
example, if one wants to choreograph the dynamics of the
spins in a particular manner while still requiring that coherence
survives for long, the requisite controls have to be applied in
parallel with the DD pulses. Although the recent proposal of
dynamically corrected gates (DCG’s) [20–23] seeks to address
this problem, when τ is very short there is an enormous demand
on the hardware.

Hence there is a strong motivation for finding a DD
protocol that, for a given number of pulses, provides the
best performance. For the case of a purely dephasing SE
interaction, a possible approach to this problem consists in
visualizing the DD pulses as generating a filter for the SE
interaction (environmental modes) [24,25]. For example, the
CPMG sequence acts as a band-stop or high-pass filter (with
bandwidth ω = 2π/τ ) since any interaction component that
varies slower than τ is refocused and filtered out. The resulting
decay rate of the quantum state is determined by the overlap
of the spectral density of the bath with the filter generated by
the pulse sequence [24,25]. If one knows the exact form of
this function, it may be possible to design a suitable filter, and
hence a DD sequence, that leads to the slowest decay [25–31].
This was the motivation behind the DD sequence suggested
by Uhrig [26]. It provides the nonequidistant distribution of
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pulses that causes the flattest band-stop filter around ω = 0
[24,32], and is considered the best sequence for combating
low-frequency noise. Experimental work [28,33–35] showed
that indeed the UDD outperforms the CPMG sequence
for certain types of noise with a sharp high-frequency
cutoff.

However, when the spectral density of the bath has a long
tail (soft cutoff), the CPMG sequence has been predicted
[24,36] and found [28,33] to outperform the UDD sequence.
In an intermediate regime, for example a spin bath where
the spectral density is Gaussian [37], it was shown recently
that CPMG outperforms the UDD sequence for [38–41].
However, a rigorous comparison of both of these sequences
in such regimes is a matter of current research [25,42–45]. Of
particular interest is determining the conditions (for example,
the maximum allowable τ ) under which the UDD continues
to provide an advantage over the CPMG sequence.

This was tackled in a purely dephasing bosonic bath by
Hodgson et al. [43]. They predicted that DD protocols with
nonequidistant pulses like UDD lose their advantages when
lower bounds exist for the pulse separation τ . Uhrig and
Lidar [46] presented analytical performance bounds for the
UDD sequence. They considered instantaneous perfect pulses
and bounded environment and generic system-environment
Hamiltonians. They showed that for a fixed total duration,
the survival probability can be increased by increasing the
number of pulses by incrementing the DD order. However,
if a minimum delay between pulses is imposed, because the
sequence time scales with the number of pulses (DD order),
they predict that longer cycles (higher orders) are not always
advantageous. These predictions are based on perturbative
treatments of the SE interaction. Accordingly, they apply to
the fast control regime where the cycle time is sufficiently
short for the perturbative treatment. Because these approaches
cannot lead to a lower bound on the attainable DD error
in the presence of timing constraints, recently Khodjasteh
et al. [45] obtained bounds for the UDD performance as a
function of its order by using an alternative method for bosonic
baths.

In light of this, it is important to provide a fair and
practically relevant comparison between these different DD
approaches. Here, we use the benchmarking methodology
of our previous work [38]: which DD sequence maximizes
the survival time of the quantum coherence for a given
average spacing between the pulses? In the earlier paper, we
concentrated on a comparison between different sequences
with equidistant pulses; here, we analyze the effect of a
variable pulse spacing using the same approach. The spectral
density of our bath is roughly Gaussian, which may be
considered to be intermediate between a sharp cutoff and a long
tail.

Several recent experimental results [38–41] indicate that
CPMG performs better than the UDD sequence when the qubit
is coupled to a spin bath. The superior CPMG performance has
been attributed to the fact that it compensates for pulse errors
along the direction of the rotation axis [40,41], while such
compensation is reduced in the UDD protocol [28,33]. Also it
was attributed to a possible soft cutoff of their model system
[39–41]. Our experiments and simulations indicate that even
in the case of ideal pulses, the CPMG outperforms the UDD

sequence. In fact, we conjecture that for a purely dephasing SE
interaction, when the spectral density is a Gaussian distribution
and a rapidly fluctuating environment, the CPMG sequence
would maintain the state of the qubit system for the longest
period. Our reasoning is based on determining how the DD
pulse sequence alters the time-averaged SE interaction that
the system “sees” for each frequency component of this
interaction [24]. Drawing an analogy with optics, each pulse
of the Uhrig sequence modifies the SE interaction such that
the interactions in different windows “interfere” destructively
with each other. This destructive interference is perfect for
slow interactions. While the UDD protocol provides the flattest
stop-band at ω = 0 [24], the CPMG protocol provides the
widest. When a DD sequence is applied repetitively (say
M times), it becomes analogous to passing the different fre-
quency components of the SE interaction through a diffraction
grating. Overall, the optical analogy presented in this paper
provides an intuitive way to understand how the shape of the
spectral density function affects DD performance.

This paper is organized as follows. Section II describes
the physical system that we use in our experiments. In
Sec. III, we review the key ideas of dynamical decoupling.
Section IV provides the pulse sequence protocols of UDD
[26,32] and CPMG [16,17]. Section V contains the results of
our experiments. Section VI describes a semiclassical model
that explains the experimental results, and suggests that the
CPMG sequence is the best DD sequence for combating a
purely dephasing SE interaction in a spin bath. Within that
section, we draw an optical analogy to DD sequences.

II. THE SYSTEM

For our experimental evaluation of the relative performance
of DD sequences, we use the simplest possible system con-
sisting of a single qubit and a purely dephasing environment
consisting of a spin bath. For the system qubit, we use 13C
nuclear spins (S = 1/2), and for the environment 1H nuclear
spins (I = 1/2) that act as the spin bath. We use polycrystalline
adamantane where the natural abundance of the 13C nuclei is
about 1%, and to a good approximation each 13C nuclear spin
is surrounded by about 100 1H nuclear spins. The 13C-13C
interaction is completely negligible compared to the 13C-1H
and 1H-1H interactions. The spin-spin interaction is dominated
by the dipolar interaction [37].

We shall refer to the spin operator of the system qubit
(13C) as Ŝ, and to the j th bath spin (1H) as Î j . The Zeeman
frequencies of the system and bath spins are ωS and ωI ,
respectively. The dipolar coupling constants for the system-
bath interaction are bSj , and for the intrabath interaction dij .

It is convenient to describe the dynamics of the system in a
rotating frame of reference [37], where the system rotates at the
(angular) frequency ωS around the z axis and the environment
at ωI . The total (free evolution) Hamiltonian is then

Ĥf = ĤS + ĤSE + ĤE, (1)

where ĤS is the system Hamiltonian, ĤE is the environment
Hamiltonian, and ĤSE is the system-environment interaction
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Hamiltonian:

ĤS = 0̂, (2)

ĤSE = Ŝz

∑
j

bSj Î
j
z , (3)

ĤE =
∑
i<j

dij

[
2Î i

z Î
j
z − (

Î i
x Î

j
x + Î i

y Î
j
y

)]
. (4)

This type of system is encountered in a wide range of solid-
state spin systems, as, for example, electron spins in diamonds
[39,41,47], electron spins in quantum dots [40,48,49], and
donors in silicon [50,51], which appear to be promising
candidates for future QIP implementations. In particular, we
consider the case in which the interaction with the bath is weak
or comparable with the intrabath interaction.

III. DYNAMICAL DECOUPLING

Dynamical decoupling aims to reduce the interaction of
the system with the environment by applying sequences of
short, strong pulses that invert the system qubits [9,10]. We
write ĤC(S)(t) for the corresponding control Hamiltonians. It
is assumed that the environment cannot be directly controlled.

DD sequences usually consist of cycles of pulses. Figure 1
shows an example of such a cycle. In the rotating frame, the
operator that describes the evolution of the total system from
0 to τc, the duration of the cycle, is

Û (τc) = Ûf (τN+1)
N∏

i=1

Û i
C(τp)Ûf (τi), (5)

where the free evolution operator is

Ûf (t) = exp{−iĤf t} (6)

and the control evolution operators are

Û i
C(τp) = T exp

{
−i

∫ τp

0
dt ′[Ĥf + Ĥi

C(S)(t
′)]

}
, (7)

where T is the Dyson time-ordering operator [52,53] and
τp is the pulse duration. Let ti represent the time at which
the ith control operation starts. Then, the delay times between
the control Hamiltonians are τi = ti − (ti−1 + τp) for i =
2, . . . ,n + 1 and τ1 = t1 − t0, where t0 = 0 and tN+1 = τc.
If the basic cycle is iterated M times (see Fig. 1), the total
evolution operator becomes

Û (t = Mτc) = [Û (τc)]M. (8)

τc 

τp 

τ1 τi τN+1 

… … 

τp τp τp 

t1 ti-1 ti tN t0 

M 

tN+1 

FIG. 1. Schematic representation of dynamical decoupling. The
solid boxes represents the control pulses.

The propagator (5) for a single cycle of duration τc can be
written in terms of an effective Hamiltonian:

Û (τc) = e−iĤeffτc . (9)

Using average Hamiltonian theory [54], Ĥeff can be expressed
as a series expansion, using, e.g., the Magnus expansion [55],

Ĥeff = Ĥ(0) + Ĥ(1) + Ĥ(2) + · · · = ∑∞
m=0 Ĥ(m). (10)

The lowest-order term Ĥ(0) is the average over the period τc,

Ĥ(0) = 1

τc

∫ τc

0
Ĥ(t) dt. (11)

A DD sequence with ideal pulses makes Ĥ(0) = ĤE , i.e., the
interaction Hamiltonian vanishes to zeroth order. In addition,
the DD sequences are designed such that the higher-order
terms have reduced norm or vanish [10,26,56].

As we discussed in the previous section, the 13C-13C
dipolar interaction is negligible compared with the 13C-1H
interaction. However, when DD is active and removes the
13C-1H interaction, the 13C-13C couplings become the dom-
inant interaction for causing decoherence. This holds strictly
for ideal pulses, which do not affect the 13C-13C interaction.
Under these conditions, the decay rate is limited by the
13C-13C couplings. However, if pulses have finite duration,
they can further extend the lifetime of the component of the
magnetization aligned with the effective field [57–63].

IV. PULSE SEQUENCES

A. Carr-Purcell (CP) and Carr-Purcell-Meiboom-Gill (CPMG)

The CP sequence [16] was first introduced as a means
to suppress inhomogeneity of the B0 field �B

j

0 seen at the
j th nuclear site when the molecules containing the spins are
undergoing diffusion. The resulting time-dependent system-
environment interaction interferes with the refocusing process
of a Hahn echo [15] if the time dependence happens on a time
scale comparable to or faster than the refocusing time.

In our solid-state spin system, the time dependence of the
environment arises from fluctuating dipolar fields due to the
neighboring spins of the bath [54]. This generates a time-
dependent inhomogeneity. By suppressing it, the CP sequence
acts as a method of dynamical decoupling since, in effect, it
suppresses the SE interaction [9].

The CP sequence consists of a train of refocusing pulses
generating spin echoes. If the refocusing pulses are ideal, i.e.,
they cause a complete π rotation of the nuclear spins in an
infinitesimal time, and the spin bath is static ([ĤE,ĤSE] = 0̂),
then all terms Ĥ(m) of the Magnus expansion vanish, and
the inhomogeneity is completely suppressed. However, this
does not happen when the spin bath is not static or the pulses
have finite duration or contain errors. For ideal pulses but a
fluctuating environment, only the average system environment
Hamiltonian Ĥ(0)

SE , the zeroth order of the Magnus expansion,
is suppressed [38].

If flip-angle errors are also considered, the system-
environment coupling no longer vanishes, even in lowest order,
Ĥ(0)

SE �= 0̂, and the resulting propagator increases with the
flip-angle error. Considering this, Meiboom and Gill suggested
a modification to the CP sequence [17], now called the CPMG
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(a)

(b)

FIG. 2. (Color online) Distribution of pulses for (a) CPMG and
(b) UDD10 sequences. Here τ is the average distance between pulses.
The arrows denote the length of a single cycle of period τc. Note that
a CPMG cycle consists of two pulses while an N th-order UDD cycle
has N pulses.

sequence, where the rotation axis of the pulses is the same
as the orientation of the initial state of the spins. In this case,
flip-angle errors have no effect in zeroth order. Figure 2(a)
shows a CPMG sequence. Note that the CPMG cycle requires
only two pulses; hence a sequence of ten pulses covers five
cycles. In the figure, τ is the average distance between pulses,
while τc denotes the length of a single cycle.

B. Uhrig dynamical decoupling (UDD)

In the CPMG sequence, the separation between adjacent
pulses is constant throughout the sequence. In a seminal paper
[26,32], Uhrig relaxed this condition, searching for the optimal
combination of delays that would minimize the effect of a
purely dephasing system-environment coupling. He showed
that the optimal distribution for reducing low-frequency noise
corresponds to a sinusoidal modulation of the pulse delays.
More specifically, one cycle of an N th-order UDD sequence
consists of N pulses applied at times

ti = τc sin2

[
πi

2(N + 1)

]
, (12)

where tN+1 = τc is the cycle time and t0 = 0 the starting time.
Figure 2(b) shows the UDD sequence for N = 10. The CPMG
sequence is the simplest UDD sequence with order N = 2.
The UDD sequence was shown to be universal for any purely
dephasing Hamiltonian [64].

V. EXPERIMENTS

A. Measurement scheme

The general procedure used in our experiments is illustrated
in Fig. 3. Cross-polarization from the abundant proton spins
to the 13C spins is used at the initial preparation stage to
increase the 13C polarization [65]. After this transfer, we store
the enhanced 13C polarization along the z axis and wait for a
time longer than the dephasing time to erase any correlation
that could arise during the cross-polarization process. The
magnetization is then rotated to an initial state, represented
by the density operator ρ̂0 = Ŝ{x,y}, in the xy plane that is
transverse to the strong static field. We use two distinct initial
states considering the relative phases of the polarization of ρ̂0

and the pulses to be used for DD [28,38]—the “longitudinal”

[DDN]
M

CP

CP

Acquire

Decoupling

(
π
2

)
X

preparation

Dynamical
decoupling detection

1H

13C
Longitudinal : u = Y
Transverse : u = X̄

Initial state Final state

(
π
2

)
X̄

(
π
2

)
u

FIG. 3. (Color online) The experimental scheme: the initial-state
preparation uses cross-polarization (CP) to enhance the polarization
of the 13C nuclear spins. The actual dynamical decoupling consists of
M cycles of the N th-order DD sequence. The DD pulses are applied
along the X axis, while the initial states are created using a ( π

2 ) pulse
with Y (X) phase for the longitudinal (transverse) initial conditions.

state in Fig. 4(a) where the pulses are applied in the direction
of the ρ̂0 polarization, and the “transverse” state in Fig. 4(b)
where they are applied perpendicular to the ρ̂0 polarization.
This translates, in Fig. 3, to applying the DD π pulses with
an X phase where a π/2 pulse is applied before of the
DD sequence with a Y phase for the longitudinal initial
condition, and with a −X phase for the transverse condition.
M cycles of the N -pulse DD sequence are applied; the duration
for the DD π pulses was 10.4 µs. The errors of the pulse delays
(compared to the theoretical values) are 2.5 ns on average,
limited by the timing resolution of our pulse generator. The
error of the pulse durations (jitter) is <0.1 ns. Therefore, timing
errors are negligible compared to amplitude errors, which are
of the order of 10%. In general, for the range of delays between
pulses used in our experiments, we did not observe substantial
differences between considering the delays from the pulse
edges or centers. This was also corroborated by numerical
simulations. After each DD cycle, we measured the remaining
spin polarization by recording the nuclear-magnetic-resonance
(NMR) signal [38]. During the signal acquisition, we applied
continuous-wave decoupling to prolong the free induction
decay (FID) and thereby increase the detection sensitivity.

The decay of the signal amplitude as a function of the DD
evolution time t = Mτc represents the survival probability of
the state ρ̂0:

s(t) = Tr{ρ̂0ρ̂(t)}
Tr{ρ̂0ρ̂0} ,

x
y

z
B0

x
y

z
B0

Longitudinal Transverse

B1

ρI

B1 ρI

FIG. 4. (Color online) Different initial states of the spin system:
The blue (thin, long) arrows indicate the orientation of the initial
13C-spin polarization, and the red (thick, short) arrows show the
direction in which the pulses are applied.
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(a) (b)

FIG. 5. (Color online) Experimental FID of (a) 1H and (b) 13C
spins without (blue solid line) and with (red dashed line) BLEW-12
1H homonuclear decoupling. The correlation time of the bath (1H)
increases by an order of magnitude if the BLEW-12 sequence is
applied. The qubit system (the 13C nuclei) remains almost unaffected
by the BLEW-12 sequence.

where ρ̂(t) = Û (t)ρ̂0Û
†(t) is the density operator of the spin

system at time t . In the case of free evolution (no DD), this
corresponds to the FID signal represented in Fig. 5. The solid
blue lines in panels (a) and (b) represent the FID signal of
the 1H and 13C spins, respectively, which correspond to the
observables Îx and Ŝx .

B. Single-parameter three-pulse family

We first consider the simplest sequence that contains
unequal spacings between the pulses. Figures 6(a) and 6(b)
show the time evolution of the 13C magnetization from a
longitudinal initial state ρ̂0 = Ŝx and a transverse initial state
ρ̂0 = Ŝy for different cycle times. They show that when
the longitudinal case is compared to the FID, dynamical
decoupling allows for a longer survival of coherence, and this
improves for shorter cycle times [38]. The signal decay is an
order of magnitude faster for the transverse initial condition
in Fig. 6(b) than the longitudinal condition in Fig. 6(a) [38].
As we demonstrated in Ref. [38], in this case the decay is due
mostly to pulse imperfections (flip-angle errors), which lead

(a) (b)

FIG. 6. (Color online) Time evolution of the 13C magnetization
of the initial state (proportional to its survival probability) for the
(a) longitudinal and (b) transverse initial conditions subjected to
UDD3. The value of −1 in the latter corresponds to the state that
is antiparallel to the initial state.

(a)

(b) (c)

FIG. 7. (Color online) (a) Single-parameter sequence family
containing all mirror symmetric three-pulse sequences. They are
described by the parameter x, where τ1 and τ2 are the exact UDD3

delays. (b) Time-domain filter function f3(τ ′,2τc) for two cycles of
the UDD3 sequence. (c) Time-domain filter function f4(τ ′,τc) for one
cycle of the UDD4 sequence. In the filter representation, we assume
perfect pulses in the center of the finite-width pulses. The dashed
lines indicate that the time-domain filter toggles between ±1 at the
position of the pulses.

to a loss of polarization. In the longitudinal case, the effect of
these pulse errors is partly compensated over the sequence, but
in the transverse case, they accumulate. This accounts for the
large difference between the two cases already demonstrated in
previous works [33,38]. In particular in our experimental setup,
the flip-angle error was estimated to be around 10% [38].

Uhrig introduced the idea that it might be advantageous
to omit the condition that all pulse separations should be
identical and derived a simple formula that determines the
optimal spacing of N pulses. We examine this scheme first in
the simplest possible case, corresponding to a cycle of three
pulses. To determine the optimal pulse spacing experimentally,
we parametrize the pulse spacings of the symmetric three-pulse
sequence with a parameter x, as shown in Fig. 7(a). x is
defined as the deviation (as a fraction of the cycle time) of the
pulse separation from those of the UDD3 sequence, which are
τ1 = τc sin2(π/8) and τ2 = τc/2 − τ1. This parametrization
captures all possible mirror symmetric three-pulse sequences.
When x = 0, the sequence is UDD3, and when x � 0.0203,
the sequence is CPMG. For this family of DD sequences, we
experimentally determined the decay rate as a function of x by
fitting a pure exponential function.

Figure 8 shows the experimentally obtained decay rates
for the longitudinal initial condition, as a function of the
parameter x. We determined the value of x that generates the
slowest decay rate by fitting the experimental data points with
a quadratic function (not shown in the figure) and determining
the position of the minimum. These minima are the red
circles in Fig. 9. The sequence that generates the slowest
decay is obtained for xmin ≈ 0.021 ± 0.002 for all cycle times
used in the experiment. This is astonishingly close to the
value xCPMG = 0.0203 that corresponds to the equally spaced
sequence.

In addition to the experimental data points, Fig. 8 also
shows solid lines. They represent the results of numerical
simulations of the decay rates for the same parameters as the
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FIG. 8. (Color online) Experimental (symbols) and simulated
(lines) decay rates of the magnetization as a function of the deviation x

for different cycle times for the longitudinal initial condition. The
UDD3 sequence corresponds to xUDD = 0, while the CPMG sequence
corresponds to xCPMG ≈ 0.0203. Note that the quadratic fitting curves
used to determine the position of the minimum of each curve are not
shown.

experiments. In the simulations, we assumed that the pulses
were ideal. Following Refs. [24,32], this involves modeling
the pulse sequence as a one-dimensional filter f (τ,τc), as
shown in Fig. 7(b). A detailed description of this model and
the simulations is presented in Sec. VI. Since this model
does not take into account pulse errors, it cannot be applied
to the transverse initial condition, where these errors play a
predominant role [38].

For the transverse initial condition, the rates are about an
order of magnitude larger than for the longitudinal initial

FIG. 9. (Color online) To determine the best longitudinal three-
pulse DD sequence, the decay curves in Fig. 8 were fitted to a
quadratic function in the region of the minimum. The positions of
the minima of these quadratic fits are represented by the red circles
in this figure. The black dotted line corresponds to xCPMG ≈ 0.0203.

condition, and they increase for short cycle times [38]. They
are essentially independent of the parameter x because they
are dominated by pulse errors. We therefore consider only
longitudinal states in the following.

C. Variation of UDD order

The performance of a dynamical decoupling sequence
increases with the average power of the external control
field used for DD [9]. This means that given a fixed time
window t , the DD efficiency improves with the number of
refocusing pulses. Since the pulses are of finite length, the
maximum number of pulses that can be employed during t is
bounded [19,38,42,43,45,46].

The scheme depicted in Fig. 10(a) describes a situation
in which the cycle time τc is fixed while the UDD order
is increased from top to bottom. Given the fixed window
t = τc, the power used for DD during t increases from top
to bottom. The corresponding survival probability is shown in
Fig. 10(c) for different UDD orders (from UDD2 to UDD14)
and with τc = 600 µs (not including the pulse lengths).
Clearly, if the cycle time is fixed, higher-order UDD sequences
maintain the qubit coherence for longer times. However,
this improved performance is obtained at the price of an
increase in the average power applied to the system. For many
applications, this is not possible, and a more meaningful com-
parison is obtained by keeping the average power level fixed.
Figure 10(b) shows the corresponding pulse sequences, and
Fig. 10(d) shows the resulting decays. For these experiments,
the cycle time was scaled with the UDD order N as τc =
N 110.4 µs. Under these conditions, the variation of the decay
rate with the UDD order is relatively weak, and higher orders
perform slightly worse than UDD2 (CPMG).

We quantified the decay rates for UDD orders 2 to 30 for
τc = N 110.4 µs. The results are shown in the right panel
of Fig. 11. The left panel schematizes how the DD power
is kept constant across orders—the cycle time is scaled with
the UDD order. Clearly, for a large span of UDD orders, the
CPMG sequence performs better than the UDD sequences
can. The results mean two things: first, that in the regime of
our experiment, higher UDD orders provide no advantage over
lower UDD orders; and second, that as a consequence the UDD
protocol itself performs worse than the CPMG sequence with
the same number of pulses. Although these experiments were
carried out with the average delay between pulses of 110.4 µs,
the same qualitative behavior is also observed for different
times between pulses. However, the difference between the
decay rates of CPMG and UDD sequences can be reduced by
shortening the cycle time, as we show below.

D. Variation of cycle time

In the limit of infinitesimally short cycle time and infinitely
strong pulses—the bang-bang regime [9]—one can maintain
quantum coherence for arbitrarily long times. However, in any
real experiment, the peak power as well as the average power
applied to the system are limited and should be minimized.
Accordingly, the duration of the pulses and the cycle time
cannot be reduced below some minimal values [19,38,42,43].
In this section, we examine the DD performance of a given
sequence as a function of the cycle time. The left panel of
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(a) (b)
(c) (d)

FIG. 10. (Color online) Top panels: Pulse sequence scheme keeping fixed the time window t as the UDD order N is increased. To keep the
DD power constant across UDD orders, the cycle time is scaled with N (b). Bottom panels: Experimental 13C signal decay for different UDD
orders for (c) a fixed cycle time τc = 600 µs, and (d) a scaled cycle time τc = 110.4N µs.

Fig. 12 schematically describes the variation of the cycle
time for a fixed UDD order N , in this case for N = 5. In
the right panel of Fig. 12, the points are experimentally
obtained decay rates while the lines are simulation results
using the filter model for ideal pulses detailed in Sec. VI.
For long cycle times, the performance of equidistant pulses
(CPMG) is better than UDD, however as τc is reduced, its
performance improves considerably, although the UDD decay
rates are indistinguishable from the CPMG in this regime.
Similar results were obtained for similar experiments with
different UDD orders. Figure 12 shows that in the regime of
our experimental setup, the UDD sequence does not perform
better than the CPMG sequence for any τc.

E. Reducing the fluctuation rate

The decay rate of the survival probability under dynamical
decoupling depends on the ratio of the cycle time τc to the

FIG. 11. (Color online) Left panel: Pulse scheme manifesting the
cycle time scaling with the UDD order N . Right panel: Experimental
(symbols) and simulated (line) decay rates of the 13C magnetization
for different UDD orders (blue circles) compared with decay rates
achieved with the CPMG sequence (red rhombus). The same number
of pulses during a time window t are applied by scaling the cycle
time as τc = 110.4N µs.

correlation time of the bath τB [38,66]. The UDD sequence was
designed to provide optimal decoupling performance for baths
with long correlation times. In our system, the bath correlation
time depends on the strength of the dipolar couplings dij

between the 1H nuclear spins of the bath [37]. One can
effectively rescale dij , and hence the correlation time of the
bath, by applying decoupling sequences to the bath spins [54].
This allows us to access regimes where the cycle time τc is sig-
nificantly shorter than the correlation time of the bath. For this
we employ the well-known Burum-Linder-Ernst-windowless
(BLEW) homonuclear decoupling sequence BLEW-12 [67].
As shown by the dashed lines of Fig. 5, application of this
pulse sequence increases the bath-correlation time by about
one order of magnitude: it was around τB ≈ 100 µs without
BLEW-12 and τB ≈ 1000 µs with BLEW-12 for a cycle
time τcB = 84 µs. To determine the effects on the qubit
system, we measured its FID. We found that it remains almost
unaffected by the 1H homonuclear decoupling [Fig. 5(b)]. The
scaling due to the BLEW sequence [67], 0.475, appears to

FIG. 12. (Color online) Left panel: Pulse sequence scheme
showing the variation of its cycle time for a fixed UDD order N = 5.
Right panel: Experimental (points) and simulated (lines) decay rates
of the 13C magnetization for UDD5 and UDD20 and its comparison
with equidistant pulse (CPMG) sequence having the same number of
pulses for the different UDD cycle times.
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FIG. 13. (Color online) Left panel: DD pulse sequence scheme
for UDD6 and CPMG applied in conjunction with the BLEW-12
sequence on the 1H spin bath. The cycle time of the DD sequences is
6τ , while for the BLEW-12 sequence the cycle time is τcB , where
6τ/τcB is an integer. Right panel: 13C signal decay for the DD
sequences described in the legend.

be indistinguishable from the effect of self-decoupling, which
reduces the 13C linewidth in the absence of 1H-homonuclear
decoupling [68]. The experimental scheme of Fig. 2 was used
again, the only change being that the homonuclear decoupling
sequence is applied to the bath in parallel with the application
of the DD sequence to the system.

Figure 13 shows the pulse sequence used during the
DD period (left panel). For different UDD orders, the signal
decays were measured with and without the BLEW-12
sequence (dashed box in the left panel) on the 1H channel.
The experimental results in the right panel of Fig. 13 show
that the increase of the bath correlation time by roughly one
order of magnitude leads to significant improvements in the
performance of all DD sequences. The performance of UDD3

and CPMG is indistinguishable, while that of UDD6 is lower.
Similar results are obtained for longer and shorter cycle

times. This is evidenced in Fig. 14(b), which shows the survival
probability after a single cycle of the UDD and equidistant
pulse (CPMG) sequences for different cycle times and DD
orders. The pulse sequence for this experiment is shown in
Fig. 14(a) for two cycle times τc = 336 and τc = 672 µs of
the UDD12 sequence. The results show that for large UDD
orders like N = 12, the CPMG sequence performs better, even
when the fluctuations of the environment are slow. For N = 3,
the performance of both sequences is comparable within
experimental errors.

VI. PHYSICAL INTERPRETATION OF THE
EXPERIMENTAL RESULTS

A. Semiclassical approximation

In this section, we present a semiclassical model to
explain and interpret the experimental results of Sec. V.
Since the system is well in the high-temperature limit, it is
possible to use a semiclassical description instead of the fully
quantum-mechanical treatment [37]. Most of the mathematical
description of this subsection was developed within the DD
context on different systems [24,32] and they can be obtained

(a)

(b)

FIG. 14. (Color online) (a) UDD12 sequence applied with
homonuclear decoupling of the 1H spins. Sequences for two different
cycle times τc = 336 µs = 4τcB and τc = 672 µs = 8τcB , where
τcB = 84 µs is the cycle time of the BLEW-12 homonuclear
decoupling sequence. (b) Experimental survival probability (fidelity)
of the initial state ρ̂I = Ŝx for a single cycle with N pulses and varying
the cycle time τc with and without homonuclear decoupling of the
spin bath.

from standard semiclassical treatments [37]. Here we connect
and reinterpret them to describe our spin system. Starting from
the quantum-mechanical description of Sec. II, the effect of
the environment Hamiltonian ĤE on the evolution of the
system may be discussed in an interaction representation
with respect to the evolution of the isolated environment: the
system-environment Hamiltonian then becomes

Ĥ(E)
SE (t) = e−iĤEtĤSEeiĤEt

= Ŝze
−iĤEt

⎛⎝∑
j

bSj Î
j
z

⎞⎠ eiĤEt

= bSEŜze
−iĤEt Êze

iĤEt , (13)
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where Êz = [
∑

j

bSj

bSE
Î

j
z ] represents an effective spin bath

operator and bSE =
√∑

i b
2
Si the coupling strength. Since ĤE

does not commute with ĤSE , the effective system-environment
interaction Ĥ(E)

SE becomes time-dependent: the system expe-
riences a coupling to the environment that fluctuates. For
a semiclassical treatment, we trace over the bath variables
and replace bSEe−iĤEt Êze

iĤEt of Eq. (3) by the stochastic
function bSEEz(t) representing a classical random field with a
Gaussian distribution with zero average, 〈Ez(t)〉 = 0, and the
autocorrelation function 〈Ez(t)Ez(t + τ )〉 = g(τ ) [37]. The
spectral density of the system-bath interaction is the Fourier
transform of g(τ ),

S(ω) = 1√
2π

∫ ∞

−∞
dτ g(τ ) e−iωτ . (14)

It describes the relative weight of the different frequency
components of the SE interaction.

Using this effective field Ez(t), we write the semiclassical
SE interaction Hamiltonian as

ĤSE(t) = bSEEz(t)Ŝz. (15)

Clearly, ĤSE(t) commutes with itself at all times. This allows
us to calculate the survival probability

s(t) = Tr{e−i
∫ t

0 dt1ĤSE (t1)ρ̂0e
i
∫ t

0 dt1ĤSE (t1)ρ̂0}
Tr{ρ̂0ρ̂0} (16)

by integrating∫ t

0
dt1ĤSE(t1) = bSEŜz

∫ t

0
dt1Ez(t1) = φ(t)Ŝz. (17)

The survival probability then becomes

s(t) = Tr{e−iφ(t)Ŝz ρ̂0e
iφ(t)Ŝz ρ̂0}

Tr{ρ̂0ρ̂0} . (18)

If the spin ensemble is initially polarized along the z direction,
ρ̂0 = Ŝz, Ŝz is a constant of motion. However if ρ̂0 = Ŝx,y , its
survival probability is

sx,y(t) = Tr{e−iφ(t)ŜZ Ŝx,ye
iφ(t)ŜZ Ŝx,y }

Tr{Ŝ2
x,y }

= cos φ(t). (19)

Taking the average over the random fluctuations,

〈sx,y(t)〉 = 〈cos φ(t)〉 = e− 1
2 〈φ2(t)〉, (20)

where we have used cos φ(t) = (eiφ(t) + e−iφ(t))/2 and the
property 〈eiX〉 = ei〈X〉−〈X2〉/2 for a Gaussian random variable
X. For a simple interpretation of the decay, we use the
exponential’s argument

χ (t) = 1

2
〈φ2(t)〉 = |bSE |2

2

〈∫ t

0
dt1

∫ t

0
dt2Ez(t1)Ez(t2)

〉
(21)

= |bSE|2
2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 g(t1 − t2)f0(t1,t)f0(t2,t),

where f0(t ′,t) = �(t ′)�(t − t ′) with the Heaviside function
�(t ′) = 1 ∀ t ′ > 0 and zero otherwise. Using Eq. (14), we
rewrite this convolution integral as

χ (t) =
√

2π |bSE |2
2

∫ ∞

−∞
dωS(ω)|F0(ω,t)|2, (22)

where F0(ω,t) is the Fourier transform of f0(t ′,t) [24],

F0(ω,t) = 1√
2π

∫ ∞

−∞
dt ′f0(t ′,t)e−iωt ′ = 1√

2π

∫ t

0
dt ′e−iωt ′

= 1√
2π

e−iωt/2 sin(ωt/2)

(ω/2)
, (23)

and we have used the fact that the random field Ez is not
correlated with the time-domain filter function f . The decay
function χ (t) is thus equal to the product of the spectral density
S(ω) of the system-environment coupling and the filter transfer
function F0(ω,t).

Here, we have treated the case in which no control pulses are
applied, which corresponds to the free induction decay. Since
both S(ω) and |F0(ω,t)|2 reach their maximum at ω = 0, it
is the low-frequency environmental noise that has the highest
contribution to the decay rate.

B. Analogy between FID and single slit diffraction

Since the decay function χ (t) arises from the interference
between the random fields Ez(t1),Ez(t2) at different times,
it is helpful to draw an analogy with interference effects in
optics. This analogy is best seen with the help of Huygens’
principle, which allows us to associate an elementary wave
with every point in space; here, we observe interference
between elementary waves generated at different points in
time and weighted by the filter function F (ω,t). In the case
of free precession (the FID), the time-domain filter function
f0(t ′,t) is constant over the interval t ′ = [0,t]. This is exactly
analogous to the case of diffraction from a slit that extends
from 0 to t , and as in the optical case, we obtain a diffraction
pattern ∝| sin(x)/x|2.

According to Eq. (23), the width of the diffraction pattern
is ∝ 1

t
and its amplitude ∝ t . For very short times, i.e., narrow

slits, the corresponding diffraction pattern is broader than
the width of the spectral density S(ω) and the integral (22)
grows ∼ t2. When the time t exceeds the correlation time τB

of the system-environment interaction, the width of the slit
broadens and the width of the filter function F0(ω,t) becomes
narrower than the spectral density pattern S(ω). In the long
time limit t � τB , the filter function narrows to a δ function
at ω = 0 and the decay function becomes χ (t) ∝ |bSE |2S(0)t ,
corresponding to an exponential decay. This result is equivalent
to the one obtained by Fermi’s golden rule and is valid until a
power-law decay arises [69,70].

C. Effect of pulses: Interference

The effect of DD pulses is a modulation of the time-domain
filter function f (t ′,t) and therefore of the transfer or filter
function F (ω,t). As shown by Eq. (22), a slow-down of
the decay is achieved by minimizing the overlap between
S(ω) and |F (ω,t)|2 [24,27–32]. In the typical case that the
environmental spectral density peaks at small frequencies,
this implies that |F (ω,t)|2 should be close to 0 for small
frequencies ω.

Let us now study the effect of ideal DD pulses. They
generate reversals of ĤSE(t), so that the resulting Hamiltonian
still commutes with itself at all times. As described in the
previous sections, N pulses are applied during the interval τc
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at positions tj = {t1,t2, . . . ,tN }, with t0 = 0 and tN+1 = τc.
Under this condition, the time-domain filter function fN (τ ′,τc)
in Eq. (21) becomes

fN (t ′,τc) =
N∑

j=0

(−1)j�(t ′ − tj )�(tj+1 − t ′), (24)

where fN (t ′,τc) now switches between ±1 at the position of
every pulse [24]. This is depicted in Fig. 7(c) for a cycle
of UDD4. We define τcf as the period of the filter function
fN (t ′,τ ). For even DD orders, τcf is equal to the cycle time
τc; for odd DD orders, it equals two cycles, i.e., τcf = 2τc

[Fig. 7(b)].
If the average of the function fN (t ′,τcf ) over the period τcf

vanishes, the filter function vanishes at ω = 0,

|FN (0,τcf )| = 1√
2π

∣∣∣∣∫ ∞

−∞
dt ′fN (t ′,τcf )

∣∣∣∣2

= 0. (25)

For a general N -pulse sequence, the transfer function FN (ω,t)
becomes [24]

FN (ω,τcf )

= 1√
2π

∫ τcf

0
fN (t ′,τcf )e−iωt ′dt ′

= 1√
2π

N∑
j=0

(−1)j
∫ tj+1

tj

e−iωt ′dt ′

= 1√
2π

1 + (−1)N+1e−iωτcf + 2
∑N

j=1(−1)j e−iωtj

iω
. (26)

Uhrig found a suitable distribution of N pulses over a
time τcf that eliminates the first N derivatives of ωFN (ω,τcf )
[26,32] and thus it has an optimally flat stop-band at ω = 0.

For a given distribution of pulses, the corresponding time-
domain filter function is

fN (t ′,τcf ) = fN (t ′,∞)�(t ′)�(τcf − t ′), (27)

where fN (t ′,∞) is an infinite extension of the filter function.
fN (t ′,∞) can be written as a Fourier series,

fN (t ′,∞) =
∞∑

k=−∞
Ak exp(ikω0t

′), (28)

where kω0 = 2πk/τcf are the harmonic frequencies of the
period τcf , and

Ak =
√

2π

τcf

FN (kω0,τcf ) (29)

the amplitudes. Hence, by convolution, the frequency-domain
filter has the form

FN (ω,τcf )

=
∞∑

k=−∞
FN (kω0,τcf )e−i(ω−kω0)τcf /2 sin[(ω − kω0)τcf /2]

(ω − kω0)τcf /2
.

(30)

To determine the behavior of FN (ω,τcf ) close to ω = 0, it is
sufficient to consider the effect of only the first few harmonics
on either side of ω = 0. This is shown in Fig. 15 for UDD4.

FIG. 15. (Color online) Decomposition of the filter function
FN (ω,τcf ) for the UDD4 sequence. Blue bars mark the contributions
of the harmonics of ω0 = 2π/τcf . Orange and magenta dotted lines
labeled a and b are sinc functions centered at ω0 and 2ω0. The top
panel considers the effect only of the first two harmonics (k = 1,2).
They interfere to give the resulting red thick line. The bottom panel
shows how a region near ω = 0 is completely canceled when we also
consider the contribution of the two harmonics with k = −1, − 2.
The green dashed line is a typical Gaussian spectral density function
of the spin bath.

The red thick line in the lower panel illustrates the stop-band
for UDD4. The blue bars are the Fourier coefficients Ak of the
filter function f4(t ′,∞). The contributions of the individual
terms in Eq. (30) are represented by the dotted lines in Fig. 15.
The sum (interference) of these diffraction effects gives rise
to a maximally flat filter shape |FN (ω,τc)| close to ω = 0.
The top panel of Fig. 15 shows the effect of the addition of
diffraction effects of the first two harmonics to the right of
ω = 0. The resulting sum (red thick line) in a region close to
ω = 0 is canceled by the corresponding harmonics to the left
of ω = 0, as shown in the lower panel.

Physically, therefore, the sum in Eq. (26) can be understood
as the interference of the diffraction effects due to each
interpulse delay. In an optical analog, the switching between
fN (t ′,τcf ) = 1 → fN (t ′,τcf ) = −1 corresponds to a phase
shift by π , which could be implemented by a series of λ/2
retardation plates. For short cycle time τcf � τB , the width of
this region, where the filter function vanishes, becomes broad
compared to the S(ω) and the integral (22) and thus the decay
tends to zero.

D. Effect of cycle iteration: Diffraction grating

Let us consider a DD sequence iterated M times for a
total period τM = Mτcf . This is illustrated in Fig. 1. The
corresponding filter function is then

FN (ω,τM = Mτcf )

= 1√
2π

∫ τcf

0
fN (t ′,τcf )e−iωt ′dt ′

× [1 + e−iωτc + e−i2ωτcf + · · · + e−i(M−1)ωτcf ]
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= sin
(Mωτcf

2

)
sin

(ωτcf

2

) e− iω(M−1)τcf
2

1√
2π

∫ τcf

0
fN (t ′,τcf )e−iωt ′dt ′

= sin
(Mωτcf

2

)
sin

(ωτcf

2

) e− iω(M−1)τcf
2 FN (ω,τcf ). (31)

This is analogous to the intensity pattern obtained due to
diffraction from an M-line grating. The maxima of the filter
function |FN (ω,τM )| again occur at the harmonic frequencies
ω = 2πk/τcf , where k is an integer. These are the peaks of
the blue bars in Figs. 15 and 16(a) for UDD4, and the red bars
in Fig. 16(d) for CPMG. Their amplitudes are given by the
filter function FN (ω,τcf ) of a single cycle, which is shown
by blue and red dotted lines in Figs. 16(a) and 16(b). For
different even UDD orders, the single-cycle filter functions
FN (ω,τcf ) are shown in Fig. 16(b) and the respective harmonic
positions are represented by the empty circles. Between two
of the principal maxima (harmonics) are (M − 2) secondary
maxima, which are determined by the grating transfer function
sin(Mωτcf /2)/ sin(ωτcf /2). As shown in Figs. 16(a) and 16(d)
on the solid lines and in panel (c), their amplitudes with respect
to the principal maximum fall off ∝ M−1. For example, with
only six cycles, the intensity of the first secondary maximum
is less than 5% of the maximum. Note that in Fig. 16,
|FN (ω,τcf )| is plotted; the contribution of the secondary
maxima is drastically reduced after taking the square.

Hence for even a few cycles, the filter function
|FN (ω,τM )| becomes an almost discrete spectrum that is given
by the discrete Fourier transform of fN (t ′,τcf ). This is just
the function fN (t ′,∞). Figure 16 shows the comparison of
the filter functions FN (ω,τM ) for UDD4 [panel (a), blue solid
line] with M = 12 and CPMG [panel (d), red solid line] with
M = 24. The latter choice allows us to have the same evolution
time for a fair comparison. The ω0 in the frequency axis is
defined in terms of the cycle time for CPMG,

ω0 = 2π
/(

τCPMG
cf

) = 2 × 2π
/(

τ
UDD4
cf

)
. (32)

Figure 16(c) shows FN (ω,τM ) for different UDD orders
iterated to match the same total evolution time. In Figs. 15,
16(a), and 16(d), the spectrum corresponding to FN (ω,∞)
contains only the blue bars (for UDD4) or the red bars (for
CPMG). Equivalently in Fig. 16(b), it is given by the empty
circles. The decay function χ (t) is thus a weighted sampling of
the spectral density function S(ω), where the weighting factor
is the magnitude of the respective Fourier components. Thus,

χ (t = τM ) ∝ τM b2
SE

∑
k

A2
kS(kω0). (33)

Here, we have assumed t = τM � τB so that F (ω,t) is well
represented by a series of δ functions centered at kω0, given by
FN (ω,∞), while the contributions from the secondary maxima
can be neglected.

This decay function (33) is equivalent to the one derived
by standard time-dependent perturbation theory for a spin
interacting with a continuum of states. The result is similar to
an expression derived by Fermi’s golden rule, but the spectral

FIG. 16. (Color online) Comparison of filter functions
|FN (ω,τM )| for different UDD orders: (a) UDD4 with M = 1 (dotted
line) and M = 12 (solid line), even UDD orders N with M = 1 (b)
and M = 48/N (c), and (d) CPMG = UDD2 with M = 1 (dotted
line) and M = 24 (solid line). ω0 is defined in terms of the cycle
time of the CPMG sequence, ω0 = 2π/τCPMG

cf . Blue circles (a), red
rhombuses (d), and empty circles in (b) are the coefficients of the
Fourier expansion of fN (t ′,∞). They are modulated by the shape of
the filter function |FN (ω,τcf )|, shown in panel (b) and represented
by blue and red dotted lines in panels (a) and (d), where τCPMG

cf = 2τ

and τ
UDDN

cf = Nτ .

density S(ω) is evaluated on the frequency components of the
time-dependent perturbation,

ĤSE(t) = bSE

[∑
k

Ak cos(kω0t)

]
Ez(t)Ŝz. (34)

It follows that for large M , the main contribution to the
decay rate is determined by the spectral density S(ω) at the
harmonic frequencies kω0. The lowest-frequency component
present in a DD sequence is the inverse of the period τcf

of the time-domain filter. The CPMG sequence has the
shortest period if the average distance between pulses τ is
fixed: τCPMG

cf = 2τ and ωCPMG
0 = π/(τ ). For an N -pulse UDD

cycle, the period of the filter function in the time domain
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is τ
UDDN
cf = Nτ (τUDDN

cf = 2Nτ ) for N even (odd). Thus
the first nonvanishing component in its Fourier expansion is
at ω

UDDN

0 = 2π/(Nτ ) [ωUDDN

0 = π/(Nτ )] (Fig. 16). In the
system studied here, this has resulted in the CPMG generating
the slowest decay.

E. Simulations

For the longitudinal initial condition, flip-angle errors
are well compensated, as was shown in Ref. [38]. As a
consequence, the effect of static pulse imperfections and
finite pulse lengths in the experiments does not cause a
qualitative difference in the simulations with ideal pulses. We
therefore assume ideal DD pulses, and Eqs. (22) and (31)
allow us to simulate the resulting signal decays. However,
for the transverse initial condition, the pulse errors are not
compensated [38]. Thus, here we only describe how the
simulations for the longitudinal case were carried out.

First, the spectral density S(ω) used in Eq. (22) is estimated
using the FIDs of Fig. 5, as described in Sec. IV.A of Ref. [38].
We model a finite system to simulate the respective correlation
functions that produce the experimentally measured FID’s for
both nuclei (see [38] for details). The correlation time of the
bath is defined as the time when the correlation function falls
to 1/e of the initial value; this was found to be around τB =
110 µs.

Now, including the DD pulses, χ (t) is calculated after every
cycle period τc following Eqs. (22) and (31). The decay rate is
determined by linearly fitting the values of χ (t) obtained for
different times. This procedure is exact for the case in which
the decay is purely exponential—for example, when the time t

far exceeds the correlation time of the bath, as described above.
These simulations (lines) show reasonable agreement with the
real experimental results in Figs. 8, 11, and 12.

F. Discussion

Visualizing dynamical decoupling as a filter [24,25] for
different frequency components of the environmental noise
provides a useful means for predicting relative DD perfor-
mance. Some recent discussions by Biercuk and Uys [25] about
the filter properties of different DD sequences concerning
their Fourier components have appeared in parallel with our
work. However, their work and ours contribute from different
approaches: we compare the performance of different DD
orders under the condition that the number of pulses applied
during a time interval remains constant, while Biercuk and
Uys fix the cycle time for every DD order.

Although the UDD sequence that was derived from Eq. (26)
has a flatter band-stop region close to ω = 0, it achieves
this by the interference of a larger number of harmonic
frequencies lower than the first harmonic of an equidistant
sequence (CPMG) with the same average spacing τ between
the pulses. This is illustrated in Fig. 16. The first nonzero
Fourier component of the CPMG occurs at ωCPMG

0 = π/τ ,
while for an N -pulse UDD sequence it occurs at ω

UDDeven
0 =

ωCPMG
0 /N [ωUDDodd

0 = ωCPMG
0 /(2N )]. Therefore, as one

increases the UDD order, additional components appear in the
corresponding frequency-domain filter function at frequencies
below ωCPMG

0 .

We may thus compare the effect of two contributions to the
decay rate: The spectral density close to the lowest-frequency
component ω0 and the integral over the frequency band close
to ω = 0. UDD is designed to outperform CPMG in this low-
frequency band and is thus superior if this is the dominant
contribution. However, in the system that we are considering
here, the spectral density of the environmental noise is still
sufficiently large at ωUDD

0 that this term dominates and leads
to UDD performing worse than CPMG.

Previous works [42,43] used perturbation treatment of the
SE interaction to predict the time evolution of the system under
UDD at short times with high precision. However, the regimes
where the decay is reduced by increasing the UDD order lead in
general to differences between their decays of order lower than
10−4, which are too small to be determined experimentally.
The extrapolation of those decays to longer times, by means of
iterating the DD sequences, that may result in a magnification
of the UDD performance relative to CPMG is not valid
within the perturbative treatment. Our analysis, in contrast,
is valid for times t � τB , where decay becomes appreciable
(>1%) and thus experimentally accessible. The filter function
FN (ω,Mτcf ) now becomes discrete when M is large and
changes drastically the decay compared to the extrapolation
from a perturbative treatment of the SE interaction. From
a different approach, this situation was also observed by
Khodjasteh et al. [45] for a bosonic bath: they noticed that
an extrapolation could not be done and they obtained bounds
for the UDD performance as a function of its order. Our results
suggest that to achieve a parameter range where UDD would
outperform CPMG would correspond to an almost static bath,
i.e., the system-environment interaction |bSE |2 should be much
stronger than the relevant intrabath interactions.

Our model may also explain the observation in [33] where
the odd UDD orders were found to perform substantially worse
than even orders in a qubit system consisting of 9Be+ ions
confined in a Penning trap, and where S(ω) ∼ 1/ω4. This even-
odd asymmetry was unexplained in their paper [33].

VII. CONCLUSIONS

We have presented experimental and theoretical results
evaluating the relative performance of DD sequences with
nonequidistant pulses in a purely dephasing spin bath. We
find that over a large range of cycle times, number of pulses
per cycle, and bath-correlation time, the equidistant sequence
(CPMG) provides a measurably superior performance over
nonequidistant sequences like UDD. If the rotation axis of the
DD pulses is oriented in the direction of the initial state, we find
that the experimental results match very well with simulations
using the filter model for perfect pulses [24]. In this case, the
effects due to the finite pulse length do not qualitatively affect
the results, nor do flip-angle errors.

We interpret our results through a semiclassical model by
drawing an analogy of dynamical decoupling with interference
effects in optics and filter theory. The CPMG sequence has
the shortest cycle and its filter has the widest stop-band.
By suitable interferences, the UDD filter has the flattest
stop-band close to ω = 0. In our system, the position of the
lowest-frequency component is more important than the very
flat behavior of UDD, and thus the performance of CPMG is
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better than that of nonequidistant DD sequences. We show that
this comes from the fact that the decay rate changes drastically
from short to long times compared with the bath-correlation
time. While for short evolution times, the flattest stop-band
close to ω = 0 may play an important role in reducing the
decay rate, the fidelity reduction is <10−4 and thus too small to
be observed experimentally. The extrapolation of those decays
to longer times that may result in a magnification of the UDD
performance relative to CPMG is not valid. In contrast, we
showed that for long times, where decay becomes appreciable,
the filter function becomes discrete, making CPMG superior
because its frequency components have the widest spacing.
Conversely, we expect that UDD should perform better in
systems where the cycle time remains significantly shorter
than the bath correlation time.

Our results and the optical analogy we considered reaffirm
that it would be advantageous to tailor the DD sequence to the
spectral density function of the noise in the particular system

of interest. This is the basis behind the locally optimized
DD (LODD) sequences [25,28,29,31,36] or similar [27,30].
In particular, LODD can be implemented using measurement
feedback to find the optimal DD sequence [28]. However,
more work needs to be done in methods for experimentally
determining the exact noise features in the QIP system of
choice, so that techniques like LODD could be used to
determine optimal sequences for such environments.
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