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The loss of quantum information due to interactions with external degrees of freedom, which is known
as decoherence, remains one of the main obstacles for large-scale implementations of quantum computing.
Accordingly, different measures are being explored for reducing its effect. One of them is dynamical decoupling
(DD) which offers a practical solution because it only requires the application of control pulses to the system
qubits. Starting from basic DD sequences, more sophisticated schemes were developed that eliminate higher-order
terms of the system-environment interaction and are also more robust against experimental imperfections. A
particularly successful scheme, called concatenated DD (CDD), gives a recipe for generating higher-order
sequences by inserting lower-order sequences into the delays of a generating sequence. Here, we show how this
scheme can be improved further by converting some of the pulses to virtual (and thus ideal) pulses. The resulting
scheme, called (XY4)n, results in lower power deposition and is more robust against pulse imperfections than
the original CDD scheme.
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I. INTRODUCTION

Quantum information processing (QIP) has acquired a
huge interest over the last decades. It can potentially solve
many problems qualitatively faster than classical information
processing. The quest to implement this scheme has radically
improved quantum control technologies (see, e.g., [1]). One
of the main remaining obstacles is the sensitivity of quantum
systems to interactions with external degrees of freedom that
degrade the quantum information [2]. A number of techniques
are currently being developed to make reliable quantum
computing possible in the presence of environmental noise.
A relatively simple technique is dynamical decoupling (DD)
[3–15], which uses sequences of control pulses applied to the
system qubits. This technique does not require any overhead
in terms of ancilla qubits and requires no additional types
of control over those that are already needed for information
processing. This field has seen significant progress over the last
years, and the concept has been demonstrated on a number of
different systems [11,16–32].

In the limit of infinitely many ideal refocusing pulses,
the DD scheme allows one to completely eliminate the
decoherence due to the environmental noise. However, in any
real physical implementation, the control pulses necessarily
have finite duration and unavoidable imperfections. This leads
to a significant reduction of the DD performance, and the
effect of a real pulse sequence on the system can actually
reduce the fidelity instead of improving it [20,33–40]. Efficient
DD schemes must therefore be able to preserve the system
fidelity even in the presence of nonideal control fields. An
increasing body of research has shown ways towards this
goal [20,24,26,35,39,41,42].

One strategy that was shown to be robust against imperfec-
tions is a technique called concatenated dynamical decoupling
(CDD), which is based on a building block sequence that
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is concatenated recursively [5,33]. If the delays between the
pulses can be reduced indefinitely, CDD was demonstrated
to improve its performance with the concatenation order.
However, if the delays between the pulses are constrained or
the pulses have errors, it was predicted [33] and experimentally
demonstrated [20] that an optimal concatenation order exists,
and beyond that the DD performance will not improve and
may even deteriorate.

To increase the concatenation order, the procedure inserts
the lower-order CDD sequence into the delays of the building
block sequence. If the pulses have imperfections and the build-
ing block sequence compensates partially their effects at the
end of the cycle, the CDD sequence will also compensate them
at the end of the complete sequence. However, if the average
delay between pulses is kept fixed [20,25,26], the duration of
the CDD cycle increases exponentially with the CDD order.
The compensation of the pulse imperfections only occurs at
the end of the cycle. If the cycle time exceeds the correlation
time of the environmental fluctuations, this error compensation
becomes inefficient and the DD performance decreases.

In this article, we present an approach to the CDD scheme
that does not require waiting for the end of the cycle to
compensate the pulse imperfections. Instead, they are always
compensated over the duration of the lowest-order cycle. This
is done by replacing the pulses of the outermost sequence
with mathematical operations corresponding to virtual pulses.
These virtual pulses are ideal and do not introduce any imper-
fections. As a result, this method is more robust against pulse
imperfections and improves the DD performance significantly.
Here, we give a theoretical analysis of this scheme and
show experimentally that it performs better than the CDD
method when applied to a single qubit interacting with a
pure dephasing environment—a typical situation for many QIP
implementations [1].

II. THE SYSTEM

We consider a single qubit Ŝ as the system that is coupled
to a bath. The free evolution Hamiltonian is

Ĥf = ĤSE + ĤE, (1)
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in a suitable rotating reference frame that is resonant
with the system qubit [43]. ĤE is the environment
Hamiltonian and

ĤSE =
∑

β

(
bβ

z Êβ
z Ŝz + bβ

y Êβ
y Ŝy + bβ

x Êβ
x Ŝx

)
(2)

is a general system-environment (SE) interaction. The op-
erators Ê

β
u are environment operators and b

β
u are the SE

coupling strengths. The index β runs over all modes of the
environment. Dephasing effects come from the interaction
that affects the z component of the spin-system operator, and
spin flips and/or polarization damping are produced through
the x and/or y operators. We will discuss our method in a
general SE interaction context, but the experimental results
were performed on a spin system coupled with a spin bath. The
SE interaction is given by a heteronuclear spin-spin interaction
that effects a pure dephasing. In general, this type of interaction
is naturally encountered in a wide range of solid-state spin
systems, for example in nuclear magnetic resonance (NMR)
[20,25,44,45], electron spins in diamonds [24], electron spins
in quantum dots [46], donors in silicon [47], etc. In other
cases, when the system and environment have similar energies,
the SE interaction can include terms along the x, y, and
z axis.

III. CDD WITH REAL AND VIRTUAL PULSES

A. CDD

Concatenated DD (CDD) is a scheme for improving the
efficiency of a DD sequence [5,33] by recursively concate-
nating lower-order sequences CDDn−1 into a higher-order
sequence CDDn by inserting CDDn−1 blocks into the delays
of a generating sequence:

CDDn = Cn = Cn−1X̂Cn−1ŶCn−1X̂Cn−1Ŷ , (3)

where C0 = τ is a free evolution period and X̂ and Ŷ are
π pulses of the generating sequence. CDD1 = C1 = XY4
consists of four rotations around the x and y axes. Its pulse se-
quence is given by XY4 = τ -X̂-τ -Ŷ -τ -X̂-τ -Ŷ . This sequence
can decouple SE interactions that include all three components
of the system spin operator [3] and it mitigates the effect of
pulse errors compared to the older Carr-Purcell-Meiboom-Gill
sequence consisting of identical pulses [48]. This can be
understood by considering that pulse imperfections convert an
Ising-type SE interaction into an effective general SE interac-
tion [20,33,35], which can be partially eliminated by the XY4
sequence. In the QIP community, the XY4 sequence is usually
referred to as periodic dynamical decoupling. Alternatively,
we proposed to use the time symmetric version of XY4 [48]
in the CDD protocol because the resulting CDD(s) sequences
are more efficient at supressing decoherence and pulse error
effects [26,35,41]. These symmetric sequences can be written
as [26,41,48] XY4(s) = τ/2-X̂-τ -Ŷ -τ -X̂-τ -Ŷ -τ/2 and

CDD(s)n = C(s)n = √
C(s)n−1X̂C(s)n−1ŶC(s)n−1X̂C(s)n−1Ŷ

√
C(s)n−1. (4)

The square root
√

C(s)n represents half of the cycle.
Each level of concatenation reduces the norm of the first
nonvanishing term of the Magnus expansion of the previous
level, provided that the norm was small enough to begin
with [5,33]. This reduction comes at the expense of an increase
of the cycle time by a factor of four. The average Hamiltonian
can be calculated in the toggling frame. If the pulses generate
ideal π rotations, this can be seen as a sign change of different
terms of the SE interaction Eq. (2). The top panel of Fig. 1
shows the CDD2 scheme and it shows the sign changes of the
different terms of the SE interaction in the toggling frame. The
parameters fu with u = x,y,z represent the signs of the terms
of Eq. (2) that are proportional to Ŝx , Ŝy , and Ŝz, respectively,
in the toggling frame.

B. Effect of pulse imperfections in CDD

Since the precision of any real pulse is finite, they generate
an evolution that differs from the ideal one. If many pulses are
applied in sequence, these errors can accumulate and seriously
reduce the fidelity of the evolution [20,26,35–38], unless the
sequence of operations is designed in such a way that the errors
from different pulses compensate each other [26,35]. One kind
of error of nonideal control pulses is their finite duration,
which implies a minimum achievable cycle time. The effects

introduced by finite pulse lengths have been considered in
different theoretical works [4,33,34]. These works predict that
high-order CDD sequences can lose their advantages when the
delays between pulses or pulse length are strongly constrained.
This is because the fundamental frequency 2π/τc, where τc is
the period of the toggling frame function f (t), is lower for
the longer cycle [25]. The efficiency of all DD sequences
is reduced if the noise contains frequency components at
the resonance frequencies of their filter function [49]. This
was demonstrated for Uhrig dynamical decoupling sequences,
but the analysis is similar for CDD sequences because the
period of the toggling frame sign function f increases with
the concatenation order [25].

As shown in Fig. 1, the toggling frame Hamiltonian for
one of the components is not affected by the pulses of the
generating sequence (marked by circles). Due to the finite du-
ration of the pulses, this represents an additional contribution
to the average Hamiltonian, which is only compensated by the
second pulse of the generating sequence with the same rotation
axis half a period later. Full compensation of these additional
terms is achieved at the end of the complete (higher-order)
cycle.

Generally more important than their finite duration are
imperfections of the pulses. In most cases, the dominant cause
of errors is a deviation between the ideal and the actual

052324-2



ITERATIVE ROTATION SCHEME FOR ROBUST . . . PHYSICAL REVIEW A 85, 052324 (2012)

X XY Y
p p

+-

+
-

+
-

Toggling frame Hamiltonian of free evolution

   X        Y       X   Y           X        Y     X        Y           X       Y       X       Y      X        Y     X       Y

fy

fz

fx

CDD2

Cycle fx

Cycle fy

Cycle fz

Cycle py

Cycle px

py

px

Toggling frame Hamiltonian of flip-angle error terms

-

-

+

+

 

τp τ 

+ 
- 

- 

+ - 

 

   X         Y        X        Y            X         Y       X         Y            X        Y        X        Y             X         Y        X        Y    

 

fy  

fz 

fx  

py  

px  

(XY4)2 

Cycle fx 

Cycle fy 

Cycle fz 

+ 

+ 

+ 

- 

- 

Toggling frame Hamiltonian of flip-angle error terms 

Toggling frame Hamiltonian of free evolution 

Cycle py 

Cycle px 

0 

FIG. 1. (Color online) CDD2 and (XY4)2 pulse sequence schemes. The black solid boxes represent the DD π pulses of the inner sequences
with their respective phases. The gray (blue) boxes are the π pulses of the generating sequence for CDD, while for (XY4)2 they are virtual and
appear as a transparent white stripe of zero duration. The toggling frame Hamiltonians are represented by the respective signs of the different
terms proportional to the Ŝx , Ŝy , and Ŝz components. Sign changes during the pulses are represented by diagonal lines \ or /. In the CDD2

scheme, the terms marked by circles are compensated only at the end of the complete cycle, but the (XY4)2 scheme compensates all terms
over the basic four-pulse cycle. The toggling frame Hamiltonians of the free evolution interaction for (XY4)2 are the same for all blocks of the
inner sequence, i.e., equal to those of the XY4 sequence. The toggling frame Hamiltonian of the flip-angle error terms of (XY4)2 is equal to
that of the CDD scheme with ideal pulses.
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amplitude of the control fields. This results in a rotation
angle that deviates from π , typically by a few percent.
The propagator for the π pulses including this error is
e−i(π+�ωpτp)Ŝφ , where �ωp is the error on the control field
amplitude. In the toggling frame Hamiltonian, the ideal part of
this propagator, e−iπŜφ , vanishes, but the error term e−i�ωpτpŜφ

remains and contributes to the average Hamiltonian. The signs
of these terms in the toggling frame are represented as pu in
Fig. 1.

Another important error occurs when the control field is not
applied on resonance with the transition frequency of the qubit.
This off-resonance error adds a term fz�zŜz to the toggling
frame Hamiltonian.

The XY4 sequence cancels these errors in zeroth order,
independent of the initial condition [48,50]. As a result, the
performance of this sequence is quite symmetric with respect
to the initial state in the x-y plane and the average decay
times are significantly longer than with nonrobust sequences
[20,24,26,35]. The concatenation scheme proposed by Khod-
jasteh and Lidar [5,33] improves the decoupling performance
and the tolerance to pulse imperfections [20,26]. However, the
finite duration of the pulses and constrained delays between
pulses result in the existence of optimal levels of concate-
nation [20,26], with decreasing performance for higher-level
sequences. This can be seen in Fig. 2, where decay curves are
plotted for different DD sequences, including the free evolution
decay, the Hahn echo decay [51], and different orders of CDD
for their optimal delay between pulses. Panel (b) shows the
decay times for different CDD sequences and delays τ between
pulses. For each sequence, the decoherence time reaches a
maximum; for delays shorter than the optimal value, the pulse
errors dominate. The relation between the optimal delay time
and its CDD order is plotted in the inset of Fig. 2(b). The exper-
imental dependence agrees remarkably well with the predicted
curve [33].

C. CDD with virtual pulses

In Ref. [20], we suggested to improve the concatenation
scheme by compensating the pulse errors of the generating
sequence [gray (blue) boxes, Fig. 1] before the end of the
complete cycle. Looking into the details of the toggling frame
Hamiltonians, we can see that at each concatenation level of
the XY4 generating sequence [gray (blue) boxes in the top
panel of Fig. 1] additional pulse errors are introduced that are
only compensated at the end of the complete cycle. As a result,
the properties of the real CDD sequence deviate strongly from
those of the ideal sequence.

Here, we show how these additional pulse errors can be
completely avoided by using virtual (and thus ideal) rotations
for the generating sequence instead of the real ones. To
motivate the idea, we consider the first pulse of the generating
sequence and the subsequent pulses of the cycle from the
lower-order sequence. The corresponding evolution operator
can be written

. . . (Ŷ X̂Ŷ X̂)X̂ . . . = . . . X̂( ˆ̄YX̂ ˆ̄YX̂) . . . , (5)

where the pulse sequence is read from right to left. The bar
over X and Y means that the sense of rotation is reversed for
those pulses. The second form corresponds to a modified XY4
cycle, followed by the πx pulse of the generating sequence.
In the modified cycle, the direction of rotation of the y pulses
has been inverted. We distinguish this modified cycle from the
original cycle by writing them as XȲ4 and XY4, respectively.
Similarly, the subsequent cycles become X̄Ȳ4

. . . (Ŷ X̂Ŷ X̂)Ŷ X̂ . . . = . . . Ŷ X̂( ˆ̄Y ˆ̄X ˆ̄Y ˆ̄X) . . . (6)

and X̄Y4

Ŷ (Ŷ X̂Ŷ X̂)X̂Ŷ X̂ . . . = Ŷ X̂Ŷ X̂(Ŷ ˆ̄XŶ ˆ̄X) . . . . (7)

As the pulses of the generating sequence are thus moved to the
end of the cycle, they cancel (Ŷ X̂Ŷ X̂ = 1̂) and can be omitted
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FIG. 2. (Color online) Decays of coherence under the influence of different DD sequences. (a) Normalized spin signal decay of the echo
trains of different CDD sequences, the Hahn echo decay [51], and the free evolution (FID). The CDD decay curves are plotted for their optimal
delays between pulses that are given when the curves of panel (b) have a maximum. (b) Decay times of different CDD sequences for different
delays between pulses. The optimal delay time is defined when the decay is a maximum. Inset: dependence as a function of the CDD order
matching with theoretical predictions [33]. τB = 110 μs is the bath correlation time [20].
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completely. In this sense, we have replaced these pulses by
“virtual pulses” corresponding to phase changes of the pulses
in the inner sequence. The resulting sequence, which is shown
in Fig. 1, can be written recursively as

(XY4)1 = XY4, (8)

(XY4)n = (XY4)n−1-(XȲ4)n−1-(X̄Ȳ4)n−1-(X̄Y4)n−1. (9)

This scheme represents the time symmetric as well as the
asymmetric version, which differ only by the duration of the
free precession periods at the beginning and end of the full
cycle.

As shown in Fig. 1, the toggling frame Hamiltonian
generated by this sequence differs from that of the original
CDD sequence. As shown in the lower part of the figure,
the function f has for each four-pulse block the same time
dependence as for the XY4 sequence. The terms marked
by circles in the upper part of the figure are missing in the
lower part; accordingly, the average of the fu vanishes over
each block of the inner sequence. Similarly, the pulse error
contributions pu do not have contributions from the generating
sequence and therefore also compensate over each lower-order
cycle. In the lowest-order average Hamiltonian, the (XY4)n

sequences therefore compensate all errors over a single XY4
cycle, while the corresponding time for CDDn is 4n times
longer. For the (XY4)n sequence, the lowest frequency of
the filter function is therefore always 2π/τ1, where τ1 is the
duration of the CDD1 = XY4 cycle. In contrast to that, the
fundamental frequency of the CDDn sequence decreases with
1/4n, which can make it sensitive to low-frequency noise with
high amplitudes, such as frequency offsets and errors of control
fields.

The change in the toggling frame Hamiltonian effected by
the pulses of the generating sequence of CDD can of course
also be a desired property, since it compensates higher-order
terms of the average Hamiltonian, including cross terms
between pulse imperfections and environmental contributions.
Some of these effects are also present in the (XY4)n scheme,
since the nonvanishing higher-order average Hamiltonians
of the different blocks are not identical. The concatenation
scheme is designed to compensate them over the full cycle.
A detailed discussion of these higher-order contributions is
beyond the scope of this paper and probably not feasible
without considering specific system parameters. Instead, we
compare the two schemes experimentally.

IV. EXPERIMENTAL PERFORMANCE COMPARISON

A. System and setup

We experimentally implemented the new (XY4)n scheme
and compared its performance to that of the CDD scheme. The
experiments were performed on a polycrystalline adamantane
sample using a home-built solid-state NMR spectrometer
with a 1H resonance frequency of 300 MHz. Our system
qubits are the 13C nuclear spins of the adamantane molecule,
which contains two nonequivalent carbon atoms. Under our
conditions, they have similar dynamics. Here, we present
the results from the CH2 carbon. Working with a natural
abundance sample (1.1% 13C), the interaction between the
13C-nuclear spins can be neglected. The main mechanism for
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FIG. 3. (Color online) Normalized spin signal decays for (XY4)2

and CDD2 for different delays τ .

decoherence is the interaction with the neighboring proton
spins. As discussed before, this interaction generates pure
dephasing. This interaction is not static, since the dipole-dipole
couplings within the proton bath cause flip-flops of the protons
coupled to the carbon. The π pulses for DD were applied
on resonance with the 13C spins. Their radio-frequency (RF)
field of ≈2π × 50 kHz gives a π -pulse length τp between 10
and 10.6 μs. The measured RF field inhomogeneity was about
10%.

B. (XY4)n and CDD under optimal conditions

Figure 3 compares the decay of the spin signal for the
asymmetric versions of CDD2 and (XY4)2 for two different
pulse spacings τ . For the (XY4)2 sequence, the decay is clearly
slower; the 1/e decay times are 17 and 14.6 ms for the two
delays, compared to 8.9 and 10.1 ms for the CDD2 sequence.

Figure 4 shows the decay times for different asymmetric
CDD and (XY4)n orders obtained for different duty cycles,
i.e., the ratio between the irradiation time Npτp over the total
time (Npτp + Nτ ), where Np is the number of pulses in a cycle
and N is the number of delays. τp was kept fixed and we varied
the delay τ between the pulses. Comparing the curves for the
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FIG. 4. (Color online) Decay times for (XY4)n and CDDn of
order 2 and 3 as a function of the duty cycle.
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FIG. 5. (Color online) Normalized spin signal after one cycle of
different DD sequences as a function of the pulse length of the DD
pulses and the delay between them. The labels (a) and (s) refer to the
asymmetric and symmetric versions of the sequences.

two schemes, we find that (XY4)n performs better than the
CDD sequences for all duty cycles (delays). While the CDD
performance changes as a function of the order, the difference
between the two (XY4)n sequences is not significant. The
difference between the symmetric and asymmetric version of
(XY4)n also was not significant. This suggests that the second
order achieves already the optimal DD performance for our
experimental conditions. The observed performance is also
very similar to that of the KDD [26] sequence measured in
an earlier study (Sec. V for details). Both the (XY4)n and the
CDD sequences perform symmetrically for initial conditions
in the x-y plane.

C. Effect of pulse errors

Under normal experimental conditions, we cannot see any
difference between the (XY4)n scheme and other robust se-
quences like KDD and XY16 [20,26,35,41]. For a quantitative
comparison of their robustness we also tested the performance
of the sequences against artificially added pulse errors. We
compared CDDn with (XY4)n and with the optimal sequences
obtained in previous works, i.e., XY16 and KDD [26,35,41].
Figures 5 and 6 compare the spin signal after one cycle of
the respective sequence for different pulse errors. Figure 5

CDD
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p
=20 (XY4)2 (s) N

p
=16

XY16(a) N
p
=16 XY16(s) N

p
=16

KDD N
p
=20

FIG. 6. (Color online) Normalized spin signal after one cycle of
different DD sequences as a function of the offset frequency of the
DD pulses and the delay between them. The labels (a) and (s) refer
to the asymmetric and symmetric versions of the sequences.

shows the surviving spin polarization as a function of the pulse
duration (and thus of the flip angle) and the delay between the
pulses. The number of pulses per cycle is not exactly the same
for the different sequences [16 for (XY4)2 and XY16 versus
20 for CDD2 and KDD], but we consider this to be sufficiently
similar to allow a rough comparison. For all sequences, there
is little correlation between the flip-angle error and the delay
between the pulses. This is a consequence of the fact that the
terms in the propagator that involve the flip-angle error are
proportional to the pulse width τp but independent of the pulse
separation τ .

Figure 6 shows similar data, but here we introduced an
artificial offset error �z rather than a flip-angle error. In this
case, there is a strong correlation between the effect of the
offset and the delay between the pulses. This is expected,
because an offset error generates an extra dephasing term in
the propagator that generates an additional precession by an
angle �zτ . Without the SE interaction or another source of
errors (like flip-angle error inhomogeneity), we do not expect
a significant dependence on τ , because the offset is static and
can be completely refocused with DD. Our real system has a
bath correlation time of ≈100 μs [20,25], which explains the
observed decay for cycle times of this order.
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Comparing the standard CDD2 with the symmetric version
of (XY4)2 in Figs. 5(a) and 5(b), we can see that the
overall performance of (XY4)2 is better than that of CDD,
as expected by the analysis of Sec. III. This is because
(XY4)2 is more effective in compensating the flip-angle errors.
(XY4)2 also outperforms CDD in the presence of offset errors

6

8

10

12

14
CDD

2
 (a) (XY4)2 (s)

0
0.5
1.0

6

8

10

12

14
XY16(a)

P
ul

se
 le

ng
th

 τ
p (

μs
) XY16(s)

20 40 60 80 100
6

8

10

12

14
KDD

20 40 60 80 100

KDD²

Delay τ (μs)

Signal

FIG. 8. (Color online) Normalized spin signal after about 100
pulses for different DD sequences as a function of the pulse length of
the DD pulses and the delay between them. All sequences have 100
pulses except (XY4)2, which contains 96. The labels (a) and (s) refer
to the asymmetric and symmetric version of the sequences.

[see Figs. 6(a) and 6(b)]. Comparing the asymmetric and
symmetric version of (XY4)2 as a function of flip-angle error,
we observe no significant differences. However, (XY4)2(s)
clearly outperforms (XY4)2(a) in the presence of offset errors
(Fig. 7). Comparing against the other sequences, (XY4)2

seems to perform better than KDD as a function of flip-angle
errors. The good performance of XY16 is expected because
its evolution operators (symmetric and asymmetric) are equal
to the identity operator as long as spin-bath effects are absent:
the sequence is designed to generate a propagator U U †,
independent of flip-angle errors. For small delays between
pulses, XY16 is the most robust sequence as a function of
flip-angle error. Its symmetric version performs slightly better
than the asymmetric version. As a function of offset error,
(XY4)2(s), KDD, and XY16(s) behave similarly and they
are more robust than (XY4)2(a) and XY16(a). Note that the
behaviors of the asymmetric version of (XY4)2 and XY16 as
a function of offset errors are also similar.

To amplify the effect of pulse imperfections, we also
performed experiments with ≈100 pulses as a function
of the delay between the pulses and added specific pulse
imperfections (Figs. 8 and 9). Under these conditions, also the
accumulated exposure to the spin bath is longer. Clearly now
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the (XY4)2 sequence outperforms always the CDD version for
every condition. As a function of flip-angle error, the perfor-
mance of (XY4)2(s) and (XY4)2(a) is comparable [(XY4)2(a)
is not shown]. The (XY4)2 performance as a function of
flip-angle error is even better than KDD and comparable to
XY16(s). As a function of offset error, the performance of
(XY4)2(s) is comparable to KDD and XY16(s); however, in
this case (XY4)2(a) is less robust (not shown in the figure).

V. OTHER GENERATING SEQUENCES

The concept introduced here can not only be applied to the
XY4 sequence but also to other generating sequences, such as
the KDD sequence [26]. KDD was inspired from a sequence
of adjacent π pulses that combine to a robust π pulse [52]:

�φ = πφ+30 − πφ+0 − πφ+90 − πφ+0 − πφ+30. (10)

The decoupling sequence is obtained first by introducing
delays between the individual pulses [26]:

�φ(τ )

fτ/2-πφ+30-fτ -πφ+0-fτ -πφ+90-fτ -πφ+0-fτ -πφ+30-fτ/2.

(11)

The lower indexes denote the pulse phase, i.e., the orientation
of the rotation axes in the x-y plane. If we use XY4 as the
(virtual) generating sequence and �φ(τ ) as building blocks,
we arrive at

KDD = �X(τ ) − �Y (τ ) − �X(τ ) − �Y (τ ), (12)

which we introduced and tested in [26].
If we use the sequence Eq. (10) instead of XY4

as the (virtual) generating sequence, we obtain a new

sequence:

KDD2 = [�30(τ ) − �0(τ ) − �90(τ ) − �0(τ ) − �30(τ )]2 .

As indicated by the square after the bracket, the complete cycle
consists of 50 pulses. Iterations to higher order are of course
possible but will not be covered here.

In Figs. 8 and 9, we also show the experimental performance
of this new sequence, together with the sequences discussed
earlier. We clearly see that this new sequence is extremely
robust and outperforms all other sequences.

VI. CONCLUSIONS

We have presented an iterative method for generating
robust sequences for dynamical decoupling: for the generating
sequence, we use virtual rotations instead of physical control
operations. Since these rotations are ideal, our scheme avoids
introducing additional pulse imperfections, reduces the power
deposition on the system, and makes the resulting sequences
more robust. As a result of the reduced number of control
operations, the toggling frame Hamiltonian has a different
time dependence than in the CDD scheme. We have tested two
different expansion schemes based on these virtual rotations,
called (XY4)n and KDD2. Both types of sequences have
proved to be very robust under our experimental conditions. It
will be interesting to see if these results can be reproduced in
other systems.
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[20] G. A. Álvarez, A. Ajoy, X. Peng, and D. Suter, Phys. Rev. A 82,

042306 (2010).
[21] G. de Lange, Z. H. Wang, D. Riste, V. V. Dobrovitski, and

R. Hanson, Science 330, 60 (2010).
[22] C. Barthel, J. Medford, C. M. Marcus, M. P. Hanson, and A. C.

Gossard, Phys. Rev. Lett. 105, 266808 (2010).
[23] S. Pasini and G. S. Uhrig, Phys. Rev. A 81, 012309 (2010).
[24] C. A. Ryan, J. S. Hodges, and D. G. Cory, Phys. Rev. Lett. 105,

200402 (2010).
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