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Quantum state transfer in the presence of static disorder and noise is one of the main challenges in building
quantum computers. We compare the quantum state transfer properties for two classes of qubit chains under the
influence of static disorder. In fully engineered chains all nearest-neighbor couplings are tuned in such a way
that a single-qubit state can be transferred perfectly between the ends of the chain, while in chains with modified
boundaries only the two couplings between the transmitting and receiving qubits and the remainder of the chain
can be optimized. We study how the disorder in the couplings affects the state transfer fidelity depending on
the disorder model and strength as well as the chain type and length. We show that the desired level of fidelity
and transfer time are important factors in designing a chain. In particular we demonstrate that transfer efficiency
comparable or better than that of the most robust engineered systems can also be reached in chains with modified
boundaries without the demanding engineering of a large number of couplings.
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I. INTRODUCTION

One of the main challenges on the road to practical quantum
computers is the reliable transfer of quantum information
between quantum gates [1]. The main source of problems
is the vulnerability of quantum systems to perturbations due
either to manufacturing imperfections or to interactions with
the environment. Overcoming (or avoiding) these problems
has motivated an intensive search for systems able to transfer
information with high quality while at the same time requiring
minimal control in order to avoid the introduction of errors
[2,3]. The problem of state transfer has received a lot of atten-
tion in the last decade in the context of quantum-information
processing; nevertheless, an early antecedent can be found in
the work of Shore and co-workers, see, for example, the paper
of Cook and Shore [4].

Spin chains are a promising class of systems to serve as
reliable quantum communication channels [2,3,5–11]. Perfect
state transfer (PST) without any dynamical control can be
achieved by an infinity of engineered spin-spin coupling
configurations [11–18] for a spin chain of given length.
Regrettably this amazing transfer fidelity comes at a high price
in terms of the accuracy required to design each interaction to
avoid the loss of information [3,11,19,20].

In order to assess the reliability of these systems as realistic
channels for information transfer it is therefore essential to
study the influence of imperfections. Indeed, we have explored
the robustness of some PST channels against static perturba-
tions [11], finding that the quality of transfer is often strongly
impaired by perturbations. Therefore a question emerges: Is
it really necessary to optimize every single interaction in a
chain? Can we find simpler systems showing good transfer
under perturbations?

In this work we focus on the behavior of essentially
homogeneous chains where only the first and last couplings
can be adjusted. We show that under perturbations these chains
can achieve an optimized state transfer (OST) comparable to
or even better than that of fully engineered PST systems. Two

interesting regimes for transmission can be observed when
the boundary couplings are varied; for unperturbed chains
these regimes have already been studied recently [9,10,21–25].
Favorable values for the speed and fidelity of transmission
were observed (i) for an optimized (length-dependent) value of
the boundary couplings which renders quantum state transfer
approximately dispersionless and (ii) in the limit of weak
boundary couplings. For both regimes we study the robustness
against perturbations, demonstrating that transfer efficiency
comparable or better than that of the most robust PST systems
can be reached without the demanding engineering of a large
number of couplings.

II. SPIN CHAINS AS STATE TRANSFER CHANNELS

We consider a spin- 1
2 chain with XX interactions between

nearest neighbors, described by the Hamiltonian

H = 1

2

N−1∑

i=1

Ji

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

)
, (1)

where σ
x,y

i are the Pauli matrices, N is the chain length, and
Ji > 0 is the exchange interaction coupling. We assume the
mirror symmetry Ji = JN−i , which is essential for PST [2,3].
These spin chains may be modeled with flux qubits [26–28],
quantum dots [15,29,30], atoms in optical lattices [31–34], and
nitrogen vacancy centers in diamond [9].

The goal is to transmit a quantum state |ψ0〉 initially stored
on the first spin (i = 1) to the last spin of the chain (i = N ).
|ψ0〉 is an arbitrary normalized superposition of the spin down
(|0〉) and spin up (|1〉) states of the first spin, with the remaining
spins of the chain initialized in a spin down state. Note
that more general initial states can be treated without much
additional effort, since the Hamiltonian (1) is equivalent to one
of noninteracting fermions. The Hamiltonian (1) conserves the
number of up spins, [H,�iσ

z
i ] = 0. Therefore the component

|0〉 = |00 · · · 0〉 of the initial state is an eigenstate of H

and only the component |1〉 = |110 · · · 0〉 evolves within the
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one excitation subspace spanned by the basis states |i〉 =
|0 · · · 01i0 · · · 0〉. To evaluate how well an unknown initial
state is transmitted, we use the transmission fidelity, averaged
over all possible |ψ0〉 from the Bloch sphere (see for details,
Ref. [5])

F = fN

3
cos γ + f 2

N

6
+ 1

2
, (2)

where f 2
N = |〈N|e− iH t

h̄ |1〉|2 is the fidelity of transfer between
states |1〉 and |N〉 and γ = arg |fN (t)|. Because the phase γ can
be controlled by an external field once the state is transferred,
we consider cos γ = 1. By the symmetries of the system,
this fidelity can be expressed in terms of the single-excitation
energies Ek and the eigenvectors |�k〉 of H , in the following
way,

fN =
∣∣∣∣∣
∑

k,s

(−1)k+sPk,1Ps,1e
−i(Ek−Es )t

∣∣∣∣∣ , (3)

where Pk,1 = a2
k,1 are the eigenvector probabilities on the

first site of the chain, since |i〉 = ∑
ak,i |�k〉. PST channels

are distinguished by commensurate energies Ek; that is, all
transition frequencies share a common divisor to make fN = 1
in Eq. (3) at a suitable PST time τPST [13,14]. This condition
is obtained by suitably modulating the spin-spin couplings
Ji [11,14,16].

A long unmodulated homogeneous spin channel, Ji = J

∀i, cannot transfer a state perfectly, since due to the dispersive
quantum dynamics the transfer fidelity decreases with the
number of spins in the channel [5]. In fact, rigorous PST
in a homogeneous chain is possible only for N � 3 [13,35].
However, transfer can be noticeably improved just by lowering
the couplings of the spins at the ends of the channel.

We consider the two surface spins i = 1 and N interacting
with the inner spins with J1 = JN−1 = αJ while the remaining
spins compose a homogeneous chain with Ji = J . We call this
Hamiltonian Hα , where α ∈ (0,1] is a control parameter. This
system has already been studied in Refs. [9,21,23–25].

Two regimes for α can be used for OST: (i) the optimal-
coupling regime (α = αopt ∼ N− 1

6 ) possessing an almost
equidistant spectrum Ek in the middle of the energy band,
resulting in a quasidispersionless fast transfer with high fidelity
[10,24,25]; and (ii) the weak-coupling regime (α � 1). In
that regime the transmitted state appears and then reappears
roughly periodically at the receiving end of the chain. Almost
perfect transfer is achieved with the first arrival due to the fact
that only very few eigenstates from the center of the energy
band are involved, which are highly localized at the boundaries
of the chain [9,21,24].

The characteristic features of the two regimes just men-
tioned were also observed to be essential for the robustness of
PST spin-chain channels against perturbations [11]. The most
robust systems either showed an equidistant (linear) energy
spectrum generating the analog of dispersionless wave packet
transfer or a large density of states in the center of the band with
the corresponding eigenstates localized at the boundary sites
of the chain and thus dominating the end-to-end transfer [11].
A class of PST systems is characterized by a power-law
spectrum Ek = sgn(k)|k|m, where k = −N−1

2 , · · · ,N−1
2 and

the exponent m is a positive integer. We specifically address

the linear case, m = 1, and call the corresponding Hamiltonian
H lin [13], and similarly for the quadratic case, m = 2, with
Hamiltonian H quad [11].

The OST system described by Hα , requiring control of
only two boundary couplings, would obviously be simpler to
implement than the PST systems requiring engineering of all
couplings along the chain. In the following we compare the
transmission performance of OST and PST systems under the
influence of disordered couplings in the channel assuming
perfect control of the boundary couplings. We make the same
assumption for the engineered chains.

Static disorder in the couplings within the transfer channel
is described by Ji → Ji + 	Ji (i = 2, . . . ,N − 2), with 	Ji

being a random variable. We consider two possible coupling
disorder models: (a) relative static disorder (RSD) [11,19,36],
where each coupling is allowed to fluctuate by a certain fraction
of its ideal size, 	Ji = Jiδi , and (b) absolute static disorder
(ASD), where all couplings may fluctuate within a certain
fixed range which we measure in terms of Jmax = max Ji :
	Ji = Jmaxδi [20]. Each δi is an independent and uniformly
distributed random variable in the interval [−εJ ,εJ ]. εJ > 0
characterizes the strength of the disorder. The two coupling
disorder models are equivalent for the OST systems since all
couplings are equal there. However, in the fully engineered
PST systems Jmax − Jmin depends on the type of system and
tends to increase with N so that absolute disorder is expected
to be more damaging than the relative one in these systems.
The relevant kind of disorder depends on the particular
experimental method used to engineer the spin chains.

A. Optimal-coupling regime

When α = αopt in Hα the spectrum is linear in the middle
of the energy band [Fig. 1(a)]. The probability Pk,1 of the kth
energy eigenstate to participate in the state transfer is shown in
Fig. 1(b) as a function of k for N = 200. The linear part of the
spectrum evidently dominates the dynamics. Also shown in the
figure are the corresponding quantities for the linear PST chain.
The obvious similarities between these two systems suggest
a comparison of their properties in the perturbed case, which
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FIG. 1. (Color online) Properties of the Hαopt system (black solid
dots) and the H lin system (orange open squares) for a chain length
N = 200. (a) Eigenenergies Ek . (b) Probabilities Pk,1 of the initial
state |ψ0〉 = |1〉. The dashed vertical lines show the dominant energy
eigenstates |k〉 that contribute to the state transfer. P

αopt
k,1 is Lorentzian

and P lin
k,1 Gaussian. Inset: Evolution of the averaged fidelity of the

state transfer.
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FIG. 2. (Color online) Averaged fidelity
at time τ as a function of the perturbation
strength εJ and the chain length N for H lin

and Hαopt systems. Relative and absolute
static disorder are considered. (a) F lin with
relative disorder (open circles) and absolute
disorder (orange circles) and F αopt (black
squares) for both kinds of disorder when
N = 200. (b) F lin with relative disorder.
The open triangles indicate when F lin = F α0

shown in Fig. 3(c). To the left of the sym-
bols F lin > F

α0
odd (the difference being small,

however), while to the right F α0 > F lin.
(c) F αopt with both kinds of disorder and
(d) F lin with absolute disorder. The open
circles indicate when F lin = F αopt . To the
left of the symbols F lin > F αopt and to the
right F αopt > F lin.

is discussed below. The inset in Fig. 1(b) shows the averaged
transfer fidelity of the unperturbed linear PST and αopt systems,
as a function of time. The maximum fidelity of the αopt system
is clearly smaller than unity, and it decreases with each revival
of the signal. However, the transfer time τ of the αopt system
is shorter: τ lin = πN

4Jmax
[11,13] and ταopt ∼ N

2Jmax
[24]; hence

τ lin ∼ π
2 ταopt .

The main results of the comparison between the linear PST
and αopt systems are shown in Fig. 2. Figure 2(a) shows the
fidelity at time τ given by the transfer time of the unperturbed
case. The transfer fidelity is averaged over the Bloch sphere,
as well as over the disorder, for N = 200, as a function of
the disorder strength εJ . As expected the linear PST chain
with RSD always performs better than that with ASD. For
vanishing disorder strength the linear PST chain yields unit
fidelity, which the boundary-controlled chain does not, since
its energy spectrum is only approximately, but not strictly,
linear. The linear PST system with RSD has fidelity higher than
that of the boundary controlled system for all εJ , but for εJ �
0.1 (where the fidelity is already rather low) the difference
in fidelity between the two systems becomes insignificant.
However, with ASD, there is a finite perturbation strength
(εJ ≈ 0.05) where the αopt system becomes better than the
linear PST system. Hence, if fidelity very close to unity is
desired, complete engineering of the couplings and very good
disorder protection are mandatory. However, if only moderate
fidelity is needed (or possible, due to high disorder level) a
boundary-controlled system might do.

In order to see how the transfer properties depend on the
chain length we show in Figs. 2(b)–2(d) the average fidelity
for each of the three systems as a contour and color plot in the
(εJ ,N ) plane. The contour lines are straight lines (representing
power laws) in most cases, with deviations for the boundary-
controlled system at weak disorder. The open circles in
Figs. 2(c) and 2(d) indicate where the fidelity of the boundary-
controlled chain is equal to that of the linear PST chain with
ASD; to the right of them the boundary-controlled chain has
higher fidelity.

The results above already indicate that there is no simple
general answer to the question whether fully engineered or
boundary-controlled spin chains provide better quantum state
transfer properties in the presence of disorder. The static
disorder model, strength, and chain length all are important
factors in answering that question. We arrive at similar
conclusions in our next example.

B. Weak-Coupling Regime

When the boundary spins are only weakly coupled to the
channel, i.e., αJmax = α0Jmax � 1√

N
in Hα , an almost perfect

state transfer, F ≈ 1−O(α2J 2
maxN ), is achieved (for details,

see Ref. [21]). In this region, the parity of N is relevant.
This can be understood by studying the spectral properties of
the “channel” of N − 2 spins connecting the transmitting and
receiving qubits. For odd (even) N the dynamics of the channel
is dominated by two (three) states situated symmetrically about
the center of the energy spectrum [21]. The energy differences
between these dominant levels determine the transfer time
which is obtained as τα0

even ∼ π
2α2Jmax

and τ
α0
odd ∼ π

√
N

2αJmax
[21].

Since τ is N independent for even N and α0Jmax < 1√
N

, the
transfer is faster for odd N . Very similar properties of the
energy eigenstates which dominate the state transfer are found
in the fully engineered (PST) chain with odd N and a quadratic
energy spectrum, which make it the most robust PST system
for relative disorder [11]. We therefore compare this system to
the boundary-controlled chain at weak coupling. We find that
the transfer time of the quadratic PST chain is τ quad ∼ πN2

8Jmax
,

which is longer than τ
α0
odd for α � 4

N3/2 for reasonably large N .
Figures 3(a) and 3(b) show the averaged fidelities for

N = 200 and N = 201, respectively, for the quadratic PST
system and the weak-coupling boundary-controlled system, at
time τ determined by the unperturbed cases and for α = 0.01.
Again, as in the linear case, absolute disorder is much more
detrimental than relative disorder. This is connected to the fact
that the maximum and minimum couplings in the chain may
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FIG. 3. (Color online) Averaged fidelity
at time τ as a function of the perturbation
strength εJ and of the chain length N for
H quad and Hα0 systems when relative and
absolute disorder are considered. (a) F quad

with relative disorder (open circles) and
absolute disorder (orange circles) and F α0

(black squares) for both kinds of disorder
when N = 200. (b) Same as panel (a) for
N = 201. (c) F α0 with both kinds of disorder
for odd N . The open squares show when
F

α0
odd = F α0

even(not shown), where F
α0
odd > F α0

even

to the left of the symbols. (d) F
quad
odd with rel-

ative disorder. The open diamonds indicate
when F α0

even = F
quad
odd , where F

quad
odd > F α0

even to
the left of the symbols.

differ by orders of magnitude, with the small couplings always
close to the ends of the chain [11]. Consequently a fluctuation
of a given absolute size may completely spoil the state transport
when it affects one of the small couplings close to the boundary.
For the boundary-controlled system the two kinds of disorder
are again equal by definition. Therefore, for absolute disorder
the weak-coupling OST system performs always better than
the quadratic PST system. For relative disorder the parity of
N matters. The fidelity of the boundary-controlled system is
similar or higher (lower) than that of the PST system when N is
even (odd). Figures 3(c) and 3(d) show the fidelity as a contour
and color plot in the (εJ ,N ) plane for α = 0.01 and odd N .
The contour lines are again power laws. The open symbols in
Fig. 3(c) (squares) indicate where the fidelities for odd and even
weak-coupling boundary-controlled systems are equal. To the
left of the symbols the fidelity is higher for odd N . The open
symbols (diamonds) in Fig. 3(d) indicate where the fidelities
for odd quadratic PST systems (with relative disorder) and for
even weak-coupling boundary-controlled systems are equal.
To the left of the symbols the fidelity is higher for the quadratic
PST system, but for small perturbation strength differences
between the two systems are quite small.

We want to remark that if an actual implementation were to
be used, the faulty couplings of the chain could be tested
following the recipe given in Ref. [37], which allows the
coupling strength estimation of a XX spin chain with an
external magnetic field applied to it. In this case the best
possible time to remove the state from the chain can be
obtained from the numerical integration of the Schrödinger
equation, just looking for the smallest time when the fidelity
is near 1. In case the indirect Hamiltonian tomography [38]
turns out to be too expensive or cumbersome to perform, the
best time to remove the state from the chain is the design time,
i.e., the time τ when the fidelity of the “nonfaulty chain,” the
one that was intended to be implemented, achieves its best
performance.

On the other hand, a detailed analysis of the statistics of the
fidelity as a function of time is lacking; so far most studies

focus on its average over realizations of the noise. For a
particular class of engineered chains [13], De Chiara et al. [19]
have shown that the time signal of the fidelity becomes fractal.
In this sense, it is difficult to assess how much information is
lost because of a bad timing for the readout of the state at the
receiving end of the channel.

III. SUMMARY AND CONCLUSIONS

For relative disorder, Fig. 4 shows a comparison between
all of the systems considered here, linear PST and boundary-
controlled with optimal αopt as well as quadratic PST and
weak-coupling (α = 0.01) boundary-controlled, for both even
and odd lengths. For each system the figure shows the line in
the (εJ ,N ) plane where F = 0.9. Open symbols denote PST
systems; closed symbols correspond to boundary-controlled
systems. To the left of the symbols the transfer fidelity of
each system is F > 0.9. It is interesting to note that the lines
for the three boundary-controlled systems lie next to each
other (at least for long chains), while one of the PST systems
(quadratic, even) lies clearly below (performs less well) and

0.1
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FIG. 4. (Color online) Contour lines of the averaged transfer
fidelity F = 0.9 for fully engineered PST systems (closed symbols)
and boundary-controlled α-OST systems. To the left of the symbols
the transfer fidelity F > 0.9 for every system.
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the other two PST systems lie slightly above. This situation
changes, however, for different levels of fidelity. For example,
the H

α0
odd system outperforms H lin in the region to the right of

the crossover marked by the open triangles in Fig. 2(b). Note
that to the left of that crossover the fidelities of the two systems
differ only by up to 4%. On the other hand, to the right of the
crossover displayed in Fig. 3(d), Hα0

even is the best choice.
For absolute disorder, there is almost always a boundary-

controlled system with fidelity larger than that of the PST
systems. Only for very small perturbation strength can PST
systems be better than OST systems, but the fidelities are
similar.

Considering only the PST systems, H
quad
odd performs better

than H lin for relative disorder with similar transfer fidelity for
small perturbations. Conversely, H lin is drastically the more
robust choice for absolute disorder. Considering only the OST
systems, H

α0
odd achieves the highest state transfer fidelities.

For all the channels with F → 1 in the vanishing pertur-
bation strength limit we find a power law Nε

β

J = const for
the contours of constant fidelity, with β near 2, generalizing
the fidelity scaling law found for the linear PST system with

relative disorder [19]. This quantifies the sensitivity of the
channels to perturbations as a function of the system size:
Increasing the channel length, the transfer fidelity becomes
more sensitive to the perturbations.

If the transfer speed is important, independent of the kind of
disorder, the faster transfer is achieved by the nonengineered
Hαopt system, closely followed by the engineered H lin system.
The other systems are significantly slower.

To summarize, we show that in most situations the
transmission performance of boundary-controlled spin chains
renders the full engineering of the couplings of a spin chain
unnecessary in order to obtain quantum state transmission with
high fidelity under static perturbations.
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M. Bednarska, Phys. Rev. A 72, 034303 (2005).

[22] L. Banchi, T. J. G. Apollaro, A. Cuccoli, R. Vaia, and
P. Verrucchi, Phys. Rev. A 82, 052321 (2010).

[23] E. B. Fel’dman, E. I. Kuznetsova, and A. I. Zenchuk, Phys. Rev.
A 82, 022332 (2010).

[24] A. Zwick and O. Osenda, J. Phys. A 44, 105302 (2011).
[25] L. Banchi, T. J. G. Apollaro, A. Cuccoli, R. Vaia, and

P. Verrucchi, New J. Phys. 13, 123006 (2011).
[26] A. Romito, R. Fazio, and C. Bruder, Phys. Rev. B 71, 100501(R)

(2005).
[27] F. W. Strauch and C. J. Williams, Phys. Rev. B 78, 094516

(2008).
[28] D. I. Tsomokos, M. J. Hartmann, S. F. Huelga, and M. B. Plenio,

New J. Phys. 9, 79 (2007).
[29] G. M. Nikolopoulos, D. Petrosyan, and P. Lambropoulos,

Europhys. Lett. 65, 297 (2004).
[30] D. Petrosyan and P. Lambropoulos, Opt. Commun. 264, 419

(2006).
[31] M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, Phys.

Rev. Lett. 99, 160501 (2007).
[32] U. Dorner, P. Fedichev, D. Jaksch, M. Lewenstein, and P. Zoller,

Phys. Rev. Lett. 91, 073601 (2003).
[33] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen,

and U. Sen, Adv. Phys. 56, 243 (2007).
[34] L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 91,

090402 (2003).
[35] M. Christandl, N. Datta, T. C. Dorlas, A. Ekert, A. Kay, and

A. J. Landahl, Phys. Rev. A 71, 032312 (2005).
[36] D. Petrosyan, G. M. Nikolopoulos, and P. Lambropoulos, Phys.

Rev. A 81, 042307 (2010).
[37] M. Wiesniak and M. Markiewicz, Phys. Rev. A 81, 032340

(2010).
[38] D. Burgarth, K. Maruyama, and F. Nori, New J. Phys. 13, 013019

(2011).

012318-5

http://dx.doi.org/10.1126/science.270.5234.255
http://dx.doi.org/10.1080/00107510701342313
http://dx.doi.org/10.1142/S0219749910006514
http://dx.doi.org/10.1103/PhysRevA.20.539
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1103/PhysRevA.69.052315
http://dx.doi.org/10.1103/PhysRevA.71.052315
http://dx.doi.org/10.1103/PhysRevA.75.062327
http://dx.doi.org/10.1103/PhysRevA.75.062327
http://dx.doi.org/10.1103/PhysRevLett.106.040505
http://dx.doi.org/10.1103/PhysRevLett.106.140501
http://dx.doi.org/10.1103/PhysRevLett.106.140501
http://dx.doi.org/10.1103/PhysRevA.84.022311
http://dx.doi.org/10.1103/PhysRevA.84.022311
http://dx.doi.org/10.1103/PhysRevLett.93.230502
http://dx.doi.org/10.1103/PhysRevLett.93.230502
http://dx.doi.org/10.1103/PhysRevLett.92.187902
http://dx.doi.org/10.1103/PhysRevLett.92.187902
http://dx.doi.org/10.1103/PhysRevA.72.030301
http://dx.doi.org/10.1088/0953-8984/16/28/019
http://dx.doi.org/10.1103/PhysRevA.73.032306
http://dx.doi.org/10.1103/PhysRevA.84.012307
http://dx.doi.org/10.1103/PhysRevA.84.012307
http://dx.doi.org/10.1103/PhysRevA.75.042319
http://dx.doi.org/10.1103/PhysRevA.75.042319
http://dx.doi.org/10.1103/PhysRevA.72.012323
http://dx.doi.org/10.1103/PhysRevA.72.012323
http://dx.doi.org/10.1103/PhysRevA.83.012325
http://dx.doi.org/10.1103/PhysRevA.83.012325
http://dx.doi.org/10.1103/PhysRevA.72.034303
http://dx.doi.org/10.1103/PhysRevA.82.052321
http://dx.doi.org/10.1103/PhysRevA.82.022332
http://dx.doi.org/10.1103/PhysRevA.82.022332
http://dx.doi.org/10.1088/1751-8113/44/10/105302
http://dx.doi.org/10.1088/1367-2630/13/12/123006
http://dx.doi.org/10.1103/PhysRevB.71.100501
http://dx.doi.org/10.1103/PhysRevB.71.100501
http://dx.doi.org/10.1103/PhysRevB.78.094516
http://dx.doi.org/10.1103/PhysRevB.78.094516
http://dx.doi.org/10.1088/1367-2630/9/3/079
http://dx.doi.org/10.1209/epl/i2003-10100-9
http://dx.doi.org/10.1016/j.optcom.2005.12.082
http://dx.doi.org/10.1016/j.optcom.2005.12.082
http://dx.doi.org/10.1103/PhysRevLett.99.160501
http://dx.doi.org/10.1103/PhysRevLett.99.160501
http://dx.doi.org/10.1103/PhysRevLett.91.073601
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevA.71.032312
http://dx.doi.org/10.1103/PhysRevA.81.042307
http://dx.doi.org/10.1103/PhysRevA.81.042307
http://dx.doi.org/10.1103/PhysRevA.81.032340
http://dx.doi.org/10.1103/PhysRevA.81.032340
http://dx.doi.org/10.1088/1367-2630/13/1/013019
http://dx.doi.org/10.1088/1367-2630/13/1/013019

