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Active protection of quantum states is an essential prerequisite for the implementation of quantum computing.
Dynamical decoupling (DD) is a promising approach that applies sequences of control pulses to the system in
order to reduce the adverse effect of system-environment interactions. Since every hardware device has finite
precision, the errors of the DD control pulses can themselves destroy the stored information rather than protect
it. We experimentally compare the performance of different DD sequences in the presence of an environment
that was chosen such that all relevant DD sequences can equally suppress its effect on the system. Under these
conditions, the remaining decay of the qubits under DD allows us to compare very precisely the robustness of
the different DD sequences with respect to imperfections of the control pulses.
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I. INTRODUCTION

Quantum computers can execute certain tasks more effi-
ciently than classical computers by processing information
according to the laws of quantum mechanics. In analogy
to a classical bit, which can assume the values 0 or 1,
quantum mechanical two-level systems like a spin-1/2 can
be used as quantum bits by identifying their eigenstates with
these values, e.g., |0〉 for spin up and |1〉 for spin down.
In quantum information processing and quantum memory
applications, it is very important to keep the information
isolated from the environment: uncontrolled interactions with
the environment tend to degrade the quantum information. This
environment-induced loss of quantum information is called
“decoherence” [1–3].

If one is able to control the system in such a way to
reduce the detrimental effect of the system-environment (SE)
interaction, one can preserve the quantum state for a longer
time. This way of fighting decoherence by applying fast
and strong pulses has been termed dynamical decoupling
(DD) [4–9]. The main attraction of DD is that it requires few
additional resources. In contrast to quantum error correction
[10–12], e.g., it does not require additional qubits. DD can
be traced back to Hahn’s “spin echo” experiment, where a
refocusing pulse induces a time reversal of the SE interaction
of nuclear spins [13]. This increases the decay time or
decoherence time of the stored information in the qubit.
The technique has evolved significantly since then, and its
efficiency was studied and demonstrated in many different
systems [14–30].

It has been shown that the type as well as the spectral density
of the SE interaction play a significant role for finding the
optimal DD sequences [7,25,31–38]. Moreover, unavoidable
errors in the control pulses are also an important source of
decoherence [18,24,39–49]. Thus optimal DD sequences must
be able to reduce the effective SE interaction while compen-
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sating the effects of nonideal control fields [22,24,43,46–51].
Reference [48] is a recent review of this subject.

In this article we compare the performance of different DD
sequences in a system where pulse errors are the dominant
source of decoherence; pulse errors become significant when
most of the effects of the SE interaction have been eliminated.
To this end, we prepare a system where the spectral density
of the SE coupling has two main contributions. One source
of noise is almost static and can therefore be refocused by
all tested DD sequences. The other contribution is a rapidly
fluctuating noise, whose correlation time is much shorter than
the time required for an inversion of the spins. This type of
noise cannot be refocused by any DD sequence. Therefore the
main difference between the performance of the DD sequences
is their susceptibility to pulse errors.

In a previous work [18,24], we compared the performance
of different DD sequences, and in particular we found that
the “Carr-Purcell-Meiboom-Gill” (CPMG) sequence [52,53]
performed particularly well for specific initial states. In this
case the decoherence time was one order of magnitude
longer than for robust sequences that reduced decoherence
symmetrically with respect to arbitrary initial states. We found
that this difference arose because the system qubit, a 13C
spin, interacted with neighboring 13C spins. While the CPMG
sequence was able to reduce the effect of 13C-13C couplings,
the robust sequences were not [36]. Since the tested DD
sequences were not designed for eliminating the effect of
homonuclear couplings, the longer decoherence times for
CPMG applied to certain initial conditions cannot be taken
as a measure of its performance. In this work we therefore use
a system that does not exhibit homonuclear interactions. This
allows us to show that the robust sequences can also achieve
the optimal decoherence time observed under CPMG, and this
performance is independent of the initial condition.

The article is organized as follows. In Sec. II we define
the system, in Sec. III we introduce the DD sequences to
be compared, and in Sec. IV we compare their robustness
against pulse errors effects. In Sec. V we give a qualitative
theoretical analysis based on average Hamiltonian theory to
explain the experimental results. In the last section we draw
some conclusions.
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FIG. 1. (Color online) Decay of the magnetization of the 1H spin
system under free evolution and in a Hahn spin-echo (HE) sequence.

II. THE SYSTEM

The experimental system is an ensemble of noninteracting
spins 1/2. They consist of the protons of a water sample
to which we added 5 mg/100 ml CuSO4 to reduce the T1

relaxation time to 287 ms. This results in faster repetition times
and shorter overall duration of the experiments. The sample
was placed in a static magnetic field along the z direction and
its Hamiltonian is

Hs = ωsSz, (1)

where ωs is the Zeeman frequency and ̂Sz is the system spin
operator along the z axis. The inhomogeneities of the static
field correspond to a static perturbation, and molecular motion
makes this perturbation time-dependent on a time scale that is
slow compared with the delays between the DD pulses used
in our experiments. This makes it possible to refocus this
perturbation very effectively.

The second major source of noise is the fluctuating dipole-
dipole interaction, whose correlation time is the molecular
reorientation time (≈35 fs), much faster than any conceivable
control fields for nuclear spins and therefore not amenable to
DD. On the other hand, these fluctuations are so fast that their
average effect on the system is relatively small [54].

Experiments were performed on a home-built NMR spec-
trometer with a 1H resonance frequency of 360 MHz. The
radio frequency field strength was 2π × 13.3 kHz, which
corresponds to a π pulse duration of 37.5 μs. An initial
state ∝Ix or Iy was prepared by rotating the Iz equilibrium
state with a resonant π/2 pulse. The free evolution decay
of the transversal magnetization of our system has a decay
time of 2.9 ms (free induction decay). A simple Hahn-echo
sequence [13] increases this time to 106 ms, as shown in Fig. 1.

III. DYNAMICAL DECOUPLING SEQUENCES

DD sequences consist of repetitive trains of π pulses. The
delays between the pulses and their phases are important pa-
rameters for improving the performance of the DD sequences
[4–6,50,52,53,55,56]. In particular the relative phases, which
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FIG. 2. (Color online) Dynamical decoupling pulse sequences
tested in this work.

correspond to the directions of the rotation axes, are important
for making the sequences robust against pulse imperfections
and unwanted environmental interactions [18,22,24].

Figure 2 gives an overview of the sequences that we
examined for this work. It shows a single cycle for each
sequence, which is repeated as often as required. τ is the delay
between the pulses. The Carr-Purcell (CP) sequence [52] and
the version by Meiboom and Gill [53], known as CPMG, use
the same sequence of refocusing pulses; they differ only with
respect to the state to which they are applied. In the case of the
CP sequence, the initial state is perpendicular to the rotation
axis of the inversion pulses; in the CPMG version, it is parallel.
Errors in the flip angles destroy the perpendicular component,
but they leave the longitudinal component unscathed [18,53].
The sequence XY4 was introduced by Maudsley [55], and it
reduces the effect of pulse imperfections for arbitrary initial
states [18,55,56]. It consists of four pulses with phases x-y-x-y
(Fig. 2). An asymmetric version of the XY4 sequence was
introduced by Viola et al. [4], which we designate XY4(a).
The XY8-sequences are symmetrized versions of the XY4
sequences [46,56]. Two DD sequences that are particularly
robust against flip-angle and resonance offset errors are the
KDDx and KDDxy sequences [24,47,48]. They were designed
by combining the rotation pattern of the XY4 sequence with
that of a robust composite pulse [57].

In earlier works using these sequences, the conditions
were chosen such that the dominant perturbation was the
environmental noise [18,24,44,46,47]. In this work, we focus
on a system that allow us to make a comparison between
these sequences in a regime where all sequences perform
equally well at eliminating the environmental noise, and any
differences in their performance can be attributed directly to
their robustness, i.e., to their efficiency in suppressing the effect
of pulse imperfections.

042309-2



ROBUSTNESS OF DYNAMICAL DECOUPLING SEQUENCES PHYSICAL REVIEW A 87, 042309 (2013)

IV. ROBUSTNESS COMPARISON

To compare the sensitivity of the sequences to pulse
imperfections, we prepared two orthogonal initial states Ix

and Iy and then measured their decay as a function of time
under the application of the different DD sequences described
in the previous section. Figure 3 shows the echo train of a
CPMG sequence. From these data, we extracted the signal
(Ix magnetization in this example) at the end of each DD
cycle (marked by blue squares in the figure). The decay of
the echoes was mostly exponential, with some exceptions
discussed below.

The extracted echoes (blue squares in Fig. 3) were fitted
with an exponential function to obtain the decay time of the
magnetization. Experiments were repeated and the decay times
plotted as a function of the delay between pulses.

Figure 4 compares the decay times of different DD
sequences as a function of the delay between pulses. For
the CPMG sequence, we present the decay of the Ix and
Iy magnetization separately, marked as CP and CPMG,
respectively. For the other sequences, whose performance is
quite symmetric with respect to the initial condition, we present
the decay times averaged over the two initial conditions. For
long delays between the pulses, the observed decay times reach
a limiting value of ≈276 ms, irrespective of the sequence and
the initial condition, and very close to the measured value of
T1. This is a verification of the assumption that all sequences
can effectively decouple the slowly fluctuating environment.

For shorter pulse delays (i.e., more pulses in a given
time interval), the signal decays more rapidly. This is most
prominent for the CP sequence. In this situation, pulse
imperfections add coherently and generate a rapid loss of
magnetization [18].

As the pulse delays become shorter than 0.5 ms, which
corresponds to 864 pulses during the 0.5 s measurement time,
the other sequences also start to generate shorter decay times,
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FIG. 3. (Color online) Time evolution of the spin-system magne-
tization under the application of a CPMG sequence. The black solid
line shows the evolution of the magnetization, and the blue squares
mark the echo amplitude at the end of a CPMG cycle. We use the
echo maxima for measuring the CPMG decay time. The cycle time
was τc = 32 ms.
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FIG. 4. (Color online) Average decay times as a function of the
delay τ between pulses for different DD sequences.

and their decays become nonexponential. Figure 5 shows a
representative example of such a signal. It can be fitted with a
double exponential

s(t) = a e−t/T
f

2 + b e−t/T s
2 (2)

with two decay times T
f

2 and T s
2 .

Figure 6 shows the decay times fitted with Eq. (2) for
different average delays between pulses. For the fast decay
times (T f

2 ), which are represented by empty symbols in Fig. 6,
the performance of all DD sequences is quite similar. For the
slow component (T s

2 , represented by filled symbols), XY8,
CPMG, and KDDx perform better than XY4.

As we stated before, the decay time is dominated by the
effect of pulse errors for short delays. The resulting average
Hamiltonian projects the magnetization onto its eigenbase; this
results in the fast decay component. After this projection, the
remaining magnetization, which is not significantly affected
by the pulse imperfections, decays on a slower time scale,
which is dominated by the environment.

For a quantitative comparison of the different pulse
sequences, we calculate the average magnetization decay
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FIG. 5. (Color online) Normalized spin magnetization as a func-
tion of the evolution time for short delays (τ = 100 μs) between the
pulses for an XY8(s) sequence. Pulse errors dominate here, inducing
a multiexponential decay. The red solid line is a fit to Eq. (2).
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resulting per pulse of the sequence. For this evaluation, we
consider only the short-time component described by T

f

2 .
Since the pulse error is the dominant source of decay, we

quantify its effect by measuring the fractional decay of the
magnetization per pulse. The pulses are the same for all the DD
sequences, but their effect, averaged over full cycles, shows
how well the sequence is able to cancel the imperfections of
the individual pulses.

Figure 7 shows the average decay per pulse for the different
sequences, plotted against the number of pulses. For these data,
the interpulse delay was τ = 100 μs. The most conspicuous
feature is that CP performs very badly and CPMG very well.
The compensated sequences lie between these two extremes,
and we find that the higher order sequences (XY8, KDD)
perform better than the lower order sequences (XY4). For
unknown initial conditions, KDD shows the best performance.
Under the present conditions, sequences that differ only with
respect to time reversal symmetry perform quite similarly, in
contrast to other cases discussed earlier [46].
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FIG. 7. (Color online) Average error per pulse for different DD
sequences with delay τ =100 μs.

V. THEORETICAL ANALYSIS BY AVERAGE
HAMILTONIAN THEORY

Average Hamiltonian theory (AHT) can be used to describe
the effect of DD sequences applied to the system during an
interval of time t1 < t < t2. If the evolution of the system is
governed by a time-dependent Hamiltonian H(t), the effective
evolution can be described by an average Hamiltonian ˜H(t1,t2).
If the Hamiltonian H(t) is periodic with a cycle time τc,
i.e. H(t) = H(t + τc) and the observation is stroboscopic and
synchronized with the period τc, the evolution operator for
each cycle is exp{−i ˜H(0,τc) τc} [58,59].

As we discussed above, the remaining environmental noise
fluctuates so rapidly that its effects cannot be reduced by DD.
It is a good approximation to describe it as a classical field
affecting the precession frequency of the spins [60]. Therefore
Eq. (1) can be written as

HSE = �ωz(t)Sz, (3)

where the average of the random precession frequency is
〈�ωz(t)〉 = 0 for every t . It causes an exponential attenuation
e−t/T2 independent of the delay between the pulses.

We can write the pulse propagator as a composition of the
product of the ideal pulse propagator Rφ = e−iπSφ and two
additional evolutions for flip angle errors as

Rφ = e−i(1+ε)πSφ = e−iHφtp/2e−iπSφ e−iHφtp/2 , (4)

where Hφ = επ
tp

Sφ and tp is the pulse length. For the sequences
XY4(s) and XY4(a) the effect of the flip angle error vanishes
in the zero-order average Hamiltonian, while the first-order
term for both sequences is [46]

˜H1
XY4(s) = ˜H1

XY4(a) = 5ε2π2

16τ
Sz. (5)

This shows that there is no difference between symmetric
and asymmetric sequences of XY4 up to first order of the
average Hamiltonian, which is in good agreement with the
experimental results of Fig. 7.

We consider now the XY8(s) and XY8(a) sequences. The
zero-order and the first-order average Hamiltonian terms in
Ref. [46] vanish if we consider only the flip angle error effects.
The first nonzero term of the average Hamiltonian is then the
second-order term, which is again equal for both versions of
the sequence:

˜H2
XY8(s) = ˜H2

XY8(a) = 13ε3π3

1536τ
(Sx + Sy). (6)

This is also in excellent agreement with Fig. 7 where the
symmetric and asymmetric version behave similarly, but they
are more robust than the XY4 sequences.

For CPMG and CP, the zeroth-order and first-order average
Hamiltonians are

˜H0
CPMG = επSy

τ
, (7)

and

˜H1
CPMG = 0. (8)

In the CPMG experiment, the initial condition is ∝Sy ,
which commutes with the average Hamiltonian and is therefore
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not affected by pulse errors. In the CP experiment, the initial
condition is ∝ Sx , which is dephased by the pulse errors, in
agreement with the data in Fig. 7 [18].

In the case of the KDDx pulse sequence, the zero- and
first-order average Hamiltonians vanish. The higher order
terms were kept small by the design of the sequence [57,61].
As shown in Ref. [62], this makes it robust against several
systematic errors because it is a geometric quantum gate. In
Ref. [24], we showed by numerical simulation and experimen-
tal data that the KDDxy sequence is more robust against flip
angle errors than the other DD sequences tested. Overall, the
experimental comparison between the different sequences is in
good agreement with the numerical simulations and analytical
results based on average Hamiltonian theory.

VI. CONCLUSION

We have tested the robustness of different DD sequences by
comparing them in an environment that interacts with the spins
in such a way that the decoherence time under the application

of DD sequences with ideal pulses is independent of the delay
between the pulses. This allowed us to study the robustness
of the different DD sequences by isolating the effects of the
pulse errors. We found that the decoherence time of the most
robust sequences, the KDD family, is the longest for arbitrary
initial states. This is consistent with the measured error per
pulse averaged over many cycles of a DD sequence, where
the KDD sequences have the lowest effective error. In the
regime studied, the time symmetrization on the cycles does
not play a significant role for reducing decoherence, since
only the phases of the pulses are important for reducing the
effect of pulse errors. Our experimental results for pulse errors
are in good agreement with previous numerical simulations
and predictions of average Hamiltonian theory.
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