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During recent years, dynamical decoupling (DD) has gained relevance as a tool for manipulating and

interrogating quantum systems. This is particularly relevant for spins involved in nuclear magnetic

resonance (NMR), where DD sequences can be used to prolong quantum coherences, or to selectively

couple or decouple the effects imposed by random environmental fluctuations. In this Letter, we show that

these concepts can be exploited to selectively recouple diffusion processes in restricted spaces. The

ensuing method provides a novel tool to measure restriction lengths in confined systems such as

capillaries, pores or cells. The principles of this method for selectively recoupling diffusion-driven

decoherence, its standing within the context of diffusion NMR, extensions to the characterization of other

kinds of quantum fluctuations, and corroborating experiments, are presented.

DOI: 10.1103/PhysRevLett.111.080404 PACS numbers: 03.65.Yz, 76.60.Es, 76.60.Lz, 82.56.Lz

Introduction.—Understanding and manipulating the life-
times of quantum coherences are central goals of contem-
porary physics. Quantum decoherence can be mitigated in
several ways [1]; most often, this is achieved by rotation
pulses that decouple the system from its environment.
While such trains of refocusing pulses have been known
since the early days of nuclear magnetic resonance (NMR)
[2–4], these concepts have been generalized within the
quantum information community by ‘‘dynamical decou-
pling’’ (DD) ideas [5–7]. These efforts aim at modulating
the dephasing effects that environmental fluctuations
impart on a quantum spin system, i.e., on filtering out
modes in the environment’s spectral density noise. One
form to achieve this entails designing DD sequences so that
the time modulations experienced by the spins will mini-
mize their overlap with the noise’s spectral density [6–9].
This is usually exploited to characterize an environment’s
spectral density by varying the number of refocusing
pulses or the interpulse delays [10,11]. Introducing such
changes, however, may introduce complications of their
own: varying the number of pulses may become a source of
apparent decoherence via pulse imperfections [12]; and
even if pulses are kept constant, varying their interpulse
delay may lead to different total experimental times and
hamper the measurement being sought, for instance, by
imparting differing spin-spin relaxation (T2) weightings.
These complications can be avoided if DD sequences
retain a constant overall duration and number of pulses
[13,14], but depart from the dogma of using constant
interpulse delays [7]. In NMR this has been suggested as
a new magnetic resonance imaging (MRI) source of
contrast [13]. In spectroscopic characterizations,
the power of this concept was recently demonstrated by
selective-dynamical-recoupling (SDR) sequences [14],
where both the total evolution time and the number of
pulses remain fixed, while the interpulse delay
distribution is systematically varied. Unlike conventional

Carr-Purcell-Meiboom-Gill (CPMG) sequences [3], the
SDR approach is immune to decoherence effects driven
by cumulative pulse imperfections and/or to intrinsic T2

spin-spin relaxation. SDR leads to a constant-time experi-
ment with a fixed number of pulses, that can probe chemi-
cal identities via oscillatory modulations derived from
chemical shifts [14].
This Letter addresses different kinds of decoherence

effects, namely, those arising from spins diffusing in re-
stricted spaces in the presence of a magnetic field gradient.
Seeking improved ways of characterizing these phe-
nomena has been a central theme in NMR and MRI
[15,16], and has enabled a wide range of studies ranging
from oil prospecting, to developmental brain studies—
passing through many areas of physics, chemistry and
biology [17,18]. As is shown here SDR can be a powerful
approach to probe diffusion-related phenomena, while fil-
tering pulse imperfections and intrinsic T2 decay effects.
This form of DD can probe the spectral density of a
stochastic diffusion process, yielding information about
the latter and reflecting in a straightforward manner the
restricting lengths of the system. The ensuing approach
turns out to be different from typical modulated gradient
sequences in that, rather than probing a constant decay law
that includes the diffusion spectrum [19–22], it probes how
dynamics transition from free to restricted decay rates.
This allows one to probe even very small (��m) length
scales, without requiring the very strong magnetic field
gradients that are conventionally needed to observe
diffusion-diffraction phenomena [15,23,24]. Furthermore,
although this approach is illustrated here for NMR, it is a
conceptually general way to probe noise correlation
times—in particular those determining restricting length
scales in complex systems.
To set the stage for this novel approach to monitor

constrained diffusion, we first provide a general analysis
of random translation under dynamical decoupling and its

PRL 111, 080404 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

23 AUGUST 2013

0031-9007=13=111(8)=080404(6) 080404-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.080404


relationship with spectral density. We then analyze the
effects of free and restricted diffusion on the SDR modu-
lations. Finally, we experimentally demonstrate how these
modulations can be harnessed for accurately measuring
compartment sizes under easily amenable conditions, in a
noninvasive manner.

Modeling diffusion under dynamical decoupling.—
Whereas the method proposed herein is general for probing
fluctuations in a quantum two-level system interacting with
a bath [4,6], we consider for conciseness an ensemble of
S ¼ 1=2 spins that do not interact with each other, but are
coupled to a classical external magnetic field. This field
involves a uniform component along the z axis defining a
dominant Larmor frequency, and a perturbing linear field
gradient G. Due to this gradient, diffusion-induced dis-
placements will subject the spins to fluctuating precession
frequencies. In a usual rotating frame of reference [4], the
resulting Hamiltonian will be a pure dephasing system-

environment (SE) interaction Ĥ SEðtÞ ¼ !SEðtÞŜz, where
!SEðtÞ ¼ �GrðtÞ is a the frequency (noise) felt by the spin,
with r denoting the position of the diffusing spin along the
field gradient direction G ¼ @Bz=@r.

Consider the application of a sequence of strong �
pulses as shown in Fig. 1(a), that periodically refocuses
the spin ensemble after it has been subject to excitation.
The sequence assumes N instantaneous pulses at times
ti, with an initial delay t1 � t0 ¼ x=2 (t0 ¼ 0), uniform
delays ti � ti�1 ¼ x between the pulses for i¼2; . . . ;N�1,
and a final pulse at tN ¼ TE� y=2. tNþ1 ¼ TE is the total
evolution time (TE), and the x and y delays are such that
TE ¼ yþ ðN � 1Þx. Given the equidistant train of �
pulses involved in the first part of the sequence we refer
to it as involving a CPMG modulation [3], and to the final
single-inversion part of the sequence as a Hahn modulation

[2]. This conforms to the SDR sequence [14] shown in
Fig. 1. A constant gradientG given by an external action or
local fields, is assumed to be active throughout the pulse
train.
Under pulse-free conditions, the spin evolution operator

for a given realization of a spatial random walk will be

expf�i�ðTEÞŜzg, where �ðTEÞ is the accumulated phase
gained by the diffusing spin during TE. The effects that
the pulse train in Fig. 1 will impose on the evolving spin
can be accounted for by instantaneous sign changes of the
evolution frequencies !SEðtÞ. After applying the N
pulses the accumulated phase will be �ðTEÞ ¼R
TE
0 dt0fNðt0;TEÞ!SEðt0Þ, where the modulating function

fNðt0;TEÞ switches between �1 as shown in Fig. 1(c).

Given an initial state �̂0 ¼ Ŝx, the normalized magnetiza-
tion arising from an ensemble of noninteracting and
equivalent spins under the effects of this sequence will be

MðTEÞ ¼ he�i�ðTEÞi, where the brackets account for an
ensemble average over the random phases. Without pulses
h�ðTEÞi would depend on the position of each spin in the
sample; as with all DD sequences, however, the average for
the SDR case will be h�ðTEÞi ¼ 0. Thus, assuming that the
random phase �ðtÞ has a Gaussian distribution [25,26],
MðTEÞ ¼ expf�ð1=2Þh�2ðTEÞig: the signal will evidence
a decay depending on the random phase’s variance. This
argument is solely given by the spins’ diffusion within G,
and can be written in a Fourier transform representation
[6,20,21] as

1

2
h�2ðTEÞi ¼ �!2

SE

2

Z 1

�1
d!Sð!ÞjFð!;TEÞj2: (1)

This expression entails a product of the spectral density
�!2

SESð!Þ characterizing the diffusion-driven fluctuation,

times the filter function Fð!;TEÞ given by the Fourier

transform of the modulation function
ffiffiffiffiffiffiffi
2�

p
fNðt0;TEÞ.

The spectral density �!2
SESð!Þ is given in turn by the

Fourier transform of the autocorrelation function gð�Þ ¼
h�!SEðtÞ�!SEðtþ �Þi, where �!SEðtÞ ¼ �G½rðtÞ �
hrðtÞi� is the spin’s instantaneous frequency deviation
from its average value, and �!2

SE ¼ h�!2
SEð0Þi.

Assuming gð�Þ follows an exponential decay, the spectral
density of this fluctuation will be given by the Lorentzian
function [25,27]

FT fgð�Þg
ffiffiffiffiffiffiffi
2�

p ¼ �!2
SESð!Þ ¼ �!2

SE�c
ð1þ!2�2cÞ�

: (2)

Here the correlation time �c will be associated to a char-
acteristic length lc, given by the diffusion process accord-
ing to Einstein’s expression l2c ¼ 2D0�c, where D0 is the
free diffusion coefficient. It also follows that �!2

SE ¼
�2G2D0�c. If considering now diffusion in a pore or re-
stricted cavity, the specific relation between lc and the
restriction length d of the pore will depend on its
geometry; e.g., for cylinders a good approximation is

FIG. 1. Selective dynamical recoupling (SDR) sequence pro-
posed for probing the diffusion spectrum, and involving (a) a
sequence of N rf � pulses applied to the spins during a total
evolution time TE; and (b) a constant magnetic field gradient G.
A conventional CPMG sequence would arise if x ¼ y ¼ TE=N;
we refer to the N ¼ 1, x ¼ 0 case as a Hahn-echo sequence.
(c) Modulating function fNðtÞ imposed by the sequence of
pulses.
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�c � 0:262d2=D0 [21,28] and then lc � 0:37d, where d is
the cylinder’s diameter. Figure 2 compares the different
behaviors that, in units of the correlation time �c, will be
evidenced by the spin’s mean displacement h�rðtÞ2i ¼
h½rðtÞ � rð0Þ�2i depending on whether diffusion is free or
restricted.

Restricted and free diffusion: Effects on the SDR mod-
ulations.—With this scenario as background, we consider
the effects of the sequence in Fig. 1 for probing the
behaviors illustrated in Fig. 2(a). The ‘‘gist’’ of SDR is
that it manages to distinguish these cases without varying
TE or the total number of intervening pulses, but rather
using the flexibility that the delays x and y in Fig. 1 afford
for shaping the Fð!;TEÞ filter function. To see this more
clearly, consider the two segments in the SDR sequence—
the Hahn and the CPMG modulations—separately. The
diffusion-driven signal decay for a Hahn-echo sequence
[2] can be obtained analytically [29] (see the Supplemental
Material [30]); its decay is shown in Fig. 2(b) by the red
dashes and circles. Also the analytical expression for the
signal decay of a CPMG sequence, characterized by N
equispaced pulses (x ¼ y ¼ TE=N in Fig. 1) can be calcu-
lated (see the Supplemental Material [30]); the ensuing
magnetization decay is plotted in Fig. 2(b) (green crosses
and triangles). The free diffusion regime exhibits the sim-
plest behavior: since the delays between pulses x, y � �c,
the filter function F peaks at frequencies ! � 1=�c [9,11]
and decoherence effects are dominated by the tail of the
spectral density Sð!Þ / ð1=!2�c�Þ [11,31]. The signal
decay therefore follows a decay rate proportional to!�2 ¼
ðTE=NÞ2 [dashes and crosses in Fig. 2(b)]. This result is

derived in the original CPMG paper for freely diffusing
spins [3]. By contrast, in the restricted diffusion regime, �c
is short due to the confinement. The delays between pulses
x, y � �c, and the dominant peaks of the filter functions F
are at frequencies ! � 1=�c [9,11]. In these cases the
argument of the exponential function governing the signal
decay will be

1

2
h�2ðTEÞi � �!2

SE�c½TE� ð1þ 2NÞ�c�: (3)

The exponential magnetization decay at a rate �!2
SE�c, is

evidenced by the slopes in the solid black lines in Fig. 2(b).
The second term in Eq. (3) [32] gives a shift depending on
N, and is responsible for the �MSDR gap separating the
Hahn and the CPMG decays in Fig. 2(b). While normally
the usual expression used for the restricted diffusion decay
rate is just the first term of (3) [29], the second term derived
here is unique to the SDR sequence and provides a new
degree of freedom for probing restrictions according to the
choice of x. In particular if x � �c � y, the decay of
the signal during the SDR is dominated by the Hahn
portion of the sequence and approaches Mrestricted

Hahn ðyÞ ¼
expf3�!2

SE�
2
cg expf��!2

SE�cyg, but if x ¼ y ¼ TE=N �
�c the SDR decay will be Mrestricted

CPMG ðTE; NÞ ¼ expfð1þ
2NÞ�!2

SE�
2
cg expf��!2

SE�cTEg. Thus, the SDR approach

allows one to probe �c—and hence a confinement
length lc—from the difference between the Hahn and the
CPMG decays (�MSDR) that are built into the sequence.
Notice that if TE, y � �c,

�MSDR=M
restricted
Hahn ðTEÞ ¼ expf2ðN � 1Þ�!2

SE�
2
cg � 1

independently from TE, x or y. Moreover, while the expo-
nential rate typically used for determining lc is /
�!2

SE�c / l4c, the shift term

lnf�MSDR=M
restricted
Hahn ðTEÞ þ 1g ¼ 2ðN � 1Þ�!2

SE�
2
c

¼ ðN � 1Þl6c�2G2=ð4D2
0Þ

amplifies this new source of contrast withN, and makes it a
more sensitive reporter on the value of lc as it is / l6c.
It follows that the sequence in Fig. 1 can interrogate

restricted diffusion while fixing TE as well as the number
of inversion pulses, by dividing an echo train into periods
involving different interpulse delays x and y. By control-
ling the ratio x=y one can probe the spectral density Sð!Þ
and determine the transition between Hahn- and CPMG-
dominated regimes. The total sequence’s time modulation
fSDR will then be given by

fSDRN;x;yðt;TEÞ ¼ fCPMG
N�1 ðt; ðN � 1ÞxÞ

þ ð�1ÞN�1fHahn1 ðt� ðN � 1Þx; yÞ; (4)

where fCPMG
N�1 and fHahn1 are the CPMG and the Hahn

modulating functions. The filter function jFSDR
N;x;yð!;TEÞj2

associated with SDR will thus be the sum of a CPMG

FIG. 2 (color online). (a) Normalized mean square displace-
ment (solid multicolored line) of the diffusing spins in a re-
stricted space. The dashed black line gives the free diffusion law
while the dotted gives the restriction length lc. The inset shows,
in different colors, random trajectories for different total times
within a cylinder of diameter d, where lc � 0:37d. The same
color tones are in the solid line to show the different time
regimes of the spin trajectories. (b) Time evolution of the spin
magnetization under CPMG (N ¼ 8 pulses) and Hahn-echo
sequences for spins diffusing in a restricted space (triangles,
circles), and under free diffusion (crosses, dashes). The solid
black lines show the time range where the restricted diffusion
effects dominate; the difference �MSDR between these lines
gives a contrast, over which signals can be coherently modulated
by a suitable SDR filter function.
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portion, a Hahn portion, plus a cross term representing an
interference between these two filters:

jFSDR
N;x;yð!;TEÞj2¼jFCPMG

N�1 ð!;ðN�1ÞxÞj2þjFHahn
1 ð!;yÞj2

þð�1ÞN�12Refei!ðTE�yÞ

�FCPMG
N�1 ð!;ðN�1ÞxÞFHahn

1 ð!;yÞg: (5)

This filter-function formalism allows one to derive a solu-
tion for the resulting signal decay

MSDRðTE; x; y; NÞ ¼ MCPMGððN � 1Þx; N � 1ÞMHahnðyÞ
�MCross-SDRðTE; x; y; NÞ; (6)

whose analytical expression is given in the Supplemental
Material [30]. It is worth concluding this paragraph by
noting that the correlation time �c can also be extracted
by comparing the exponential decay curves of independent
Hahn and CPMG sequences, or by changing the N=TE
ratio of a CPMG set. Such variations, however, would
require comparing signal decays arising frommeasurements
involving different number of pulses or different overall
TE’s. Only SDRmanages to keep those parameters—whose
variation could eclipse the diffusion effects being sought
constant throughout the measurements.

SDR measurements of restriction lengths.—As proof of
SDR’s capabilities to accurately measure restricted diffu-
sion, the sequence was applied to examine the diameter of
water-filled microcapillaries with a nominal value of 5�
1 �m (Polymicro Technologies, Phoenix, AZ, USA). A
free diffusion coefficient D0 � 2:3� 10�5 cm2=s was
measured by a conventional NMR sequence [23] in which
the orientation of an applied gradient coincided with the
principal axis of the microcapillaries. 1H SDR curves of
water diffusing within the capillaries were recorded in the
presence of a transverse magnetic field gradient using a
9.4 T Bruker microimaging NMR scanner, where the ef-
fects of background gradients (G ¼ 0) were found negli-
gible. Figure 3 shows the SDR modulations observed as a
function of x with TE ¼ 80 ms, for values of G ¼ 14:4
and 21:6 G=cm. A transition from the diffusion-driven
Hahn decay (x� 0) to the CPMG decay (x ¼ TE=N) can
be clearly appreciated in each data set; the difference
between the x ¼ 0 and x ¼ TE=N conditions, �MSDR,
together with the dependence on x in general, provide a
robust determination of the diffusion’s correlation time—
and from there of lc. The fit between the analytical expres-
sion derived for the SDR decay (Eqs. (S.5)–(S.22) in the
Supplemental Material [30]) corresponding to particles
diffusing in a cylinder [21,28] and the experimental data
is excellent, and so is the agreement with the nominal inner
diameter provided by the capillaries’ supplier. Note the
resemblance in the behavior of the SDR curves in Fig. 3
and the h�r2i in Fig. 2(a): in both cases curves plateau for
times x > �c, evidence of a full sampling of the restricting
space.

Discussion.—The fact that the different �MSDR mea-
sured by SDR at constant TE and N are solely defined by
�c, provides a novel and simpler approach for determining
restriction lengths lc by NMR. Alternative noninvasive
methodologies for probing the compartment dimensions,
foremost among them diffusion-diffraction phenomena
[15,23,24], require very strong magnetic field gradients—
stronger by �2 orders of magnitude than the gradients
demanded by SDR, when small pores are considered. For
example, measuring diffraction patterns in cylindrical
pores characterized by a restricting length scale of
�5 �m such as the ones used in this study, would require
gradient amplitudes exceeding 1000 G=cm. Furthermore,
methodologies that focus on probing a transition from free
to restricted diffusion, will usually do so focusing on the
deviations observed for the spectral density from power-
law tails [19,21,22]. Instead, in the SDR case, the decay is
dominated by the restricted diffusion regime: this makes
�MSDR a much more robust and sensitive means for deter-
mining length constraints. The resolvable restricting sizes
of the ensuing method will eventually depend on the ratio
�MSDR=M

restricted
Hahn ðTEÞ being larger than the signal to noise

ratio; among the factors that can magnify this ratio are N
and G, which enhance �MSDR as ðN � 1Þl6c�2G2=ð4D2

0Þ.
Probing restricted diffusion in tissues for example, where
the diffusion coefficientD0 � 0:7� 10�5 cm2=s, will lead
to variations in �MSDR=M

restricted
Hahn ðTEÞ of between 10%–

250% for a compartment in the 1–1:5 �m range and
typical gradient amplitudes of �50 G=cm and N ¼ 16. If
stronger gradients (> 500 G=cm) and spin-abundant
porous systems are considered, sizes on the order of hun-
dreds of nanometers should become clearly resolvable
(depending on the intrinsic D0, which can also be
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FIG. 3 (color online). Experimental SDR signals normalized
with the first data point (symbols) as a function of the x delays.
The solid lines are analytical fittings of Eq. (6) to the experi-
mental curve. By using the measured diffusion coefficient D0 �
2:3� 10�5 cm2=s, the fitted diameter d given in the plots is in
agreement with the nominal value d ¼ 5� 1 �m.
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controlled via temperature). As N increases the sensitivity
of the measurements also grows and the detectable size
limits may be reduced even further. However, SDR’s
robustness will also depend on the accuracy of the refocus-
ing pulses. Furthermore, SDR may be biased towards
longer T2 species, as a result of its constant-time nature.

This study demonstrated another instance where—as
was the case with chemical exchange and J-coupling ef-
fects [14]—suitable DD schemes can extract coherent
modulations from restricted NMR spectral fluctuations.
As in previous spectroscopic demonstrations, a key ingre-
dient to achieve these modulations is to have spins
exchanging within a discrete or bound frequency spectrum,
which DD can then probe by adjusting its filtering charac-
teristics. The ensuing SDR method is particularly simple
for determining the restricting length scales in complex,
opaque systems [15,18] where the pore topology governs
physical or biological properties of the materials.
Applications of SDR to probe other kinds of constrained
or pinned diffusive processes like charges diffusing in
conducting crystals [33] or spin diffusion in molecules
[34] can also be envisaged. Additionally, we expect that
this method can be useful for imaging other kinds of
spectra at the nanoscale; for example by sensing the corre-
lation times of noise fluctuation generated by a host system
on single spins in diamonds [35].
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