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Abstract
Objects making up complex porous systems in Nature usually span a range of sizes. These

size distributions play fundamental roles in defining the physicochemical, biophysical and

physiological properties of a wide variety of systems – ranging from advanced catalytic

materials to Central Nervous System diseases. Accurate and noninvasive measurements

of size distributions in opaque, three-dimensional objects, have thus remained long-stand-

ing and important challenges. Herein we describe how a recently introduced diffusion-

based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo

(NOGSE), can determine such distributions noninvasively. The method relies on its ability

to probe confining lengths with a (length)6 parametric sensitivity, in a constant-time, con-

stant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity

for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical

derivations and simulations are presented to verify NOGSE’s ability to faithfully reconstruct

size distributions through suitable modeling of their distribution parameters. Experiments in

yeast cell suspensions – where the ground truth can be determined from ancillary micros-

copy – corroborate these trends experimentally. Finally, by appending to the NOGSE proto-

col an imaging acquisition, novel MRI maps of cellular size distributions were collected

from a mouse brain. The ensuing micro-architectural contrasts successfully delineated dis-

tinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in

a non-invasive manner. Such findings highlight NOGSE’s potential for characterizing aber-

rations in cellular size distributions upon disease, or during normal processes such as

development.

Introduction
Cellular morphologies are intimately linked with biological functions in general, and with a tis-
sue’s capacity to perform its physiological role in-vivo in particular. Cell sizes can determine,
inter-alia, the Central-Nervous-System (CNS) axonal conduction velocities [1], and the effi-
ciency of oxygen transport by red-blood cells [2]. When viewed as an ensemble, cellular sizes
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are nearly invariably dispersed across a distribution, whose profile is tightly regulated by elabo-
rate mechanisms aiming to maintain the optimal cellular dimensions for a proper physiological
function [3]. In mammalian brains, for instance, distinct cortical regions evolved slight–but
functionally crucial [4]–variations in their neuronal size distributions, which enable the execu-
tion of different kinds of neural computations [5]. Furthermore, even slight aberrations in axo-
nal sizes have been found related to severe neurological disorders [6–8]. Most evidence about
the mutual dependencies between such physiological processes and underlying size-dependent
distributions, arises from ex-vivo histological studies. Clearly, having the capability to image
cellular size distributions non-invasively and under in-vivo conditions, could be crucial for
understanding the subtle but important connections between morphological features and nor-
mal processes like maturation [9] or plasticity [10], as well as for predicting and understanding
the nature of CNS diseases [11].

Owing to its noninvasiveness and multi-modal contrasts, Magnetic Resonance Imaging
(MRI) has evolved into a central technique for in-vivo investigations of bulk structural, func-
tional and metabolic aspects of the CNS [12]. Diffusion-based MRI in particular, has been used
to shed light on structures whose dimensions are orders-of-magnitude smaller than the imaged
voxel sizes [13,14]. This is made possible by detecting restricted micron-scale Brownian
motions undergone by endogenous water molecules, diffusing within the tissue’s micro-archi-
tecture. Such restriction-related phenomena have proven instrumental in the early diagnosis of
ischemia [15], as well as for mapping white matter (WM) connectivity [13]. MRI methods for
the robust mapping of in-vivo size distributions, however, remain elusive. So-called q-space
imaging [16,17] can generate exquisite contrasts reflecting regional average axonal diameters
[18]. Still, quantifying key parameters of such size distributions (e.g., their mode, peak and
width) remains subject to elaborate assumptions on the nature of the tissues involved, while
requiring the application of extremely strong gradients for probing small compartment dimen-
sions [19–21]. Related microstructure-probing methods have also been put forward [22–24],
but these likewise require complex analyses for parameterizing the distributions, while also
requiring the application of very strong gradients [25]. These difficulties reflect q-space’s lim-
ited parametric sensitivity towards the average length lc defining the confinement, which in
these approaches varies as l2c . An alternative approach enhancing MRI’s sensitivity towards
small compartment sizes relies on utilizing oscillating gradient waveforms [26–30]. In particu-
lar, the l4c parametric sensitivity of Oscillating-Gradient Spin-Echo (OGSE) MRI towards the
confinement lengths by determining a diffusion spectrum, enables one to probe small elements
in the size distribution by suitably tailoring the gradient’s waveform [29,31,32].

The OGSE approach is designed to scan a diffusion spectrum, and from its width one can
extract the restriction length lc [30]. Alternatively, if the functional form of the diffusion spec-
trum is known, one could design an OGSE-like sequence to directly extract the restriction
length. This study explores the potential for mapping subtle features of compartment size dis-
tributions in this manner, using a recently introduced methodology that probes confining
lengths with a l6c parametric sensitivity [33,34]. At the core of our approach lies a Selective-
Dynamical-Recoupling (SDR) variant known as Non-uniform-Oscillating-Gradient Spin-Echo
(NOGSE), which in previous studies was shown to accurately extract monodisperse or average
pore sizes in a constant-time, constant-number-of-gradients fashion [35]. The constant-time,
constant-number-of-gradients features of this family of sequences allows one to factor out T2

and gradient-switching related weightings from the signal. The present study investigates how
this microstructural l6c parametric sensitivity can be further exploited to probe the parameters
of cell-scale size distributions in the 1–10 μm range. To this effect we discuss first the method’s
principles, including simulations demonstrating NOGSE’s ability to report on size
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distributions. The methodology is then validated in yeast cells suspensions, where excellent
matching is obtained against a ground-truth stemming from optical microscopy. Finally,
NOGSE is combined with MRI measurements to map the salient features of size distributions
in mouse brains. These measurements clearly reveal hallmark microstructural features of the
CNS, in both white and gray matter tissues. The prospects of exploiting the ensuing size distri-
bution contrasts for correlating between μm-size morphologies and CNS maturation and dis-
orders in human-oriented settings, are discussed.

Theoretical Background: Size Distributions from NOGSE
Measurements
SDR is a recently-developed methodology [33] which utilizes dynamical decoupling concepts
[36] to characterize frequency fluctuations in a constant-time fashion, via non-equidistant
multiple π-pulse echo trains. When used to monitor diffusion-driven fluctuations, SDR offers a
simple way for quantifying confinements with a l6c parametric sensitivity by microscopically
characterizing the diffusion process, rather than by fitting apparent-diffusion weightings/
decays [34]. This is performed by systematically changing a single time-delay variable in a con-
stant time fashion and with a fixed number of refocusing π-pulses, which provides robustness
against progressive T2 decay and cumulative refocusing pulse errors, respectively. In the con-
text of compartment size estimations, the opportunity arises of replacing SDR’s multi-pulse
echo trains by a gradient waveform modulation [34,35]. The resulting Non-uniform-Oscillat-
ing-Gradient-Spin-Echo (NOGSE) methodology involves (N-1) gradient oscillations akin to
those in a Carr-Purcell-Meiboom-Gill (CPMG) like modulation characterized by a variable time
x [37], followed by a single Hahn-echo-like oscillation of period y such that (N − 1) � x + y�
TNOGSE –where TNOGSE is a constant (Fig 1A). The diffusion-weighted signal attenuation E
(TNOGSE) arising from a spin ensemble within a single compartment that is dephased by this
oscillating gradient waveform G(t), can be described asMNOGSE(TNOGSE) = exp{−β(TNOGSE)}.

Here the attenuation factor bðTNOGSEÞ ¼ 1
2

R1
�1jFðo;TNOGSEÞj2SðoÞdo [30,30,34,35,37], where

S(ω) is a spectral density given by the Fourier Transform (FT) of the spins’ displacement cor-

relation function gðtÞ= ffiffiffiffiffiffi
2p

p ¼ hrð0ÞrðtÞi= ffiffiffiffiffiffi
2p

p
; and F(ω, TNOGSE) is a filter function given by

the FT of the gradient modulation
ffiffiffiffiffiffi
2p

p
gGðtÞ. Under typical restricted diffusion conditions the

spectral density will be given by SðoÞ ¼ D0t
2
c

ð1þo2t2c Þp
[34], where τc is the time required for most

molecules to fully probe the pore boundaries [34,38,39]. τc is therefore related to the confining
length scale lc by the Einstein-Smoluchowski expression l2c ¼ 2D0tc; where D0 is the free diffu-
sion coefficient. For more complex geometries the displacement power spectrum S(ω) can be
written as a sum of Lorentzian terms [35,39]; however, given that for typical geometries (cylin-
der, spheres, planar layers) the contribution from the second term in these series expansions is
lower than 2% [39], we shall for simplicity ignore all but the dominant term in this study.

NOGSE’s ability to probe confinements as lc
6, derives from the signal amplitude modulation

that it exhibits as a function of the delay x. This modulation will vary between values corre-
sponding to a pure x = 0 Hahn-echo oscillation,MNOGSE(TNOGSE, N, x = 0) =MHahn(TNOGSE),
and values arising from a CPMG gradient oscillation where x = TNOGSE/N:MNOGSE(TNOGSE, N,
x = TNOGSE/N) =MCPMG(TNOGSE, N). The difference between these two limiting values repre-
sents NOGSE’s amplitude modulation, ΔMNOGSE =MCPMG(TNOGSE, N) −MHahn(TNOGSE)/
exp[−ΔβNOGSE(TNOGSE, N)] − 1, whose value can then be monitored as a function of x. If
TNOGSE/N>>τc, i.e. if the diffusing spins experience a restriction imposed by a confining topol-
ogy, the CPMG-related attenuation factor bCPMGðTNOGSE;NÞ � g2G2D0t

2
c ½TNOGSE � ð2N þ 1Þtc�

[34]. This includes a dominant term/ t2c ; well-known from OGSE-type experiments [38,39],
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plus a correction proportional to t3c / l6c : The Hahn-related attenuation factor (N = 1) under
similar conditions is given by bHahnðTNOGSE;NÞ � g2G2D0t

2
c ½TNOGSE � 3tc�. By combining these

two elements in a single pulse sequence, NOGSE delivers a modulation depending on the dif-

ference between these attenuation factors: Dbrestricted
NOGSE ðTNOGSE;NÞ ¼ � 1

4D2
0

ðgGÞ2 � ðN � 1Þ l6c .
This explains the experiment’s lc

6 dependence on restriction lengths, which is different from

Fig 1. Characterizing size distributions from NOGSE data. (A) NOGSEMRI sequence used, encompassing an initial block probing the confinements
over a time TNOGSE, and a single-shot spin-echo Echo-Planar-Imaging readout (NOGSE gradients are shown along the RO direction, but can be applied in
arbitrary orientations). (B) x time-dependence of the NOGSE signal attenuation E(TNOGSE) for different size distributions. Note that as the lognormal
distribution width increases the E(TNOGSE) changes both in curvature and in overall amplitude; the inset highlights this by normalizing the curves to their first
point (Min(x)). (C) Probability distributions P(l) extracted from fitting the simulations in (B) for a given restricting length l in a noise-less reconstruction. The
extracted distributions overlap perfectly with the simulated ones. (D) Effects of adding noise to the NOGSE signal for the widest distribution considered in (C):
notice that even when fluctuations reach 10% of the signal, the fits remain robust and the distributions are well reconstructed (inset). Throughout this Fig
symbols represent the synthetic data whereas solid curves represent fits to these data. For all distributions lc = 2 μm,G = 40 G/cm,N = 8, TNOGSE = 30ms.

doi:10.1371/journal.pone.0133201.g001
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either q-space’s quadratic or OGSE’s quartic conventional dependencies. Notice that whereas
OGSE experiments are mostly analyzed in the frequency domain in order to discriminate the
transition from free to restricted diffusion regimes [27,28,30], NOGSE is performed and ana-
lyzed in the time domain as a function of the aforementioned x parameter. This reveals the
transition between free and restricted diffusion regimes as an amplitude modulation, mimick-
ing the time evolution of the mean square root displacement of the diffusing spins [34,35]. By
virtue of the sixth-power law of NOGSE’s amplitude modulation, one could envision a subset
of experimental conditions and substrates (μm sizes, suitable relaxation delays, moderate gradi-
ents) whereby NOGSE could have a good ability to distinguish different restriction lengths;
examining whether this potential translates into a useful new tool to characterize size distribu-
tions, is the main goal of this work.

To do so we assume that the NMR signal in most porous system can be considered as arising
from an ensemble of compartments with potentially different sizes l. The total signal modula-
tion in these experiments will thus be given by SNOGSE(x) = ∑l P(l)MNOGSE

l(x), where P(l) is the
compartment size’s probability distribution characterizing the ensemble, andMNOGSE(x) is as
described above. As a model for the compartment size’s distribution we chose a lognormal dis-

tribution of the form PðlÞ ¼ 1
l�lnðsÞ ffiffiffiffi

2p
p e

�ðlnðlÞ�lnðlcÞÞ2
2lnðsÞ2 , where lc is the mean compartment size and σ is

the width of the probability distribution about its mean. Although a different distribution
could be clearly chosen, we preferred this specific distribution as it often describes well CNS-
type systems [40,41]; as further illustrated below, experimental results were consistent with this
model. Notice as well that given the assumed functional for S(ω), the pores being characterized
are considered completely hermetic and described by an average restriction length. Therefore,
certain effects such as incomplete restrictions, exchange between compartments or permeabil-
ity cases, will not be optimally described by our model. These effects will still be accounted for,
either by a larger effective pore size, or by a change in the distribution of ensemble sizes. To
account for such complexities in a more accurate fashion, further refinements of the Lorentzian
S(ω) model would be necessary.

Before describing the results of these tests it is worth stressing that, if a given signal decay
could be unambiguously traced to the effects of diffusion during the application of a per-
fectly characterized gradient waveform modulation, then lc could be probed with similar
parametric sensitivities using suitable Hahn-based, or CPMG/OGSE-based sequences. In
such cases, however, this would require comparing signals arising from measurements that
involve different total evolution times or different number of gradient oscillations; under
such conditions, T2 as well as oscillating gradient waveform imperfections (or cross-terms
with background gradients) might introduce attenuation artifacts that could eclipse the pure
diffusion signal attenuation. Hence the potential of NOGSE for probing constrained diffu-
sion could be summarized as stemming from: i) the fact that in a favorable TNOGSE/N>>τc
regime NOGSE’s amplitude modulation will vary as l6c , a parametric dependence which
might be desirable for microstructural characterizations, and ii) NOGSE l6c�modulations are
retrieved from a single constant-time, constant-number-of-gradient-modulation sequence,
rendering these measurements independent of T2 and of gradient-switching related artifacts.
In this regard, it is worth pointing out that a higher parametric sensitivity will not always
provide a more accurate determination of restriction sizes: a proper tradeoff between the sig-
nal attenuation of a diffusion-based experiment and its parametric sensitivity to the sizes
being measured, needs to be achieved.
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Materials and Methods

Simulations
All simulations were performed using Matlab (Mathworks, Natick, MA, USA). The full analyti-
cal expressions expected for NOGSE signals in homogeneously confined geometries were
recently derived [34,35]. To extend these NOGSE responses to a given distribution of confine-
ments, an array of individual NOGSE signalsMl

NOGSE (x) arising from 1989 compartment
sizes l equidistantly dispersed between 0.056 and 10 μmwas first simulated. An intrinsic dif-
fusion coefficient of D0 = 0.7x10-5 cm2/sec was used for generation of these signals, which
were subsequently weighted by their fraction in the lognormal distribution, and summed as
SNOGSE(x) = ∑l P(l)Ml

NOGSE (x). Additional specific parameters for the simulations are given in
the figure captions.

Specimen preparation
All experiments were approved by the Institutional Animal Care and Use Committee of the
Weizmann Institute of Science under protocol number 10790514–1. Fresh saccharomyces cere-
visiae Baker’s yeast cells were dissolved in PBS in a 10 mm NMR tube, and left for ~72 hours
prior to their MR investigation. Two mice were sacrificed by isoflurane overdose and their
brains were fixed in formaline, and washed twice with PBS prior to their insertion to a 10 mm
NMR tube filled with Fluorinert (Sigma-Aldrich, Rehovot, Israel). All specimens were left
in the magnet for at least three hours prior to experiment commencement, to thermally
equilibrate.

MRI experiments
Experiments were performed on a 9.4 T Bruker Avance III equipped with a Micro5 probe
capable of producing gradients up to 291 G/cm in all three dimensions. Temperatures were
stabilized in the 20–25°C range, and experiments were performed using the NOGSE MRI
sequence shown in Fig 1A. For the yeast cells, the following imaging parameters were used:
TR/TE = 4000 / 64 ms, Field of View FOV = 19 x 19 mm2 with a matrix size of 64x64, leading
to an in-plane resolution of 296x296 (μm)2, and slice thickness = 3000 μm and 48 signal
averages (total experiment time, ~1.5 hours for the entire curve). NOGSE parameters were
G = 87 G/cm, TNOGSE = 30 ms, N = 8, and x was varied between 1 and 3.75ms in 29 steps.
The mouse brain imaging parameters were as follows: for the sagittal orientation, TR/TE =
4000 / 100 ms, FOV = 13 x 13 mm2 with a matrix size of 144x144, leading to an in-plane reso-
lution of 90x90 (μm)2, and slice thickness = 400 μm and 160 signal averages; for the coronal
orientation, TR/TE = 4000 / 91 ms, FOV = 16 x 12 mm2 with a matrix size of 192x144, leading
to an in-plane resolution of 83x83 (μm)2, and slice thickness = 600 μm and 160 signal averages
(total experiment time ~5.5 hours for the entire curve). NOGSE parameters for both coronal
and sagittal planes were G = 57.6 G/cm, TNOGSE = 30 ms, N = 8, and x varied between 0.8 and
3.75 ms in 31 steps. In the corpus callosum experiments, the NOGSE gradients were applied
perpendicular to the main axis of the axons; in the coronal experiments, NOGSE experiments
were applied in the R-L direction.

Data analysis
All data were analyzed using a home-written code employing Matlab’s lsqnonlin function.
When regions-of-interest (ROI) were considered, the mean signal from the pixels in the ROI
was analyzed. Maps of the mean, peak value and width of the distribution, were generated
from a pixel-by-pixel fit of the experimental data to NOGSE’s theoretical signal decay in the
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presence of distributions assuming a uniform D0 of 0.7x10
-5 cm2/sec and 1.0x10-5 cm2/sec in

the brains and yeast cells, respectively. The size distributions were fitted by first generating
NOGSE signals for an array of restricting lengths ranging between 0.056 and 10 μm, in equidis-
tant 0.005 μm steps. The experimental data was then regressed onto these curves. To avoid
local minima, each search began with 18 combinations of different mean and width distribu-
tions, and complex-valued solutions were excluded. The best fit was then selected and its distri-
butions parameters were stored. No assumptions on tissue models (e.g., intra/extra-cellular
compartments) were made; a single lognormal distribution was thus fitted for each fitted ele-
ment, regardless of the element’s potential heterogeneity. This implicitly means that the con-
strained diffusion signal contributions arising from all underlying compartments (e.g.,
extracellular, intracellular, etc.), are assumed described by a single lognormal distribution
weighting. The yeast cells geometry was assumed to be spherical (as was validated by the
microscopy results shown in Fig 2B), such that the lognormal distribution described spheres
rather than one dimensional objects. A correction factor of 1/0.3 was thus applied to the distri-
bution mean, to account for this spherical compartment shape [30,35]. In the brains, we did
not assume any particular geometry, and simply considered a distribution of correlation
lengths lc.

Yeast Cells Microscopy
A sample of the yeast cells was taken directly from the NMR tube and imaged via a DeltaVision
system consisting of an Olympus IX71 wide-field inverted fluorescence microscope, an Olym-
pus UPlanApo 63x and a NA 1.40 oil immersion objective (Applied Precision, Seattle, WA,
USA). Thirty images containing thousands of yeast cells were subsequently imported in Ima-
geJ, and their Feret diameter (i.e., the longest distance within the oval shape) was automatically

Fig 2. Validating NOGSE’s size distribution predictions in yeast cells. (A) A representative image of the examined yeast ensemble; note that objects
larger than ~8 μm are not observed in these images, suggesting that the wide right shoulder of the microscopy-derived distribution in (B) arises from
unresolved, adjacent cells. (B) Size distribution reconstructed from a NOGSE experiment on the yeast ensemble (red curve, with symbols in the inset
presenting the experimental data and the solid line their best fit), overlaid on the cellular size distribution obtained from optical microscopy (bin size = ~ 0.05 μm).
NOGSE parameters: TNOGSE = 30ms,G = 87.3 G/cm,N = 8.D0was assumed 1x10-5 cm2/sec, as this gave the best fits to the data.

doi:10.1371/journal.pone.0133201.g002
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quantified. Objects smaller than 2 μmwere misidentified by the software recognition algorithm
and were hence discarded from the analysis.

Results

Validating NOGSE’s ability to extract size distributions
As a test of NOGSE’s ability to extract simple parameters to characterize size distributions–
including their mean, peak and widths– signals were first simulated for five lognormal distribu-
tions P(l) distributed around a biologically-relevant size of lc = 2 μm, and possessing different
distribution widths σ (Fig 1B; seeMaterials and Methods for details). Clearly, even small dif-
ferences σ� 0.1.lc imprint a marked dependence on the amplitude modulations and on the cur-
vatures of the NOGSE signals (inset, Fig 1B). Excellent correspondence was observed when
synthetic NOGSE data are given as input, and the originating size distributions are recovered
by fitting (Fig 1C). Moreover, although it might be expected that the presence of noise in realis-
tic biological data would influence these fittings, even adding 10% fluctuations (a value that is
much higher than the typical noise levels present in typical experiments) yields only marginal
variations in the extracted size distributions: all the general features of the distribution includ-
ing mean, peak and width values, are still captured (Fig 1D, inset). Furthermore, such features
are not limited to the particular length we have chosen; supplementary S1 Fig shows further
analyses for smaller and larger sizes revealing that, in each case, fits of the NOGSE experiment
recapitulate well the underlying size distributions.

With these simulations as background, size distributions were experimentally quantified in
a biological system whose ground-truth was determined by an independent modality. Yeast
cells were chosen due to their simple spherical geometry, and the NOGSEMRI characterization
was checked against a large number (thousands) of cells whose sizes were quantified ex vivo by
optical microscopy. Results of these measurements are shown in Fig 2; Fig 2B in particular
compares the size distributions extracted by fitting experimental NOGSE data (inset), against
the cell size histogram obtained by light microscopy. The two size distributions closely resem-
ble one another and peak at the same cell diameter of ~5.8 μm; this value is in close agreement
with the average yeast cell size measured via a different diffusion MRmethodology [42].
Importantly, not only the maxima but also the widths of the two distributions overlap signifi-
cantly. Notice that although the microscopy suggests a broadening of the distribution biased
towards larger cell sizes, closer inspection of the yeast cells’ images (Fig 2A) evidences that
almost no cell is actually larger than 8 μm. The microscopy’s high-lc tail therefore likely results
from artifacts in the image recognition algorithm, and reflects adjacent cells that were not suffi-
ciently resolved in the image to be recognized as separate entities. Minor deviations can also
suggest that a different distribution model could be appropriate for characterizing this speci-
men; in particular, consideration of different models for the intra- and extra-cell signals contri-
butions could perhaps enhance these fits even further. Additional effects due that were not
considered in our model–for instance spin exchanges between intra- and extra-cellular com-
partments– could also contribute to these deviations.

Mapping cellular size distributions: Non-invasive NOGSE-based brain
characterizations
Given this potential to reconstruct size distributions from a single-variable (x) experiment,
NOGSE was combined with a fast MRI protocol as shown in Fig 1A, and used to map an intact
mouse brain. Brain’s WM in particular is often targeted in microstructural characterizations,
given the importance of axonal sizes in defining conduction velocities [4,43], and their
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potential structural correlations with CNS diseases [7]. NOGSE MRI signals were therefore col-
lected and examined; raw data arising from these experiments are presented in Fig 3 for the
corpus callosum–a prominent white matter structure–and clearly show the expected signal
increase with increasing x-values.

Fig 4 analyzes the corpus callosum data in closer detail. Fig 4B displays this structure’s
NOGSE signals observed as a function of x for the five selected regions-of-interest (ROIs)
defined in panel 4A, when the diffusion-sensitizing oscillating gradient is applied in a direction
orthogonal to the main axis of the fibers (i.e., along the vertical axis for the displayed image
planes). Each of these regions exhibits a slightly different ΔMNOGSE modulation; fits of these
data to the size distributions’ lognormal parameters (Fig 4B, solid lines) led to the lognormal
curves in Fig 4C, showing variations in the means, peaks and widths of the confinements for
these various ROIs. The excellent agreement of the fitted curves with the experimental data is
consistent with the lognormal-distribution assumption. Extending these analyses on a pixel-
by-pixel fashion results in the compartment size maps shown in Fig 4D–4F. The mean size and
the distribution width maps in particular demonstrate significant contrasts between different
corpus callosum anatomical regions, providing a microstructure-based tissue segmentation.
For instance, although the genu and splenium regions of the corpus callosum exhibit similar
mean sizes, the width of their distributions appears larger in the latter–consistent with human-
based histological results [44]. Furthermore, the corpus callosum midsection exhibits larger
compartment sizes distributed with a larger width. Overall these results suggest five morpho-
logically distinct regions (Fig 4D), in good agreement with hallmark anatomical segmentations
observed in end-point histological human studies [44,45]. These NOGSE-derived maps also
resemble those in a recent study that employed pseudo-2D q-space MRI and pixel clustering,
to portray size distributions in a rat’s corpus callosum [46]. Notice, however, that the quantita-
tive results summarized in Fig 4 are obtained in a 1D fashion, and do not need to invoke clus-
tering or other models of the tissue’s microstructure.

Fig 3. Raw NOGSEMRI data arising from sagittal images of a mouse brain, masked for the corpus callosum and plotted as a function of increasing
x-values.Notice the clear increase in signal intensity with increasing x-values, as the weighting gradient transitions from a mostly long bipolar block to an
OGSE-like sequence–while always retaining a constant-time fashion. Notice as well the different profiles evidenced by the various corpus callosum sub-
sections. The diffusion gradients were along the phase-encoding direction, i.e. along the vertical axis of the image.

doi:10.1371/journal.pone.0133201.g003
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Due to their higher, more coherent cellular organizations, most microstructural diffusion
MRI studies focus on white matter characterizations. Structural disorder at a cellular level has
made studying microstructural features of gray matter (GM) much more challenging [47,48].
In view of this we sought to explore NOGSE’s size distribution contrast capabilities to identify
GM’s most salient morphological feature: its cortical layering [49,50]. To this end a mouse
brain was imaged along a coronal plane; Fig 5 shows raw data arising from such experiments,
demonstrating once again a well-behaved and characteristic NOGSE response for all pixels,
both in the grey and the white matter. ROIs were selected from these data in different cortical
gray matter prominent features including the cortical layers and deep gray matter of the stria-
tum (Fig 6A). The ensuing NOGSE signals, shown in Fig 6B, exhibit once again region-depen-
dent responses. On comparing these with the responses in Fig 4B, NOGSE’s amplitude
modulations appear larger in GM than in WM counterparts. This reflects the typically larger
mean cellular sizes that characterize GM over WM axon counterparts, as evidenced upon com-
paring the distributions in Figs 4C and 6C. Note again the excellent agreement between the fits
and data in Fig 6B, with σ and l (besides the overall amplitude of the signal) as the only free
parameters to adjust; this consistency lends further support to the usefulness of the lognormal-
distribution assumption. Pixel-by-pixel maps of the NOGSE-derived GM size distributions are
shown in Fig 6D–6F, and point to several remarkable features. One concerns the markedly dif-
ferent contrasts that the mean, the width and the peak of the size distributions yield in the cor-
tical GM. The contrast afforded by the mean sizes of these distributions closely resembles

Fig 4. Mapping histological size distributions in a mouse corpus callosum. (A) Definitions of the various ROIs placed in different anatomical regions,
superimposed on a reference MRI image. (B) Ensuing curves (symbols) and best fits (solid lines) arising from a NOGSEMRI experiment. (C) Size
distributions P(l) extracted from (B), under a D0 = 0.7x10-5 cm2/sec assumption. (D-F)Maps of the mean, the peak and the width values extracted from pixel-
by-pixel fits of the NOGSE response, highlighting the contrast between the corpus callosum different anatomical regions. NOGSE parameters: TNOGSE = 30
ms,N = 8,GNOGSE = 57.6 G/cm applied perpendicular to the main axis of the fibers in the corpus callosum (i.e., the vertical axis of the images). The extracted
values describe the correlation lengths lc. SeeMaterials and Methods for further parameters.

doi:10.1371/journal.pone.0133201.g004
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known features of the cortical layering. These layers, identified in Fig 6D as I, II+III, IV, V and
VI, have thicknesses of ~ 90, 450, 180, 360 and 450 μm, respectively. These thicknesses are con-
sistent with literature values for mice cortical brain layers [50]. Interestingly, the peak map
exhibits a similar but not identical layering contrast: layers I, II and III appear to have similar
distribution peaks (Fig 6E); layers are even further melded together in the distribution width
map. This highlights the need for a sensitive technique capable of furnishing a full morphologi-
cal characterization of size distributions, vis-à-vis other methods that may rely solely on one
parameter (like the average compartment size) to deliver this information. It should be further
noted that diffusion anisotropy effects–though typically quite small in gray matter [47]–would
also need to be considered if proceeding with a further refinement of this model.

Discussion
This study sought to test the feasibility of extracting cellular-scale size distributions parame-
ters–including means, peaks and widths–using a microstructural sequence that like NOGSE,
exhibits a l6c dependence. Experiments show that such distributions can indeed be accurately
characterized from simple curves involving a single variable and moderate gradient amplitudes.
NOGSE’s robustness reflects the good contrast that small-sized structures like the ones targeted
in this study endow it, a constant-time nature freeing it from T2-derived decays, and a constant
number of gradient switchings that reduce potential sources of error. We further note that
although NOGSE’s l6c term may exist in principle also in OGSE, it has insofar not been used
and would require special precautions to unambiguously reveal it.

When coupled to MRI’s non-invasive mapping abilities, NOGSE’s contrast opens a wealth
of vistas for the in vivo characterization of tissue structures in general, and of the CNS in partic-
ular. These types of “virtual histology” characterizations could depict aberrations in cellular
morphologies in a range of pathologies including de- and dys-myelination of axons [51] and
changes in neural densities and sizes [52]–information which is usually evidenced only upon

Fig 5. Idem as in Fig 3, but showing raw NOGSEMRI data from coronal images of a mouse brain.Different brain regions manifest different NOGSE
signal increases with increasing x-values, even within the gray matter. These features allow for the microstructural segmentations shown in the main text.
The asterisk in the top-leftmost image represents a tissue area damaged upon preparation.

doi:10.1371/journal.pone.0133201.g005
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post-mortem histological evaluations. Noninvasively tracking the longitudinal evolutions of
such size-distribution contrasts in the CNS via NOGSE MRI experiments could also open new
vistas in understanding, at a physiological level, the evolution of cognitive and behavioral
activities.

At an analytical level it is worth stressing that although this study focused on lognormal dis-
tributions, experimental findings do not have to fulfill this specific scattering to yield a mean-
ingful insight. Ongoing studies are showing that NOGSE can also reveal other distributions,
including multi-modal ones. Indeed, a strong point of the presented results is that the only
“model” that it needs to invoke is that spins diffuse with a uniform coefficient D0 that disperses
their evolution phases according to the Gaussian Phase Approximation [53]. One might argue
that the assumption of a uniform D0, particularly in the brain, may compromise our results;
however, when D0 was mapped via very rapid gradient oscillations and raw data like those
shown in Fig 6 were refitted point-by-point to account for pixel-specific diffusivities, no signifi-
cant differences in the derived distributions could be observed. This robustness can be ascribed
to NOGSE’s exponential contrast, which varies as the relevant lengths to the power of six but
only as D�2

o : variations in D0 will therefore shift slightly the absolute values of the extracted dis-
tributions, yet their intrinsic contrast will be preserved.

Fig 6. Mapping size distributions of a mouse’s gray matter. (A) ROI definitions of various GM regions. (B) NOGSE curves from these ROIs (symbols)
along with the size distribution fittings in each ROI (solid lines). Note the stronger amplitude modulation in the gray matter compared with the WM shown in
Fig 3. (C) Size distributions extracted from the data in (B). (D-F)Maps of mean sizes, peak values and distribution widths obtained by fitting the NOGSE data
retrieved from a mouse brain, reflecting the correlation lengths lc. Cortical layering can be observed, and are marked with Roman numbers on the Mean size
map. NOGSE parameters: TNOGSE = 30 ms,G = 57.6 G/cm, N = 8; the gradient was oriented along the left-right axis of the image, and D0 was assumed
0.7x10-5 cm2/sec.

doi:10.1371/journal.pone.0133201.g006
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One may also wonder whether the Lorentzian approximation adopted here for the spectral
density function, is an optimal one. Whereas this assumption is often adopted for completely
hermetic pores [27,39], its validity may be compromised if restrictions are incomplete, in the
presence of multi-compartment exchange processes, or if mixed diffusion modes are consid-
ered. Moreover, the assumption of a lognormal distribution of pore sizes implies that each pore
is independent, and as such it constrains the possible complexity of the entire system, whose
pores could be interconnected leading to different types of diffusion processes. An alternative
approach could have consisted of assuming a more complex S(ω) form, that includes these
effects. Still, given the very good agreement observed between experimental results and the
simpler Lorentzian model, this research did not justify resorting to more complex spectral den-
sity forms: data could be fitted well by suitable Lorentzian distribution parameters. Still, further
theoretical, computational and experimental studies are needed to determine whether this dis-
tribution is the most adequate characterization to describe spectral densities in more complex
pore structures.

It should also be noted that the l6c parametric-sensitivity is not an automatic guarantee of
better size distribution characterizations. Indeed, in unfavorable instances, the applied gradi-
ents may be too strong or the pores too big, leading to the erasing of contributions from larger
structures and/or data that lack sufficient signal sensitivity. Still, in the context of CNS-relevant
pores, one is often interested in the smaller (<10 μm) dimensions, where NOGSE’s lc

6-depen-
dence should be beneficial for practical gradient values. Another point worth highlighting is
that NOGSE experiments, at least as here performed, are not rotationally invariant; hence, the
corpus callosum analyses require that the gradients be applied perpendicular to the main axis
of the fiber. Nevertheless NOGSE experiments could be performed in alternative ways; and it
would be interesting to explore whether some of these options could lead to rotationally invari-
ant metrics. One should also notice that maximizing NOGSE’s contrast will come at the
expense of prolonging the TE, an attribute that may bias NOGSE towards a tissue’s longer T2

species. Still, at preclinical and clinical fields this limitation should not be too restricting. Fur-
thermore, one could envision performing NOGSE MR Spectroscopy on CNS metabolites
which have very long T2s, to endow the measurement with enhanced specificity towards intra /
extra cellular compartments. Double-NOGSE modes for probing the eccentricities of orienta-
tionally-dispersed morphological distributions [47,54], can also be envisioned. Last but not
least, the NOGSE waveforms could be split around the refocusing pulse, thereby garnering
greater immunity towards sources of artifacts such as eddy currents, or internal susceptibility-
induced gradients.

Another feature worth highlighting is the actual need to introduce size distributions, to
accurately describe the NOGSE responses arising from the brain. Fig 7A stresses this with a
synthetic NOGSE data arising from a modest lognormal distribution (green symbols), along
with fits of these data to a single size (black curve) and to a distribution (red). Clearly, the data
demands being fitted by a distribution in order to reach reasonable residuals. Fig 7B demon-
strates this experimentally with a representative ROI taken from the mouse brain WM. The
excellent agreement then resulting between the experimental data and the fits by adding just a
single extra parameter to the model, lends support to the need for using a distribution of sizes
like the one derived from the lognormal shapes hereby used to describe the experimental data.
Notice as well the similarity between the behavior of the residuals in both the synthetic and
experimental data panels. Remarkably, similar trends were observed for all the ROIs examined
in this mouse brain study, both in the gray and white matter regions. While this does not
unequivocally prove that the experimental deviation from a single compartment model is due
to the presence of size distributions, it lends strong support to the hypothesis that these
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distributions effects are indeed observed. These microstructural findings bode well for future
characterizations of size distributions in the contexts of health, function and disease. Further
studies will be required to test the stability of these results among larger cohorts of brains,
incorporating end-point histology to quantitatively correlate the NOGSE observations with
axonal diameter distributions. Furthermore, following the overall framework given here, it
would be interesting to test whether the contributions of different tissue components (e.g.,
intra/extra-cellular environments) and geometries (e.g., packing, dispersion, etc.) could be
modeled, and their effects included into this kind of studies. In this sense, the data from the
cortex (Figs 5 and 6) are particularly interesting. Although diffusion anisotropy (as obtained
from, e.g., DTI), is generally low in the cortex as well as in most other gray matter areas of the
brain, the gray matter’s underlying microstructures are indeed highly heterogeneous [47,48].
The NOGSE experiment seems to nevertheless show prominent features of cortex; this could
be a result of its filtering of the larger components (such as cell bodies), and from having an
enhanced sensitivity towards the smaller sizes (as manifest in the ~2–3 μm compartments
denoted in Fig 6). Also, as axons project radially in the cortex, it is plausible that NOGSE tracks
to some extent the orientation of these fibers. Future studies will focus on deriving rotationally
invariant metrics from NOGSE, an interesting vista as these distribution parameters could
become a novel way of characterizing orientations in the brain.

It is worth concluding with a reflection on the potential relevance of this study’s experi-
ments for human investigations on the one hand, and for characterization of porous media in
general on the other. The cellular-level characterizations in Figs 4 and 6 were performed using
NOGSE gradient peak amplitudes of 57.6 G/cm; although this is a reasonable gradient strength
for systems designed to investigate animal models, it is significantly higher than gradient
strengths available in clinical scanners. Still, since NOGSE’s amplitude modulation varies as

ΔMNOGSE = 1
4D2

0

ðgGÞ2 � ðN� 1Þ l6c , NOGSE’s parametric-sensitivity towards compartment

sizes can be increased not only by raising G, but also with N [34]. At the lower fields used in

Fig 7. On the need for distributions to describe the NOGSE response arising in brain tissues. (A) Simulation for NOGSE data arising from a
distribution characterized by lc = 2 μm and σ = 0.5 atG = 57.6G/cm,N = 8, and TNOGSE = 30ms along with fits to the distribution (red curve) and an attempt to
fit just a single size to the data (black curve). Residuals of the fits are shown in the inset. (B) Idem but for experimental data arising from ROI #4 of the corpus
callosum (see Fig 4A for the ROI’s definition). The residuals clearly demonstrate the need for distributions to fit the data in a robust way.

doi:10.1371/journal.pone.0133201.g007
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clinical studies T2 is substantially increased; TNOGSE can therefore be made significantly longer
than the 30 ms values used in this study, and thereby accommodate more N oscillations for the
same range of x-values as were used here. Although the “dynamic-range” of the amplitude
modulations may be reduced (a result of trading the square dependence on G for a linear
dependence on N), simulations akin to those shown in Fig 1 for clinically-relevant parameters

Fig 8. NOGSE’s size-resolving potential in human- andmaterials-oriented setting. (A-B) Simulations predicting NOGSE’s ability to extract cellular size
distributions in clinically-relevant settings, involvingG = 6 G/cm,N = 64, and TNOGSE = 120 ms, D0 = 3.0E-5 (cm)2/sec. Notice that even when assuming the
relatively weak gradients available in whole body MRIs, cell-sized distributions can be resolved and characterized. The inset in panel B analyzes the effect of
0.1 and 3% noise added to the third distribution, showing that with some noise levels, distribution can still be reconstructed. All definitions are akin to those in
Fig 1B and 1C. (C-D) Simulations demonstrating NOGSE’s ability to extract pore distributions in mesoporous materials (10–1000 nm range), using the
stronger diffusion gradients available in NMR scanners (G = 200 G/cm, N = 160, and TNOGSE = 150 ms, D0 = 0.41E-5 (cm)2/sec). Notice the strong
differences in signals arising when pores are distributed around lc = 300nm.

doi:10.1371/journal.pone.0133201.g008
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(G = 6 G/cm, N = 64, TNOGSE = 120 ms, D0 = 3.10−9 m2/sec) reveal that at least some cellular-
sized distributions can be faithfully reconstructed, particularly if they have a slightly larger
width (Fig 8A and 8B). Still, it is important to note that the smaller NOGSE’s amplitude modu-
lation becomes, the more challenging it is to resolve narrower distributions. While these simu-
lations rely on somewhat high D0 values–which could reflect diffusivity in white matter [55]–as
well as somewhat higher gradient amplitudes than are conventionally present (e.g., 4 G/cm),
we note that if a more conventional D0 value of 1.5

.10−9 m2/sec along with a more conventional
clinical gradient amplitude are chosen, NOGSE’s G2/D0

2 dependence would render it even
more sensitive, with its amplitude increasing over these calculations by a factor of ~80%. In
this respect, a new generation of scanners possessing stronger gradients, could be particularly
useful to enhance the quality of such experiments. A second realm where NOGSE-based size
distribution characterization methods could apply, arises in the realm of mesoporous materials.
These are important catalytic systems where relevant pore sizes vary between a few nanometers
and fractions of microns [56]. Fig 8C and 8D show the expected NOGSE-derived distributions
arising from such media, assuming pores distributed around a typical size of 300 nm. While
these sizes are over an order of magnitude smaller than those involved in tissue studies,
NOGSE still demands gradient strengths that are normally available on contemporary microi-
maging NMR scanners, to reconstruct these pore size distributions. Even pore-size distribu-
tions in the neighborhood of 100 nm can be characterized in this way, reflecting the relevance
of NOGSE to enable these MR-challenging characterizations vis-à-vis pore size distributions.

In summary, this study presented a new approach to unravel cellular size distributions using a
simple experiment monitoring the time-dependent transitions between free and restricted diffu-
sion regimes. Simulations and in-cell validations demonstrate the reliability of the approach;
when combined with MRI-based mapping techniques, remarkable contrasts demonstrating struc-
tures and size distributions consistent with ex vivo histological analyses, were evidenced in both
white and grey matter tissues. All these features augur well for further exploiting this approach in
novel characterizations of microstructures in porous systems in general, and for studying micro-
structural correlations of normal and diseased CNS in particular.

Supporting Information
S1 Fig. NOGSE simulations for distributions centered around different correlation lengths.
The left panels shows NOGSE signals expected for lc = 1 and 4 μm, for the different distribu-
tions indicated by the symbols. The right panels show the corresponding size distributions
extracted (symbols) along with the ground truth (lines) by fits of the NOGSE data. The lines in
the left panel are then fits generated from simulating NOGSE signals, from the distributions
reconstructed from the right-panel fits. Simulation parameters: G = 40 G/cm, TNOGSE = 30 ms,
N = 8, D0 = 0.7.10−5 cm2/sec.
(PDF)

S2 Fig. Analysis of the NOGSE signals in Figs 4 and 6, as a function of a b value. The b value
of the gradient modulation waveform is defined as [(N-1)(x/TNOGSE)

3+(1-(N-1)(x/TNOGSE))
3]

G2 (TNOGSE)
3/12. The figures clearly show the non-exponential behavior manifesting the

restriction effects of the diffusion process.
(PDF)

Acknowledgments
We thank Prof. Jeffery Gerst and Mr. Dmitry Zabezhinsky (Department of Molecular Genetics,
Faculty of Biochemistry, WIS) for obtaining the yeast cell microscopy images in this study, and

Size Distribution Imaging of Microstructure via NOGSE-MRI

PLOS ONE | DOI:10.1371/journal.pone.0133201 July 21, 2015 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0133201.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0133201.s002


Dr. Nava Nevo (Weizmann Veterinary Services) for her assistance with the brain specimens.
This work was supported by the Israel Science Foundation grant ISF 1142/13, a Helen and
Martin Kimmel Award for Innovative Investigation, and the generosity of the Perlman Family
Foundation.

Author Contributions
Conceived and designed the experiments: NS GAA LF. Performed the experiments: NS. Ana-
lyzed the data: NS GAA. Wrote the paper: NS GAA LF. Contributed new theoretical tools:
GAA.

References
1. Perge JA, Niven JE, Mugnaini E, Balasubramanian V, and Sterling P. Why Do Axons Differ in Caliber?

J. Neurosci 2012; 32: 626–638.

2. Park Y, Best CA, Badizadegan K, Dasari RR, Feld MS, Kuriabova T, et al. Measurement of red blood
cell mechanics during morphological changes (2010). Proc. Nat. Acad. Sci. U.S.A. 107: 6731–6736.

3. Tzur A, Kafri R, Lebleu VS, Lahav G, and Kirschner MW. Cell Growth and Size Homeostasis in Prolifer-
ating Animal Cells (2009) Science 325: 167–171.

4. Caminiti R, Ghaziri H, Galuske R, Hof PR, and Innocenti GM. Evolution amplified processing with tem-
porally dispersed slow neuronal connectivity in primates (2009) Proc. Nat. Acad. Sci. U.S.A. 106:
19551–19556.

5. Innocenti GM. Development and evolution: Two determinants of cortical connectivity (2011). Gene
Expression to Neurobiology and Behavior: Human Brain Development and Developmental Disorders
189: 65–75.

6. Deluca GC, Ebers GC, and Esiri MM. Axonal loss in multiple sclerosis: a pathological survey of the cor-
ticospinal and sensory tracts (2004) Brain 127: 1009–1018.

7. Evangelou N, Konz D, Esiri MM, Smith S, Palace J, and Matthews PM. Size-selective neuronal
changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis
(2001) Brain 124: 1813–1820.

8. Lovas G, Szilagyi N, Majtenyi K, Palkovits M, and Komoly S. Axonal changes in chronic demyelinated
cervical spinal cord plaques (2000) Brain 123: 308–317.

9. Innocenti GM, Vercelli A, and Caminiti R. The Diameter of Cortical Axons Depends Both on the Area of
Origin and Target (2013) Cereb. Cortex in-press, doi: 10.1093.

10. Stepanyants A, Hof PR, and Chklovskii DB. Geometry and structural plasticity of synaptic connectivity
(2002) Neuron 34: 275–288.

11. Cruz L, Roe DL, Urbanc B, Cabral H, Stanley HE, and Rosene DL. Age-related reduction in microco-
lumnar structure in area 46 of the rhesus monkey correlates with behavioral decline (2004) Proc. Nat.
Acad. Sci. U.S.A. 101: 15846–15851.

12. Johansen-Berg H. and Behrens T.E.J. Diffusion MRI: From quantitative measurement to in-vivo anat-
omy. 2009 Academic Press.

13. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI (2003) Nat. Rev.
Neurosci. 4: 469–480.

14. Budde MD and Frank JA. Neurite beading is sufficient to decrease the apparent diffusion coefficient
after ischemic stroke (2010) Proc. Nat. Acad. Sci. U.S.A. 107: 14472–14477.

15. Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, et al. Early detection of
regional cerebral-ischemia in cats—comparison of Diffusion-Weighted and T2-Weighted MRI and
spectroscopy. Magn. Reson. Med. 1990 14: 330–346.

16. Callaghan PT, Coy A, Macgowan D, Packer KJ, and Zelaya FO. Diffraction-like effects in NMR diffusion
studies of fluids in porous solids. Nature 1991 351: 467–469.

17. Cory DG and Garroway AN. Measurement of translational displacement probabilities by NMR—an indi-
cator of compartmentation. Magn. Reson. Med. 1990 14: 435–444.

18. Ong HH, Wright AC, Wehrli SL, Souza A, Schwartz ED, Hwang SN, et al. Indirect measurement of
regional axon diameter in excised mouse spinal cord with q-space imaging: Simulation and experimen-
tal studies. Neuroimage 2008 40: 1619–1632.

19. Assaf Y, Blumenfeld-Katzir T, Yovel Y, and Basser PJ. AxCaliber: A method for measuring axon diame-
ter distribution from diffusion MRI. Magn. Reson. Med. 2008 59: 1347–1354.

Size Distribution Imaging of Microstructure via NOGSE-MRI

PLOS ONE | DOI:10.1371/journal.pone.0133201 July 21, 2015 17 / 19



20. Assaf Y and Basser PJ. Composite hindered and restricted model of diffusion (CHARMED) MR imaging
of the human brain. Neuroimage 2005 27: 48–58.

21. Panagiotaki E, Schneider T, Siow B, Hall MG, Lythgoe MF, and Alexander DC. Compartment models
of the diffusion MR signal in brain white matter: A taxonomy and comparison. Neuroimage 2012 59:
2241–2254.

22. Ambrosone L, Murgia S, Cinelli G, Monduzzi M, and Ceglie A. Size polydispersity determination in
emulsion systems by free diffusion measurements via PFG-NMR. J. Phys. Chem. B 2004 108: 18472–
18478.

23. Özarslan E, Shemesh N, Koay CG, Cohen Y, and Basser PJ. Nuclear magnetic resonance characteri-
zation of general compartment size distributions. New J. Phys. 2011 13: 015010.

24. Shemesh N, Özarslan E, Basser PJ, and Cohen Y. Detecting diffusion-diffraction patterns in size distri-
bution phantoms using double-pulsed field gradient NMR: Theory and experiments. J. Chem.
Phys.2010 132: 034703.

25. Latt J, Nilsson M, Malmborg C, Rosquist H, Wirestam R, Stahlberg F, et al. Accuracy of q-space related
parameters in MRI: Simulations and phantommeasurements. IEEE Trans. Med. Imaging 2007 26:
1437–1447.

26. Aggarwal M, Jones MV, Calabresi PA, Mori S, and Zhang JY. Probing mouse brain microstructure
using oscillating gradient diffusion MRI. Magn. Reson. Med. 2012 67: 98–109.

27. Gore JC, Xu JZ, Colvin DC, Yankeelov TE, Parsons EC, and Does MD. Characterization of tissue struc-
ture at varying length scales using temporal diffusion spectroscopy. NMR Biomed. 2010 23: 745–756.

28. Lasic S, Stepisnik J, and Mohoric A. Displacement power spectrummeasurement by CPMG in constant
gradient. J. Magn. Reson. 2006 182: 208–214.

29. Siow B, Drobnjak I, Chatterjee A, Lythgoe MF, and Alexander DC. Estimation of pore size in a micro-
structure phantom using the optimised gradient waveform diffusion weighted NMR sequence. J. Magn.
Reson. 2012 214: 51–60.

30. Stepisnik J, Lasic S, Mohoric A, Sersa I, and Sepe A. Spectral characterization of diffusion in porous
media by the modulated gradient spin echo with CPMG sequence. J. Magn. Reson. 2006 182: 195–
199.

31. Drobnjak I, Siow B, and Alexander DC. Optimizing gradient waveforms for microstructure sensitivity in
diffusion-weighted MR. J. Magn. Reson. 2010 206: 41–51.

32. Alexander DC, Hubbard PL, Hall MG, Moore EA, Ptito M, Parker GJM, et al. Orientationally invariant
indices of axon diameter and density from diffusion MRI. Neuroimage 2010 52: 1374–1389.

33. Smith PES, Bensky G, Alvarez GA, Kurizki G, and Frydman L. Shift-driven modulations of spin-echo
signals. Proc. Nat. Acad. Sci. U.S.A. 2012 109: 5958–5961.

34. Alvarez GA, Shemesh N, and Frydman L. Coherent Dynamical Recoupling of Diffusion-Driven Deco-
herence in Magnetic Resonance. Phys. Rev. Lett. 2013 111: 080404.

35. Shemesh N, Alvarez GA, and Frydman L. Measuring small compartment dimensions by probing diffu-
sion dynamics via Non-uniform Oscillating-Gradient Spin-Echo (NOGSE) NMR. J. Magn. Reson. 2013
237: 49–62.

36. Uhrig GS. Keeping a quantum bit alive by optimized pi-pulse sequences. Phys. Rev. Lett. 2007 98:
100504-

37. Callaghan PT, Stepisnik J (1995) Frequency-Domain Analysis of Spin Motion Using Modulated-Gradi-
ent Nmr. Journal of Magnetic Resonance Series A 117: 118–122.

38. Klauder JR, Anderson PW (1962) Spectral diffusion decay in spin resonance experiments. Physical
Review B 125: 912–923.

39. Stepisnik J (1993) Time-Dependent Self-Diffusion by Nmr Spin-Echo. Physica B 183: 343–350.

40. Lawson SN (1979) Postnatal-Development of Large Light and Small Dark Neurons in Mouse Dorsal
Root-Ganglia—Statistical-Analysis of Cell Numbers and Size. Journal of Neurocytology 8: 275–294.
PMID: 490184

41. Pajevic S, Basser PJ (2013) An Optimum Principle Predicts the Distribution of Axon Diameters in Nor-
mal White Matter. Plos One 8.

42. Shemesh N, Ozarslan E, Basser PJ, Cohen Y (2012) Accurate noninvasive measurement of cell size
and compartment shape anisotropy in yeast cells using double-pulsed field gradient MR. Nmr in Bio-
medicine 25: 236–246. doi: 10.1002/nbm.1737 PMID: 21786354

43. Cullheim S (1978) Relations Between Cell Body Size, Axon Diameter and Axon Conduction-Velocity of
Cat Sciatic Alpha-Motoneurons Stained with Horseradish-Peroxidase. Neuroscience Letters 8: 17–20.
PMID: 19605142

Size Distribution Imaging of Microstructure via NOGSE-MRI

PLOS ONE | DOI:10.1371/journal.pone.0133201 July 21, 2015 18 / 19

http://www.ncbi.nlm.nih.gov/pubmed/490184
http://dx.doi.org/10.1002/nbm.1737
http://www.ncbi.nlm.nih.gov/pubmed/21786354
http://www.ncbi.nlm.nih.gov/pubmed/19605142


44. Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber Composition of the Human Corpus-Callosum.
Brain Research 598: 143–153. PMID: 1486477

45. Caminiti R, Carducci F, Piervincenzi C, Battaglia-Mayer A, Confalone G, Visco-Comandini F, et al.
(2013) Diameter, Length, Speed, and Conduction Delay of Callosal Axons in MacaqueMonkeys and
Humans: Comparing Data from Histology and Magnetic Resonance Imaging Diffusion Tractography.
Journal of Neuroscience 33: 14501–14511. doi: 10.1523/JNEUROSCI.0761-13.2013 PMID:
24005301

46. Barazany D, Basser PJ, Assaf Y (2009) In vivo measurement of axon diameter distribution in the corpus
callosum of rat brain. Brain 132: 1210–1220. doi: 10.1093/brain/awp042 PMID: 19403788

47. Shemesh N, Cohen Y (2011) Microscopic and Compartment Shape Anisotropies in Gray andWhite
Matter Revealed by Angular Bipolar Double-PFGMR. Magnetic Resonance in Medicine 65: 1216–
1227. doi: 10.1002/mrm.22738 PMID: 21305595

48. Shemesh N, Barazany D, Sadan O, Bar L, Zur Y, Barhum Y, Sochen N, et al. (2012) Mapping apparent
eccentricity and residual ensemble anisotropy in the gray matter using angular double-pulsed-field-gra-
dient MRI. Magnetic Resonance in Medicine 68: 794–806. doi: 10.1002/mrm.23300 PMID: 22128033

49. Altamura C, Dell'Acqua ML, Moessner R, Murphy DL, Lesch KP, Persico AM (2007) Altered neocortical
cell density and layer thickness in serotonin transporter knockout mice: A quantitation study. Cerebral
Cortex 17: 1394–1401. PMID: 16905592

50. Hagemann G, Kluska MM, Redecker C, Luhmann HJ, Witte OW (2003) Distribution of glutamate recep-
tor subunits in experimentally induced cortical malformations. Neuroscience 117: 991–1002. PMID:
12654351

51. Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, et al. (2013) Degeneration and
impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nature Neuro-
science 16: 571–579. doi: 10.1038/nn.3357 PMID: 23542689

52. Lai WS, Xu B,Westphal KGC, Paterlini M, Olivier B, Pavlidis P, et al. (2006) Akt1 deficiency affects neu-
ronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proceedings of the
National Academy of Sciences of the United States of America 103: 16906–16911. PMID: 17077150

53. Stepisnik J (1999) Validity limits of Gaussian approximation in cumulant expansion for diffusion attenu-
ation of spin echo. Physica B 270: 110–117.

54. Shemesh N, Adiri T, Cohen Y (2011) Probing Microscopic Architecture of Opaque Heterogeneous Sys-
tems Using Double-Pulsed-Field-Gradient NMR. Journal of the American Chemical Society 133:
6028–6035. doi: 10.1021/ja200303h PMID: 21446740

55. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review.
NMR in Biomedicine 15: 435–455. PMID: 12489094

56. Mitchell S, Michels NL, Kunze K, Perez-Ramirez J (2012) Visualization of hierarchically structured zeo-
lite bodies frommacro to nano length scales. Nature Chemistry 4: 825–831. doi: 10.1038/nchem.1403
PMID: 23000996

Size Distribution Imaging of Microstructure via NOGSE-MRI

PLOS ONE | DOI:10.1371/journal.pone.0133201 July 21, 2015 19 / 19

http://www.ncbi.nlm.nih.gov/pubmed/1486477
http://dx.doi.org/10.1523/JNEUROSCI.0761-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/24005301
http://dx.doi.org/10.1093/brain/awp042
http://www.ncbi.nlm.nih.gov/pubmed/19403788
http://dx.doi.org/10.1002/mrm.22738
http://www.ncbi.nlm.nih.gov/pubmed/21305595
http://dx.doi.org/10.1002/mrm.23300
http://www.ncbi.nlm.nih.gov/pubmed/22128033
http://www.ncbi.nlm.nih.gov/pubmed/16905592
http://www.ncbi.nlm.nih.gov/pubmed/12654351
http://dx.doi.org/10.1038/nn.3357
http://www.ncbi.nlm.nih.gov/pubmed/23542689
http://www.ncbi.nlm.nih.gov/pubmed/17077150
http://dx.doi.org/10.1021/ja200303h
http://www.ncbi.nlm.nih.gov/pubmed/21446740
http://www.ncbi.nlm.nih.gov/pubmed/12489094
http://dx.doi.org/10.1038/nchem.1403
http://www.ncbi.nlm.nih.gov/pubmed/23000996

