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We explore the ability of a qubit probe to characterize unknown parameters of its environment. By
resorting to the quantum estimation theory, we analytically find the ultimate bound on the precision of
estimating key parameters of a broad class of ubiquitous environmental noises (“baths”) which the qubit
may probe. These include the probe-bath coupling strength, the correlation time of generic types of bath
spectra, and the power laws governing these spectra, as well as their dephasing times T2. Our central result
is that by optimizing the dynamical control on the probe under realistic constraints one may attain the
maximal accuracy bound on the estimation of these parameters by the least number of measurements
possible. Applications of this protocol that combines dynamical control and estimation theory tools to
quantum sensing are illustrated for a nitrogen-vacancy center in diamond used as a probe.
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I. INTRODUCTION

Controlled spin-1
2
particles (qubits) are sensitive probes

of the structure and properties of highly complex molecu-
lar, atomic, or solid-state quantum systems. Quantum
technologies requiring such high sensitivity at the nano-
scale are based on qubit probes serving as sensors [1–8] or
monitors of biological or chemical processes [9–11]. Here
we focus on the extraction of information characterizing
the environment of a qubit probe, by monitoring the
decoherence process that the qubit undergoes [12].
Dynamical control, originally conceived as a tool for
reducing decoherence effects [13–19], is also shown to
be a valuable source of information on environmental
noises [10,11,20–25]. This information is revealed by
the dependence of the decoherence rate of the qubit probe
on a control-field parameter, owing to the fact that, under
weak coupling of the qubit and the environment (“bath”),
this rate is universally expressed by the overlap of the
environmental noise spectrum and a spectral filter function
that is solely determined by the dynamical control
[15–17,26]. The filter function can then be designed by
varying the control field to scan the noise spectrum. The
information obtained from this procedure, dubbed “noise
spectroscopy” [22,23], is not only essential for designing
the most effective (optimal) dynamical protection from
decoherence caused by a given environment [26–33] of
quantum-information processing [34–37], quantum-state
transfer [38,39], and quantum-state storage [40,41]. It
may also become a means of understanding physical or
chemical processes [9–11,24] by analyzing their noise
fluctuations in magnetic resonance spectroscopy and im-
aging with nanoscale resolution [6–8,11,42–44].
In order to further advance this promising noise spectro-

scopy and broaden its applicability, it is imperative to find
the best general strategy for extracting the environmental

(“bath-induced”) noise-spectrum information from the
qubit-probe decoherence. The strategy we adopt aims at
minimizing the error in estimating key parameters of the
noise (bath) spectrum by measurements performed on the
qubit probe (Sec. II). The minimal error is determined by
the maximal quantum Fisher information (QFI) [45–51]
gathered by measurements in the optimal basis (Sec. III).
For parameters that characterize generic types of environ-
mental noise, we here find (Sec. III A) the ultimate error
bounds for unbiased estimators when the qubit probe,
under arbitrary control, undergoes pure dephasing in the
probe-bath weak-coupling regime. Motivated by practical
experimental considerations and constraints, these ultimate
bounds attain the best estimation precision by the least
number of measurements possible. We achieve these goals
by replacing the free-evolution (-induction) decay (FID) of
the qubit state prior to each measurement by dynamically
controlled evolution designed to ensure the convergence to
the ultimate error bound for the particular bath-spectrum
parameter to be estimated (Sec. III B). For each such
parameter, an appropriate filter function must be generated
by dynamical control (Sec. IVA) [17,26]. We here focus on
determining the general conditions that have to be satisfied
for designing the filter function to attain the ultimate
bounds.
The first step in the proposed strategy is the estimation of

the coupling strength g of the bath to the probe that can be
interpreted as the noise variance. The proposed appropriate
filter function is generated by projections onto an eigen-
state of the σx probe operator at a rate that conforms to the
quantum Zeno regime [15,24,52] (Sec. IV B). This pro-
cedure, which does not require prior knowledge of the bath
spectral line shape, has been experimentally exploited to
determine the coupling strengths of complex spin networks
but without maximizing or optimizing the information
obtained [24]. We note that our approach differs from
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approaches for phase estimation [53] whereby the phase is
deduced from a coherent oscillation of the probe induced
by the coupling strength g. In our scheme, the phase
induced by g is a stochastic variable associated with an
incoherent evolution of the probe.
Once the coupling strength g is optimally estimated, the

bath spectra have to be characterized by their normalized
line shapes. These spectra crucially depend on the bath
correlation time τc often unknown to us: It is typically the
inverse of ωc, which is the width or the cutoff of the bath
spectrum. We show that a convergence to the lowest error
bound on τc is achievable through filter functions generated
by common types of coherent dynamical-control sequences
(Sec. IV C). By contrast, FID of the qubit coherence hσxðtÞi
may preclude such a convergence.
We further show for a family of generic baths that

optimized convergence requires a filter function that
only samples (overlaps) a power-law region of the bath
spectrum (Sec. III B). Such spectral features characterize
omnipresent baths: sub-Ohmic, Ohmic, and super-Ohmic
baths whose spectra obey a power law at low frequencies,
as well as noise spectra of generalized Ornstein-Uhlenbeck
processes characterized by a power-law tail at high
frequencies. These types of bath spectra are ubiquitous
in solid-state, liquid, or gas phases [11,23,54–57], where
they represent collisional or diffusion processes [58,59].
Other environmental parameters, such as spectral power-
law exponents, the T2 decoherence time, and diffusion
coefficients, are shown to obey bounds analogous to those
of g and τc (Sec. IV D). The ultimate bounds obtained here
are instrumental for improving the estimation of parameters
that characterize dephasing, which have been previously
inferred under free evolution [48,50].
Finally, we demonstrate the practical feasibility of

experiments that may attain the ultimate precision bounds
by resorting to a real-time adaptive-estimation protocol
based on a Bayesian estimator and an online experimental
learning design [60–63] (Sec. V). We resort to this protocol
to illustrate the ability to achieve the predicted analytical
bounds in an efficient way under experimentally relevant
conditions, e.g., for nitrogen-vacancy center (NVC) probes
in diamond [1–8,44,54]. Thus, the present analytical
theory, supported by adaptive-estimation simulations, sug-
gests that the proposed synthesis of optimally controlled
noise spectroscopy and estimation theory can become a
powerful, broadly applicable, diagnostic tool (Sec. VI).
In summary, we demonstrate that the ultimate accuracy

bound on environmental (noises) characteristics can be
achieved by optimizing the dynamical control on the probe
under realistic constraints and optimal timing of the control
pulses. Moreover, to simulate experiments that maximize
the information gain, we put forward a real-time adaptive-
estimation protocol that attains the predicted bounds in an
efficient way. These results open the door to the develop-
ment of an important diagnostic tool of environmental

processes by qubit probes. Such diagnostics are expected to
become a key element in diverse technological applica-
tions: nuclear magnetic resonance (NMR), magnetic res-
onance imaging (MRI), optical spectroscopy, and imaging
of chemical and biomedical processes [6,7,11,42–44,64–
66] to mention a few.

II. DEPENDENCE OF THE QUBIT-PROBE
DEPHASING ON AN UNKNOWN
ENVIRONMENTAL PARAMETER

We consider a qubit probe that experiences proper
dephasing by the environment (bath) under the action of
the system-bath interaction Hamiltonian

HSB ¼ gσzB; ð1Þ
where g is the probe-bath interaction strength, σz is the
appropriate Pauli operator for the probe, and B is the bath
operator [Fig. 1(a)]. To obtain maximal information on
the environment, a convenient initial probe state is the
symmetric superposition of the qubit-up and -down states
in the σz basis,

1ffiffiffi
2

p ðj↑i þ j↓iÞ ¼ jþi; ð2Þ

and the optimal observable for the probe-state measure-
ment is σx [48] (Appendix B). Our goal is to determine
the dynamical-control efficacy for estimating, one by one,
the unknown parameters such as g and τc that characterize
the coupling bath spectrum.
We denote the particular bath parameter by xB and,

accordingly, the bath coupling spectrum by GðxB;ωÞ.
Under proper dephasing,

hσxðxB; tÞi ¼ Tr½ρSðxB; tÞσx� ¼ e−J ðxB;tÞ; ð3Þ

where J ðxB; tÞ is the attenuation factor due to dephasing.
In the probe-bath weak-coupling regime known as the Born
approximation for the bath, wherein the qubit probe
negligibly influences the environment [67], it obeys the
universal formula (Appendix A) [15–17,26]

J ðxB; tÞ ¼
Z

∞

−∞
dωFtðωÞGðxB;ωÞ; ð4Þ

where FtðωÞ is a filter function which explicitly depends
upon the dynamical control of the qubit probe during
time t.
This universal formula is exact for Gaussian noise.

Yet it applies to any noise under the weak-coupling
assumption in Eq. (4). In our bath-optimized control theory
[15–17,26,27], the filter function is obtained to ensure
optimal control for any given bath and task at hand. This
theory does not impose any requirement on the temporal
shape of dynamical control that defines the filter function:
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The control may be continuous or pulsed, coherent or
projective.
The information about the unknown bath parameter xB is

encoded in the protocol defined by Eqs. (1)–(4) (Fig. 1) by
the probabilities p of finding the qubit in the jþi (sym-
metric) or j−i (antisymmetric) state when measuring σx.
These probabilities obey

pð�jxB; tÞ ¼
1

2
ð1� e−J ðxB;tÞÞ: ð5Þ

III. OPTIMAL ESTIMATION UNDER
DYNAMICAL CONTROL

The minimum achievable relative error of the unbiased
estimation of a single unknown parameter xB is determined
by the quantum Cramer-Rao bound to be

εðxB; tÞ ¼
δxB
xB

≥
1

xB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NmFQðxB; tÞ

p ; ð6Þ

where Nm is the number of measurements and FQðxB; tÞ is
the QFI that quantifies the maximum amount of informa-
tion on xB that can be extracted from a given state [46].
Therefore, we set out to maximize the information

FQðxB; toptÞ ¼ max
t
FQðxB; tÞ ð7Þ

by choosing the optimal time topt to perform the measure-
ment and an appropriate dynamical-control scheme (prior
to the measurement) to obtain the minimal attainable
(relative) error in the estimation of xB for a given bath
spectrum. For a qubit probe obeying Eq. (5), the QFI is
gathered by measurements in the optimal basis
(Appendix B)

FQðxB; tÞ ¼
e−2J ðxB;tÞ

1 − e−2J ðxB;tÞ

�∂J ðxB; tÞ
∂xB

�
2

: ð8Þ

From this expression, the QFI maximum is obtained by
finding the optimal tradeoff between the signal-amplitude
contrast (the magnitude of e−2J =ð1 − e−2J Þ) and the
sensitivity of the signal attenuation to the parameter xB
(the derivative ∂J =∂xB). Obviously, neither should be too
small if Eq. (8) is to be maximized. Their optimal tradeoff
determines topt for a given control scheme [Fig. 2(a)].
To evaluate the efficacy of different dynamical controls in
attaining the highest accuracy in xB and thereby find the
most suitable control schemes, we then use the error (6) at
topt, i.e., εðxB; toptÞ, as the figure of merit.
We focus here on the ultimate error bounds for the

estimation precision per measurement for the qubit probe
that undergoes pure dephasing within the weak-coupling
regime. These bounds are of practical importance in typical
experimental situations where the initialization and readout
times, normally determined by T1 ≫ T2, constrain the time
interval between measurements.
Alternatively, in instances where T1 is not the dominant

constraint, one may be interested in the ultimate precision
bound attainable during a given interrogation time that
extends over many measurements, T ¼ Nmt. In such cases,
the Fisher information per unit time has to be maximized:

FQðxB; toptÞ=topt ¼ max
t
½FQðxB; tÞ=t�: ð9Þ

A. Ultimate estimation bounds

As discussed below, a broad class of practically relevant
environmental noise processes cause the attenuation factor
J ðxB; tÞ to have a power-law dependence in xB with an
exponent α, where the derivative of J ðxB; tÞ is tightly
bounded by its value in the power-law region, as

FIG. 1. Scheme of noise-spectra parameter estimation. (a) Scheme of the probing process and its dynamical control: A dynamically
controlled qubit probe undergoes dephasing by the environment (bath). The coupling strength g of the probe qubit and the environment
affects the energy splitting between the symmetric and antisymmetric qubit states j�i ¼ ð1= ffiffiffi

2
p Þðj↑i � j↓iÞ. (b) An optimal qubit-probe

filter function Fopt
t ðωÞ generated by frequent projections is spectrally flat to the extent that it conforms to be quantum Zeno regime and

allows the optimal determination of the coupling strength g regardless of the shape of GðωÞ ¼ g2SðωÞ. (c) A filter function of an
optimally controlled qubit probe, Fopt

t ðωÞ, for obtaining the ultimate bound on the correlation time (τc) estimation. Such a filter must
overlap only with the power-law tail of the Ornstein-Uhlenbeck noise spectrum Sβðτc;ωÞ, or with ω > 0 but not with ωc for the (super-)
Ohmic spectrum Ssðτc;ωÞ. The FID filter function Ffree

t ðωÞ does not fulfill the requirements for achieving the bound, since it is centered
at ω ¼ 0.

MAXIMIZING INFORMATION ON THE ENVIRONMENT BY … PHYS. REV. APPLIED 5, 014007 (2016)

014007-3



���� ∂J ðxB; tÞ
∂xB

���� ≤ αJ ðxB; tÞ
xB

: ð10Þ

The equality strictly holds when J ðxB; tÞ is a homogeneous
function of degree α for the parameter xB.
The bound (10) leads to a tight lower bound on the

relative error in (6) (Appendix C):

εðxB; tÞ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2J 0

p

α
ffiffiffiffiffiffiffi
Nm

p
J 0e−J 0

¼ ε0
α

ffiffiffiffiffiffiffi
Nm

p : ð11Þ

Here the value of J ¼ J 0 that minimizes this bound,
J 0 ¼ 1þ 1

2
Wð−2e−2Þ ≈ 0.8, WðzÞ being the Lambert

function, yields the equality in (11), with ε0 ≈ 2.48. We
have thus obtained a universal, ultimate error bound for the
unbiased estimation of xB in a broad class of noise spectra
probed by a qubit probe undergoing dephasing within the
probe-bath weak-coupling regime. This bound is universal
and ultimate in the sense that it holds for arbitrary
dynamical control or FID of the probe coherence and is
independent of the specific environment under the assump-
tions discussed above.

B. Key parameter estimation

This general bound applies to the estimation of any
parameters that satisfy J ðxB; tÞ ∝ x�α

B . We here discuss
in detail some examples of estimating key parameters
that belong to this class in typical scenarios of practical
importance.

(i) The effective coupling strength g of the qubit probe
with the dephasing bath is required for defining

GðxB ¼ g;ωÞ ¼ g2SðωÞ; ð12Þ

SðωÞ being the normalized spectral density of the
bath autocorrelation function, so that Gðg;ωÞ and
J ðg; tÞ are homogeneous functions of degree α ¼ 2
in g.

(ii)
(a) The correlation time τc of noise fluctuations is

required for describing generalized Ornstein-
Uhlenbeck processes, with normalized spectral
densities

SβðxB ¼ τc;ωÞ ¼ Aβ
τc

1þ ωβτβc
; ð13Þ

where β ≥ 2 is an even integer and Aβ ¼
ðβ=2πÞ sinðπ=βÞ is the normalization factor.

(b) The correlation time τc ¼ ω−1
c , that is the inverse

of the cutoff frequency ωc, in generalized
Ohmic spectra

SsðxB ¼ τc;ωÞ
¼ ðsþ 1Þω−ðsþ1Þ

c ωsΘðωÞΘðω − ωcÞ; ð14Þ

where ΘðωÞ is the step function, s ¼ 1 stands for an
Ohmic spectrum, 0 < s < 1 for a sub-Ohmic spec-
trum, and s > 1 for its super-Ohmic counterpart.
Both spectral densities (13) and (14) satisfy

j∂S=∂τcj ≤ ðαS=τcÞ and, consequently, the bound
(10). Furthermore, both spectra attain the ultimate
bound (11) at frequency ranges where they have
power-law dependence (Appendix C): spectral den-
sity (13) at high frequencies, where it becomes a
homogeneous function of degree α ¼ β − 1, and

00 4010 30 80

(a) (b)

FIG. 2. Optimization for achieving the ultimate precision bound. (a) Magnetization hσxi as a function of the measurement time t of a
qubit probe experiencing dephasing due to the Ornstein-Uhlenbeck process, with Lorentzian spectrum Gβ¼2ðτc ¼ 10;ωÞ with g ¼ 1

under a Carr-Purcell-Meiboom-Gill (CPMG) control sequence with N ¼ 8 pulses using the exact analytical expression derived from
Eq. (4) [11]. For the particular control, the optimal time topt that determines the best tradeoff between the signal contrast (almost halfway
between 0 and 1) and the highest sensitivity of the decay rate to τc provides the most accurate estimation of τc. (b) Minimal relative error
εðτc; toptÞ per measurement (Nm ¼ 1) of the estimation of τc as a function of gτc for a Lorentzian spectrum Gβ¼2ðτc ¼ 10;ωÞ (dashed
lines) and a super-Ohmic spectrum Gs¼2ðτc ¼ 10;ωÞ (solid lines) calculated from the integral of Eq. (4), both with g ¼ 1. The minimal
relative error under optimal control [CPMG (CW) with N pulses (cycles) satisfying the conditions given in the main text, green lines]
achieves the ultimate bounds [ε0=3

ffiffiffiffiffiffiffi
Nm

p
(dashed) and ε0=

ffiffiffiffiffiffiffi
Nm

p
(solid) green lines for s ¼ 2 and β ¼ 2, respectively]. It can improve the

best precision obtainable under free evolution (blue lines) by several orders of magnitude.
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spectral density (14) at low frequencies, when we
restrict ourselves to ω < ωc to avoid the cutoff
effects, thus rendering the spectral density a homo-
geneous function of degree α ¼ sþ 1.

(iii) The dephasing time T2 in the attenuation exponent
which is a homogeneous function of degree α,
J ðxB ¼ T2; tÞ ¼ ðt=T2Þα, may be estimated down
to the ultimate bound.

IV. DYNAMICAL-CONTROL STRATEGIES FOR
ACHIEVING THE ULTIMATE BOUND

A. Achieving the ultimate bound
by dynamical control

It follows from the discussion above that the ultimate
error bound, Eq. (11), in the estimation of xB ¼ g or τc,
can be attained only provided that first the dynamical
control on the probe generates a filter FtðωÞ that extends
only over the frequency band where the noise spectrum
behaves as a power law in x�α

B and the equality in Eq. (10)
is fulfilled. Then, upon adjusting the total control time such
that J ðxB; toptÞ ¼ J 0, the equalities in Eq. (11) are also
fulfilled.
We note that these are general conditions for attaining the

ultimate error bound per measurement, but they do not
explicitly invoke the optimization of the filter function.
Under specific constraints that may be imposed in a given
experimental setup, further optimization may be required
to approach as best we can the ultimate error bounds.

B. Estimating the probe-bath interaction strength g

If SðωÞ is unknown apart from a crude estimate of its
overall width, dynamical control is needed for estimating g
down to the ultimate precision bound. The appropriate
control is such that the filter function FtðωÞ ¼ Ft is flat
in the domain of SðωÞ, leading to an attenuation factor
J ¼ Ftg2 that is independent of the noise spectrum. For
free evolution, this limit holds when the interval is much
shorter than the correlation time τc of the environment, so
that the qubit probe evolves freely. In Appendix D, we
derive the optimal condition for attaining the ultimate
estimation bound. This condition can be fulfilled only if
τc is sufficiently large.
To overcome this limitation, we may instead realize such

a filter at times larger than τc via repeated cycles of free
evolution interlaced with stroboscopic projections of the
qubit probe in the basis of j�i, i.e., by quantum non-
demolition (QND) measurements at a rate that is high
enough to conform to the quantum Zeno regime [52]. The
filter function then describes spectral broadening of the j�i
eigenvalues far beyond the width of SðωÞ [Fig. 1(b)]. The
attenuation factor is then [15,17,24] (Appendix D)

J Zenoðg; tÞ ¼
g2t2

2N
; if

t
N

≪ τc; ð15Þ

obtained for N QND measurements during the total control
time t. The advantage of this regime associated with the
quantum Zeno effect (QZE) is that it requires ðt=NÞ ≪ τc,
rather than the total time t, to be less than τc. Since the
outcomes of these measurements need not be read out but
rather used to guide the evolution, they may be emulated by
impulsive noise-induced dephasing of the qubit probe that
has the same effect as a projection on the probe evolution
[17,24,68]. This QZE regime has been already exploited
experimentally to determine the coupling strengths of
complex spin networks [24].
Under the quantum Zeno condition of (15), the error

estimation bound (11) is achieved when the total control
time [after which σx is measured and read out—see (5)] is
chosen to have the optimal value

toptZeno ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2NJ 0

p
g

; provided that N ≫
2J 0

g2τ2c
: ð16Þ

This equation (further discussed in Appendix D) constitutes
themainconditiononanoptimal filter designed toestimateg.

C. Estimating the correlation time τc
To achieve the ultimate precision bound (11) for the

estimation of τc of noise spectra (13) and (14), the control
on the probe should generate a filterFtðωÞ that overlaps only
with the power-law portion of SβðsÞðτc;ωÞ ∝ τ∓α

c ω∓ðα�1Þ, as
shown in Fig. 1(c). By contrast, FID of the probe coherence
generates a filter (sinc) function centered at zero frequency,
thus preventing the bound in Eq. (11) from being reached.
While various controls may allow the best estimation

according to Eq. (11), we here analytically study the
conditions for achieving the ultimate bound under standard
CPMG sequences of π pulses [69] or under continuous-
wave driving (CW). In control sequences of equidistant
pulses N ≫ 1, the filter function FtðωÞ converges to a sum
of delta functions (narrow-band filters) centered at the
harmonics of the inverse CPMG time period, while
for CW there is a single frequency component [17,23,30]
(Appendix D). In the following, we use these filter
functions to analytically infer the required total control
time t and N that allow the bound to be attained for the
two classes of power-law spectra in Eqs. (13) and (14)
(see Appendix D for details).

(i) For generalized Ornstein-Uhlenbeck spectra SβðωÞ,
only high frequencies must be probed by the
dynamical-control filter. To this end, the intervals
between pulses or refocusing periods must obey

ðt=NÞ ≪ τc.Then, J β ∝ τ−ðβ−1Þc satisfies the equal-
ity in (11) and the minimal relative error attains the
ultimate bound, provided that the total control time
is chosen to have the optimal value

toptβ ¼ τc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NβJ 0

cβg2τ2c

βþ1

s
; ð17Þ
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where cβ is a constant depending on the control
sequence. The bound can be attained only if N is
sufficiently large to satisfy toptβ , τc ≫ ðtoptβ =NÞ and
overlaps only with the power-law tail, as shown in
Fig. 1(c). By contrast, FID fails this condition, since
its filter mainly overlaps with ω ≈ 0 [Fig. 1(c)],
causing a larger error in the estimation, as shown
in Fig. 2(b).

(ii) For generalized Ohmic spectra Ss, the filter should
overlap only with the noise spectrum at a frequency
lower than the cutoff, 0 < ω < ωc, avoiding any
overlap at ωc. Then, J s ∝ τsþ1

c satisfies the equality
in (11) and the minimal relative error attains the
ultimate bound when the measurement of σx is
performed at the optimal total control time

topts ¼ τc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
csg2τ2cNs

J 0

s−1
s

: ð18Þ

Here ðtopts =NÞ > τc and N ≫ 1 ensure the filter is
narrow band with a negligible tail at ωc, as opposed
to its FID counterpart that causes a much larger
estimation error [see Fig. 2(b)].

Equations (17) and (18) thus constitute ourmain condition
on the optimal filter design for estimating τc, including the
restrictions for N and the filter function shapes.

D. Power-law estimation

One can optimally estimate the exponent β or s that
governs the bath spectrum by maximizing the QFI (8) for
the estimation of xB ¼ γ ¼ β þ 1 ¼ 1 − s (Appendix D).
This maximization leads to the ultimate precision bound

εðγ; tÞ ≥ 1

γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NmFQðγ; tÞ

p ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e−2J 1

p
ffiffiffiffiffiffiffi
Nm

p
J 1j lnðJ 1Þje−J 1

¼ ε1ffiffiffiffiffiffiffi
Nm

p ;

ð19Þ

with J 1 ¼ e−2.246 ≈ 0.106 and ε1 ≈ 2.04. The bound is
achieved when the qubit probes only the power-law regime
of noise spectra (13) and (14). Provided that the CPMG or
CW dynamical control probes the power-law region, the
bound is attained when the qubit probe is measured at

topt ¼ T2

ffiffiffiffiffiffi
J 1

γ
p

; ð20Þ
where J ðγ; tÞ ¼ ðt=T2Þγ and T2 is the dephasing time (that
depends on the applied control).

V. REAL-TIME ESTIMATION PROTOCOL

The predicted optimal time topt for performing a meas-
urement following the dynamical control or FID of the
quantum-probe coherence explicitly depends on the
unknown parameter xB to be estimated [see Eqs. (16),
(17), (18), and (20)]. In practice, one may bypass this

difficulty by estimating xB and simultaneously finding the
optimal time to monitor the probe via an efficient real-time
estimation protocol [60,61,63]. We illustrate here the
implementation of this protocol and show that it attains
the predicted ultimate bound (11) if the qubit probe is
optimally controlled. The protocol is based on a Bayesian
estimator and an online experimental learning design that
maximizes the information gain, similar to the one that was
recently implemented for improving the suppression of
decoherence in quantum dots [62], adaptive real-time pulse
shaping [70], ab initio optical phase estimation [71], or
stabilizing Rabi oscillations using quantum feedback [72].
Its stages are as follows.

(i) We initially guess a probability distribution pðxBÞ
for the unknown parameter xB that represents our
a priori knowledge of the parameter to be estimated.
Physically, we should have xB > 0, and therefore
one can assume a flat distribution of pðxBÞ,
xB ∈ ðxmin

B ; xmax
B � that contains the true value xtrueB .

(ii) We then determine the best time tm to perform a
measurement for maximizing the information
gain about xB which is defined by the information
entropy UðtmÞ ¼ maxtfUðtÞg (Appendix E), which
depends on pðxBÞ and the likelihood function
pðdjxB; tÞ of Eq. (5) that determines the conditional
probability to obtain the possible outcome data of
the measurement d ¼ fþ;−g.

(iii) We next perform a measurement of σx of the qubit-
probe state, initialized in the state jþi, at the optimal
time tm, obtaining the outcome data d with proba-
bility pðdjxtrueB ; tÞ. According to the obtained data,
we update our knowledge of xB by the Bayesian rule

pnewðxBÞ≡ pðxBjd; tmÞ ¼
pðdjxB; tmÞpðxBÞ

pðdjtmÞ
; ð21Þ

where pðdjtÞ is a normalization factor for integration
over xB.

The estimation of xB improves upon iteratively repeating
this three-stage process Nm times, Nm standing for the
number of measurements. When an adequate control is
chosen, the probability distribution pðxBÞ converges to a
narrow peak around xtrueB . By contrast, the convergence
under free evolution can be very poor.
Figure 3 presents a simulated experiment of this iterative

process for the estimation of g and τc of the environmental
noise by a NVC spin probe in two types of diamond
samples whose intrinsic environmental characteristics
require dynamical control to attain the ultimate bound (11).
(a) We simulate the estimation of τc for the NVC probe

evolving freely (undergoing FID), as compared to it
being nearly optimally controlled by a CPMG se-
quence with N ¼ 8 subject to an Ornstein-Uhlenbeck
process characterized by Gβ¼2ðτtruec ¼ 10 μs;ωÞ
with g ¼ 1 MHz (consistent with the high-pressure
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high-temperature (HPHT) diamond sample data of
Ref. [54]). Our simulated best-measurement timings
tm converge to the theoretically predicted topt that
maximizes the QFI (8), as exemplified in Fig. 3(a) for
CPMG control, where topt ≈ 18.25 μs is on time scales
compatible with the accessible experimental times
[54]. Concurrently, the minimum relative error con-
verges to εðτc; toptÞ predicted from the ultimate
Cramer-Rao bound [Fig. 3(b)].

(b) In Fig. 3(c), we simulate the estimation of g under
similar conditions by a sequence of N ≫ 1 QND
measurements in the Zeno (QZE) regime. Since we
need not read out the results of these measurements,
they may be emulated by brief (stroboscopic) induced
dephasings of the probe coherence that effectively
interrupt the free (FID) evolution [15,73]. This pro-
tocol is experimentally implemented in Refs. [24,68]
by applying repetitive random magnetic-field
gradients or random shifts of the effective probe

frequency [74–76]. In addition, we may initialize
the NVC probe in its electronic ground state and then
induce dephasing in the j�i basis by π=2 MW pulses
separated by a laser pulse [Fig. 3(d)]. The laser pulse
will induce a transition to the electronic excited state
conserving the spin superposition state [77]. The
subsequent radiative decay to the electronic ground
state, which is longitudinally spin conserving [78],
will effectively collapse the wave function (see
Appendix F). In Fig. 3(c), we compare the results
obtained following N ¼ 500 of such Zeno-like
dephasings to the FID results. For the simulations,
we assume them to be perfect, stroboscopic, projections
of the spin state onto the j�i basis. The optimal
intervals between such dephasings are found to
be in this case ðtopt=NÞ ≈ 1.9 μs. We then find
by this Zeno (QZE) method the convergence to the
ultimate Cramer-Rao bound, where the spectral density
Gβ¼2ðg ¼ 0.03 MHz;ωÞ with τc ¼ 10 μs is consistent

(a) (b)

(c) (d)

FIG. 3. Simulation of an experimental real-time adaptive-estimation protocol for realistic conditions with a NVC spin probe.
(a),(b) Convergence of the real-time adaptive-estimation protocol to the theoretically predicted values for estimating τc. Free evolution of
the probe (blue circles) is contrasted with that of a dynamically controlled probe under a CPMG (green square) sequencewithN ¼ 8 in the
presence of an Ornstein-Uhlenbeck process with Lorentzian spectrum Gβ¼2ðτtruec ¼ 10 μs;ωÞ, with g ¼ 1 MHz consistently
with the spectral density of a HPHT diamond sample determined in Ref. [54]. The simulated curves derived from exact analytical
results of Eq. (4) [11] are averaged over 600 realizations. In (a), the optimalmeasurement time tm as a function ofNm converges to the value
topt for the CPMG case. Similar curves converging to the corresponding topt are observed for other controls and free evolution.
In (b), theminimal relative error εðτc; toptÞ converges to the (Cramer-Rao) bound. Under free evolution, the regimewhere ε ∝ ð1= ffiffiffiffiffiffiffi

Nm
p Þ is

attained forNm ≫ 100. The ultimate bound (ε0=
ffiffiffiffiffiffiffi
Nm

p
dashed line, α ¼ β − 1) is attained only by optimal control. (c) Convergence to the

minimal relative error εðg; toptÞ to the (Cramer-Rao) bound for estimating g byN ¼ 500 consecutive projectivemeasurements in the Zeno
regime (green triangle) compared to the estimation under free evolution (blue circle). In this case, Gβ¼2ðg ¼ 0.03 MHz;ωÞ, with
τc ¼ 10 μs, consistentlywith the spectral density of a 12Cdiamond sample determined inRef. [54].Here too theultimate bound (ε0=2

ffiffiffiffiffiffiffi
Nm

p
dashed line, α ¼ 2) is attained only by optimal control. (d) Proposed scheme for using a NVC as a qubit probe for its environment. The
ms ¼ 0 (j0i) state is fully populated by laser irradiation (dashed curly arrow).Microwave (MW) pulses are selectively applied between the
states withms ¼ 0 and−1 (j0i and j − 1i) of the electronic ground states to initialize the spin probe in a jþi ¼ ð1= ffiffiffi

2
p Þðj0i þ j − 1iÞ state

and effect the π pulse CPMG sequence for estimating τc. For estimating g, projective measurements are emulated by combiningMW π=2
pulses on the 0↔ − 1 transition and laser-induced relaxation between the ground and exited electronic states that conserve the spin
components (solid curly arrows). The readout is done at the end of theN-pulse sequence by detecting the laser-induced fluorescence signal.
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with the spectral density determined in Ref. [54] for
the 12C diamond sample. This Zeno estimation pro-
cedure is performed without assuming the line shape
of the spectral density. It is seen from Fig. 3(c) that
the precision error eventually saturates for the free
evolution (FID) at a precision that is limited by our
lack of knowledge of the line shape. By contrast, this
saturation can be overcome in the QZE regime dis-
cussed above.

The foregoing simulations thus confirm, under exper-
imentally realistic conditions, our second major analytical
result, whereby the ultimate theoretical bound (11) is
indeed attainable under optimal control but hardly ever
under free evolution.

VI. DISCUSSION

We demonstrate that dynamical control of a quantum
probe not only dramatically improves the quantum esti-
mation of environmental parameters compared to the free-
evolution (induction) decay of its coherence: It may be
imperative to use such control, since FID may preclude
their correct estimation. In particular, for generic types of
noise spectra, as in generalized Ornstein-Uhlenbeck and
Ohmic processes, the ultimate analytical bounds for the
coupling strength and correlation-time estimation precision
derived here can be achieved by optimizing the dynamical
control on the probe. The optimal controls suitable for
the estimation of g, τc (Fig. 1 and 3), or the power-law
exponent are generally different, but the protocol is similar.
Specifically, we demonstrate that the ultimate estimation
bound for g can be attained in the quantum Zeno regime
without prior knowledge of the environmental spectral-
density shape. Once this probe-environment coupling is
known, the environmental correlation time can be reliably
estimated by standard dynamical-control sequences.
Experimental conditions typically require a minimized

average error within the coherence time interval shown in
Fig. 2(b), if this interval is much shorter than the combined
postmeasurement readout and initialization time of the
qubit. Under such conditions, an important implication of
the present analysis is that it yields the optimal total time of
the premeasurement dynamical control and thereby the
number of pulses and the delay between them that need be
applied to attain the best precision per measurement.
However, in the (rarely encountered) opposite limit of fast
readout and initialization, the overall error rate of the
measurements is to be minimized. Then, a similar opti-
mization can be performed by maximizing the Fisher
information per unit time. If additional specific constraints
are imposed by a particular experimental setup, e.g., limited
power or estimation time, then further optimization is
needed to find the optimal filter function. In such cases,
the goal would be to approach as best we can the ultimate
error bound under the given constraints.

A real-time adaptive-estimation protocol illustrates the
ability to find the optimal time of dynamical control
for achieving the predicted precision bounds, e.g., for a
NVC in a diamond that acts as a qubit probe of the bulk or
surface in optically detected NMR and MRI. Its aim here
is to determine the noise spectrum generated by nuclear
or electronic spins [6–8,43,44], as well as other sources
of dephasing. In Fig. 3, we illustrate this protocol for
estimating both g and τc near a NVC used as a probe. The
inferred correlation times of the noise fluctuations can be
particularly helpful for studying molecular diffusion at the
nanoscale, where the power-law tails of noise spectra allow
the extraction of the diffusion rates and restriction lengths
associated with pore structures and thereby characterizing
biological processes [11,42,66].
In other scenarios, power-law tails can also characterize

charge diffusion in conducting crystals [59] or spin diffusion
in complex spin networks [23,24,58,79,80]. Generalized
Ohmic spectra may help understand the functioning of
nanoscale electromechanical devices [81], as well as super-
conducting devices attached to conducting leads [82].
Several extensions of the outlined strategy will be further

explored.
(a) If uncontrollable noise sources are present, such

as an intrinsic T2 decoherence due to a white-noise
(Markovian) process or due to pulse imperfections,
we may have to resort to more elaborate controls,
nicknamed by us “selective dynamical recoupling”
(SDR), which we show to allow selective probing of
the targeted noise source [10,11]. SDR was already
implemented to selectively monitor diffusion proc-
esses characterized by an Ornstein-Uhlenbeck spectral
density, so as to determine the probe-environment
coupling strengths [10,64] and the environmental
correlation time, as well as diffusion restriction lengths
[11,42,66] in systems of biological and chemical
interest. We envisage that by incorporating SDR
within the present optimized estimation strategy one
may eliminate Markovian (intrinsic-T2 and pulse-
error) effects and allow a clean parameter estimation
of the targeted noise spectrum.

(b) A qubit probe may be replaced by an entangled
n-particle probe that may yield a different error bound
[53,83,84]. The estimation strategy remains similar,
but the dynamical control has to be adapted to a
multipartite scenario, based on the approach of
Refs. [26,85,86].

(c) The present strategy, whereby environmental param-
eters are estimated one by one, provides the ultimate
precision bounds that can be attained for estimating a
single parameter, assuming that the remaining param-
eters are known with much better accuracy. Therefore,
these bounds are also valid for more elaborate multi-
parameter estimation strategies based on a quantum
Fisher information matrix [47,50,87], although these
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bounds may not be tight in the latter case. Still, the
single-parameter estimation expounded here may be
superseded by a multiparameter optimized estimation
per measurement.

In conclusion, we analytically set the error bounds on
environmental-parameter estimation and demonstrate the
ability to extract such environmental information with
maximal accuracy by the least number of measurements
possible upon invoking dynamical control. This general
result for a qubit probe weakly coupled to its environment
opens the door to the development of an important
diagnostic tool of environmental processes by quantum
probes.
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APPENDIX A: ANAMNESIS: FILTER FUNCTION
DERIVATION FOR QUBIT PROBE UNDER

DEPHASING (FOLLOWING REFS. [15–17,26,27])

The Hamiltonian of a single spin probe interacting with a
bath that produces pure dephasing is

H ¼ HSðtÞ þHB þHSB; ðA1Þ
with

HS ¼ ω0σz þ f0ðtÞσx; HSB ¼ S ⊗ B ¼ σzgB; ðA2Þ

where f0ðtÞ ¼ fðtÞe−iω0t þ c:c: is the dynamical control
applied to the qubit, B and S are the operators of the bath
and the system (σz for pure dephasing), respectively, and g
is their coupling strength.
One can derive the non-Markovian master equation for

the density matrix of the system, ρSðtÞ in the interaction
picture, which in the Born approximation one assumes a
weak coupling g such that the influence of the qubit
probe on the environment is small (usually called the
weak-coupling approximation). In this approximation, the
density matrix of the environment ρB is only negligibly
affected by the interaction with the qubit probe, and the
state of the total system at time t is allowed to be expressed
as ρðtÞ ≈ ρSðtÞ ⊗ ρB [67]. The resulting non-Markovian
master equation is then given by [15–17,88,89]

_ρSðxB; tÞ ¼
Z

t

0

dt0fg2ΦðxB; t− t0Þ½Sðt0Þ; SðtÞρSðtÞ� þH:c:g;

ðA3Þ

where ΦðxB; t0 − t”Þ ¼ TrBfBðt0 − t”ÞBð0ÞρBð0Þg are the
bath correlation functions, xB is a parameter that character-
izes the environment, and

SðtÞ ¼ U†
SðtÞSUSðtÞUSðtÞ ¼ T e−i

R
t

0
dt0HSðt0Þ;

BðtÞ ¼ U†
BðtÞBUBðtÞ; UBðtÞ ¼ e−iHBt: ðA4Þ

Since we are interested in describing the dephasing, the
phase due to the unperturbed energy difference ℏω0 is
irrelevant. To eliminate this dependence, we move to the
rotating frame, where the time-dependent basis consists of

j�i ¼ 1ffiffiffi
2

p ðe−iω0tj↑i þ j↓iÞ: ðA5Þ

In this basis, the system Hamiltonian becomes

~HS ¼ fðtÞ ~σz; ~σz ¼ jþihþj − j−ih−j: ðA6Þ

We then rewrite Eqs. (4) as

USðtÞ ¼ e−i
R

t

0
ðfðt0Þ=2Þdtjþihþj þ ei

R
t

0
ðfðt0Þ=2Þdtj−ih−j

SðtÞ ¼ ei
R

t

0
fðt0Þdtjþih−j þ ei

R
t

0
fðt0Þdtj−ihþj: ðA7Þ

Plugging Eqs. (A7) into the master equation Eq. (A3),
we arrive at [15–17,88,89]

d
dt

ðΔρS;�Þ ¼ − dJ
dt

ΔρS;�: ðA8Þ

Here ΔρS;� ¼ ρS;þþ − ρS;−− is the spin coherence in the
basis j↑i, j↓i at time t:

hσxðtÞi ¼ h ~σzðtÞi ¼ ΔρS;� ¼ e−J ðxB;tÞ ðA9Þ

characterized by the attenuation factor [15–17,88,89]

J ðxB; tÞ ¼ Re
Z

t

0

dt0
Z

t0

0

dt”g2ΦðxB; t0 − t”ÞΩðt0ÞΩ�ðt”Þ;

ðA10Þ
where we have set

ΩðtÞ ¼ ei
R

t

0
fðt0Þdt: ðA11Þ

This attenuation factor can be cast in the spectral form

J ðxB; tÞ ¼
Z

∞

−∞
dωFtðωÞGðxB;ωÞ; ðA12Þ

where

GðxB;ωÞ ¼
1

2π

Z
∞

−∞
dtg2ΦðxB; tÞeiωt ðA13Þ
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is the bath-coupling spectrum and

FtðωÞ ¼
1

2π

����
Z

t

0

dt0Ωðt0Þeiωt0
����2 ðA14Þ

is the filter function which is determined by the dynamical
control of the qubit probe.
We stress that ΩðtÞ can have an arbitrary temporal

shape, as opposed to the restrictions on its (inherently
pulsed) shape in the dynamical decoupling method
[13,14,18,29].

APPENDIX B: QUANTUM FISHER
INFORMATION CONCERNING A SINGLE
PARAMETER OF THE ENVIRONMENT

The QFI concerning a single parameter xB of the
environment (bath) for the qubit state is [46–49]

FQ ¼ 1

pþ

�∂pþ
∂xB

�
2

þ 1

p−

�∂p−
∂xB

�
2

þ 2
ðpþ − p−Þ2
pþ þ p−

�����hp−j
∂jpþi
∂xB

����2 þ
����hpþj

∂jp−i
∂xB

����2
�
;

ðB1Þ
where

p�ðxBtÞ≡ pð�jxB; tÞ ¼
1

2
ð1� e−J ðxB;tÞÞ;

jp�i ¼
1ffiffiffi
2

p ðe−iω0tj↑i � j↓iÞ ðB2Þ

are the eigenvalues and eigenvectors of the spin-probe
density matrix [17,89]. A measurement is said to be optimal
when the QFI FQ coincides with its classical counterpart
[46–49]. This is the case here under pure dephasing, when
the last term in (B1) is null due to ∂jpþi=∂xB ¼ 0. Then
the optimal measurement is effected by projections onto the
eigenstates jp�i of σx in the rotating frame

jp�ihp�j ¼
1

2
e−iðω0=2Þσz j�ih�jeiðω0=2Þσz ;

j�i ¼ 1ffiffiffi
2

p ðj↑i � j↓iÞ: ðB3Þ

Correspondingly, Eq. (B1) becomes

FQðxB; tÞ ¼
e−2J ðxB;tÞ

1 − e−2J ðxB;tÞ

�∂J ðxB; tÞ
∂xB

�
2

; ðB4Þ

if the initial probe state is jþi. An arbitrary initial state,
½cosðθÞj↑iþisinðθÞj↓i�, 0<θ<ðπ=2Þ, leads to FQðxB;tÞ∝
sin2ð2θÞ [48]. Therefore, the optimal initial state
leading to the maximal QFI is obtained for θ ¼ ðπ=4Þ,
jþi ¼ ð1= ffiffiffi

2
p Þðj↑i þ j↓iÞ, thus proving Eq. (11) in the

main text.

APPENDIX C: DERIVATION OF THE ULTIMATE
PRECISION BOUND

A broad class of practically relevant environmental noise
processes cause the attenuation factor to have a power-law
functional dependence in xB with exponent α, where the
derivative of J ðxB; tÞ with respect to xB satisfies���� ∂J ðxB; tÞ

∂xB
���� ≤ αJ ðxB; tÞ

xB
: ðC1Þ

The QFI then conforms to the inequality

FQðxB; tÞ ≤
e−2J ðxB;tÞ

1 − e−2J ðxB;tÞ
α2J ðxB; tÞ

x2B

2

: ðC2Þ

The equality is obtained when the attenuation factor is a
homogeneous function of degree α, i.e., strictly obeys a
power law. The maximum of the QFI, regardless of the kind
of control applied, is then obtained when j∂J ðxB;tÞ=∂xBj ¼
ðαJ ðxB;tÞ=xBÞ andJ ðxB;tÞ¼J 0 ¼ 1þ 1

2
Wð−2e−2Þ≈0.8,

where WðzÞ is the Lambert function which by definition
satisfies z ¼ WðzÞeWðzÞ for any complex number z. When
the control is such that the equality in (C2) is satisfied, then
the optimal total control time at which the measurement
should be done, topt, is such that J ðxB; toptÞ ¼ J 0.
Under this condition, the resulting ultimate bound for the

relative error in the estimation of xB, which holds for
arbitrary control on the probe, is

εðxB; tÞ ≥
1

xB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NmFQðxB; tÞ

p ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2J 0

p

α
ffiffiffiffiffiffiffi
Nm

p
J 0e−J 0

¼ ε0
α

ffiffiffiffiffiffiffi
Nm

p ;

ðC3Þ

with ε0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=f−Wð−2e−2Þ½1þ 1

2
Wð−2e−2Þ�

q
g ≈ 2.48.

1. Precision bounds for the key parameters g and τc
a. The probe-bath interaction strength g

The attenuation factor is a homogeneous function of
degree α ¼ 2 in the effective probe-bath interaction
strength g, where Gðτc;ωÞ ¼ g2SðωÞ with SðωÞ the nor-
malized spectral density of the environmental noise.
Therefore, Eqs. (C1) and (C2) are satisfied, and the
minimal relative error in the estimation of g is obtained
by measuring at the time topt, such that J ðg; toptÞ ¼ J 0, if
SðωÞ is known.

b. The correlation time τc
The derivative term in the QFI of Eq. (B4) depends on

the derivative of the bath coupling spectrum (spectral
density) with respect to the correlation time ∂G=∂τc,
through

∂J ðτc; tÞ
∂τc ¼

Z
∞

−∞
dωFtðωÞ

∂Gðτc;ωÞ
∂τc : ðC4Þ
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Spectral densities of the baths characterized by
GβðsÞðτc;ωÞ ¼ g2SðωÞ [defined in the main text, Eqs. (13)
and (14)] satisfy j∂SβðsÞ=∂τcj ≤ ðαSβðsÞ=τcÞ. Specifically,���� ∂Gβ

∂τc
���� ¼

���� ∂
∂τc

�
Aβg2τc
1þ ωβτβc

�����
¼

���� Aβg2

1þ τβcωβ

�
1 − βτβcωβ

1þ τβcωβ

�����
≤
Aβg2ðβ − 1Þ
ð1þ τβcωβÞ ¼ ðβ − 1ÞGβ

τc
; ðC5Þ

where the equality is attained when the spectral density
function behaves as a homogeneous function of degree

α ¼ β − 1, Gβ ∝ τ−ðβ−1Þc ωβ; and

∂Gs

∂τc ¼ ∂
∂τc ½ðsþ 1Þτsþ1

c ωs� ¼ ðsþ 1Þ
τc

Gs ðC6Þ

since Gs is a homogeneous function of degree α ¼ sþ 1
upon neglecting the cutoff region.
Using Eqs. (C5) and (C6) to bound Eq. (C4), we find���� ∂J ðτc; tÞ

∂τc
���� ¼

Z
∞

−∞
dωFtðωÞ

���� ∂Gðτc;ωÞ∂τc
����

≤
α

τc

Z
∞

−∞
dωFtðωÞGðτc;ωÞ

¼ αJ ðτc; tÞ
τc

: ðC7Þ

This leads to the tight bound for the Fisher information
(C2) and, therefore, for the minimal error in the estimation
(C3) which holds for arbitrary control on the spin probe.
The ultimate bound in the precision (C3) is attained when
the optimal total control time at which the measurement
should be done, topt, is such that J ðτc; toptÞ ¼ J 0.

APPENDIX D: ATTAINMENT OF THE
ULTIMATE BOUND

1. Attainment of the ultimate precision
bound under optimal dynamical control
in the estimation of key parameters

a. Probe-bath interaction strength g

The attenuation factor is a homogeneous function of
degree α ¼ 2 in the probe-bath interaction strength g.
Therefore, Eqs. (C1) and (C2) are satisfied, and the
minimal relative error in the estimation of g is attained
by measuring at a time topt such that J ðg; toptÞ ¼ J 0 if
SðωÞ is known.
If SðωÞ is not known, then some constraints apply for

topt. Considering that the attenuation factor is given by
Eq. (A12), then, if the filter function FtðωÞ is much wider
than Gðg;ωÞ ¼ g2SðωÞ, it can be considered as a constant

Ft in the integral (A12). The attenuation factor following
the integration is then g2Ft, where we have used the
normalization property of the spectral density SðωÞ. This
limit holds when the interval is shorter than the correlation
time τc of the environment, so that the qubit probe evolves
freely, yielding [15–17,88,89]

Ffree
t ðωÞ ¼ t2

2
sinc2

�
ωt
2

�
≈
t2

2
if t ≪ τc; ðD1Þ

and

J freeðg; tÞ ≈ 1

2
g2t2: ðD2Þ

Then, the bound in the estimation error (C3) is achieved
when

tfreeopt ¼
ffiffiffiffiffiffiffiffiffi
2J 0

p
g

; provided tfreeopt ¼
ffiffiffiffiffiffiffiffiffi
2J 0

g2

s
≪ τc: ðD3Þ

This condition can be fulfilled only for large enough τc. To
overcome this limitation, we may exploit dynamical control
by means of frequent, stroboscopic QND measurements of
the qubit probe. If N QND unread measurements are
performed during a total time t, the dynamics conforms to
the Zeno regime with an attenuation factor [15–17,88,89]

J Zenoðg; tÞ ¼ g2t2

2N
if

t
N

≪ τc: ðD4Þ

Then, the condition for attaining the bound in the estima-
tion error (C3) is relaxed by 1=

ffiffiffiffi
N

p
, as

tZenoopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2NJ 0

p
g

; provided
tZenoopt

N
¼

ffiffiffiffiffiffiffiffiffi
2J 0

g2N

s
≪ τc: ðD5Þ

The latter condition can be attained for

N ≫
2J 0

g2τ2c
: ðD6Þ

In order to ensure that Eq. (D6) is satisfied, suffice it that
the product gτc be roughly estimated, by observing the
change in the decay law from the anti-Zeno or Fermi
golden rule to the QZE regime as N increases [90].

b. Correlation time τc
Control of the spin probe by N-pulse CPMG sequences

or N cycles of CW driving leads to a filter function FtðωÞ
that converges to a Fourier series described by a sum of
delta functions (band narrow filters) centered at the
harmonics of the inverse cycle time, kω0 ¼ ðπkN=tÞ,
k ∈ N, provided the total control time exceeds the interval
between the pulses t ≫ ðt=NÞ. Under these conditions, the
attenuation factor (A12) becomes [23,30]
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J ðτc; tÞ ¼ g2
X∞
k¼1

Ftðkω0ÞGðτc; kω0Þ: ðD7Þ

In what follows, we infer the conditions for attaining the
bound from the attenuation factor for the bath spectra
considered in the main text.

(i) For generalized Ornstein-Uhlenbeck spectra Gβ,
one condition to achieve the bound of Eq. (C3) is
that the filter overlap only with the power-law tail
spectra. This is ensured when the first harmonic of
the filter is already in this spectral region, which
amounts to ðt=πNÞ ≪ τc. The attenuation factor
(D7) then becomes

J βðτc; tÞ ¼ g2
X∞
k¼1

Ft

�
πkNτc

t

�
Aβτc

ðπkNτc
t Þβ ¼

cβg2tβþ1

Nβτβ−1c
;

ðD8Þ
with Aβ ¼ ðβ=2πÞ sinðπ=βÞ and cβ ¼
ðβ=2πβÞ sinðπ=βÞ for CW (only the first harmonic
k ¼ 1 gives non-null terms) and cβ ¼ ½ðζðβ þ
2Þð4 − 2−βÞβÞ=π2β� sinðπ=βÞ for CPMG (only odd
k gives non-null terms), where ζ is the zeta function
defined for ReðzÞ > 1 as ζðzÞ ¼ Σ∞

i¼1ð1=izÞ. Both
constants have similar values cCWβ ≈ cCPMG

β .
Since J β satisfies the equality in Eq. (C2), the

ultimate bound (C3) is achieved when J βðτc; toptÞ ¼
J 0. This yields

toptβ ¼ τc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NβJ 0

cβg2τ2c

βþ1

s
: ðD9Þ

The resulting requirement on N, in order to keep the
optimal narrow-band approximation and overlap
only with the power-law tail

topt

πN
≪ τc;

topt

π
ðD10Þ

is then

N ≫ max

�
J 0

cβg2τ2cπβþ1
; 1

�
: ðD11Þ

If the control is constrained (say, by maximum
total energy [26,27,91]), it may happen that the
filter function overlaps only with the Markovian
region of the spectral density, GM

β ðτc;ωÞ ≈Aβτc,
where it becomes a homogeneous function of the
order of α ¼ 1 on τc. The attenuation factor is then
independent of the dynamical control and is given
by the Markovian limit

JMðτc; tÞ ¼ g2Aβτct: ðD12Þ

The ultimate bound (with α ¼ 1) will then be
achieved if the probe state is measured at tM;opt

β ¼
ðJ 0=g2τcÞ independently of the control. This bound
is always greater (worse) than the ultimate bound of
Eq. (C3) for β > 2. For β ¼ 2, they are equal.

(ii) For generalized Ohmic spectra Gs, the attenuation
factor (D7) is

J sðτc; tÞ ¼ g2
Xkc
k¼1

Ft

�
πkNτc

t

�

× ðsþ 1Þτcðsþ1Þ
�
πkNτc

t

�
s

¼ csg2τsþ1
c Ns

ts−1
; ðD13Þ

where cs¼f½πsþ1ðsþ1Þ�=2gPkc
k¼1ð2k−1Þs−2 with

kc ¼ ½t=πNτc�, where the square brackets denote
the integer part. Since the harmonics that contribute
with non-null terms are those below the cutoff, then
kc is defined so as to satisfy ðπkcN=tÞ<ωc<ðπðkcþ
1ÞN=tÞ and therefore ðt=πNτcÞþ1<kc<ðt=πNτcÞ.

The first requirement to achieve the bound (C3) is to
avoid any overlap between the filter and the cutoff region,
i.e., ðt=πNkÞ ≠ τc, with k ∈ N. This is most likely to be
satisfied under the narrow-band approximation that allows
one to design the filter to be null at cutoff.
The second requirement is that the filter should overlap

with the power-law region. Therefore, one needs at least
one harmonic below the cutoff that avoids the overlap with
the cutoff, i.e.,

t
πN

> τc: ðD14Þ
Both conditions are ensured under CW control if
ðt=πNÞ > τc, since the corresponding filter contains only
one harmonic, leading to a simplified expression for the
constant cs ¼ ½πsþ1ðsþ 1Þ�=2. Then, J s satisfies the
equality in Eq. (C2), and the ultimate bound (C3) is
achieved when J sðτc; toptÞ ¼ J 0, yielding

topts ¼ τc
ffiffiffiffiffiffiffiffiffiffiffi
s − 1

p csg2τ2cNs

J 0

: ðD15Þ

To maintain this narrow-band approximation, with one
harmonic below the cutoff frequency, i.e.,

topts

π
≫

topts

πN
> τc; ðD16Þ

the number of cycles N for super-Ohmic spectra (s > 1)
should satisfy

NsuperOhm >
J 0π

s−1
csg2τ2c

and NsuperOhm ≫ 1 ðD17Þ

and for sub-Ohmic spectra (0 < s < 1)
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1 ≪ NsubOhm <
J 0π

s−1
csg2τ2c

; ðD18Þ

which is attainable when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ 0π

s−1=csÞ
p

≫ gτc. For
Ohmic spectra (s ¼ 1)

1 ≪ NOhm ¼ J 0

csg2τ2c
; ðD19Þ

implying that it must satisfy
ffiffiffiffiffi
J 0

cs

q
≫ gτc.

When the last conditions cannot be satisfied, less
restrictive optimal solutions can be found by demanding
the filter function to be null at the cutoff frequency ωc and
then finding the optimal control time.

c. The power-law exponent

To estimate the power-law (PL) exponents s and β of
spectral densities: GPLðωÞ ∝ ωs, ω−β or GðωÞ ∝ ½1=ð1þ
aωβÞ� with a ¼ const, we define the exponent xB ¼ γ
that is common to both spectral densities: γ ¼ 1þ β or
γ ¼ 1 − s, we note that the derivative of the attenuation
factor with respect to the exponent satisfies [cf. Eqs. (4) and
(8) in the main text]

���� ∂J ðxB ¼ γ; tÞ
∂γ

���� ¼
����
Z

∞

−∞
dωFtðωÞ

∂Gðγ;ωÞ
∂γ

����
≤
����
Z

∞

−∞
dωFtðωÞ

∂GPLðγ;ωÞ
∂γ

����
¼
���� ∂J PLðγ; tÞ

∂γ
����: ðD20Þ

This expression tightly bound the QFI (B4). To attain the
ultimate bound for the relative error of the estimation by the
maximized QFI, one needs to apply a control that probes
only the power-law regime of the spectral density. The
attenuation factor under such control can be expressed as
J ðγ; tÞ ¼ J PLðγ; tÞ ¼ ðt=T2Þγ, where the dephasing time
T2 depends on the applied control. Then,

���� ∂J ðγ; tÞ
∂γ

���� ¼ J ðγ; tÞ
γ

j lnðJ ðγ; tÞÞj; ðD21Þ

and the ultimate precision bound in the estimation is then
given by Eq. (13) of the main text. The bound is achieved
when the qubit probe is measured at topt ¼ T2

ffiffiffiffiffiffi
J 1

γ
p

with
J 1 ¼ e−2.246 ≈ 0.106 when the dynamical control can
ensure this regime. For example, under CW or CPMG
control for estimating the power law of an Ornstein-
Uhlenbeck process, the time interval between the number
of pulses should be smaller than the correlation time,
ðtopt=NÞ ≪ τc, so that N ≫ ðT2

ffiffiffiffiffiffi
J 1

γ
p Þ=τc.

d. Unattainability of the ultimate bound under FID

We here discuss the unattainability of the ultimate
precision bound when the spin probe evolves freely, for
the estimation of

(i) probe-bath interaction strength g [the conditions
to attain the relevant bound are discussed in the
main text starting with Eqs. (D1) and ending in
Eqs. (D3)] and

(ii) the correlation time τc, for which, as observed in
Fig. 2 of the main text, the estimation precision
becomes worse as gτc grows. For the generalized
Ornstein-Uhlenbeck spectra Gβ, as discussed in the
main text, the free-evolution filter Ffree

t ðωÞ, Eq. (D1),
overlaps with the ω ≈ 0 region and consequently
the equality in Eq. (C5) cannot be fulfilled. For the
generalized Ohmic spectra Gs, when t ≪ τc, one
can approximate Eq. (A12) by its zero-order term,
considering that Ffree

t ðωÞ is independent of ω, since
Gðτc;ωÞ is much narrower than Ffree

t ðωÞ.
The attenuation factor in this regime becomes indepen-

dent of τc, as in Eq. (D2): J free
β ðτc; tÞ¼J free

s ðτc; tÞ≈ 1
2
g2t2.

In this regime there is no information concerning the
correlation time τc. If 1

2
g2τ2c ≫ J 0, then it will not be

possible to achieve the bound under free evolution. The
attenuation factor will depend on τc only when t≳ τc, and
therefore 1

2
g2t2 ≳ 1

2
g2τ2c ≫ J 0, implying that the ultimate

bound on Eq. (C3) cannot be achieved.
The limitation of the estimation of τc for the spectra Gs

using freely evolving spin probes is that the only control
parameter is the time t that may not simultaneously avoid
the overlap of the filter function with ωc and render the
attenuation factor equal to J 0, i.e., usually topt ≠ 4πnτc,
n ∈ N. Hence, the ultimate bound is generally not achieved
under free evolution.

e. Pulse-error effects

In the preceding analysis, we consider ideal, i.e., perfect
and stroboscopic, pulses. If nonideal pulse effects are
important, one needs a model for their effect on the
dephasing. Typically, the pulses are applied with the same
phase, as in CPMG, where flip-angle errors are compen-
sated and the pure dephasing assumption is still suitable
[30,92]. In this case, if finite-width pulse effects are
significant, they can be considered by modifying the
effective filter functions [93]. Therefore, within this model
for the error effects, our ultimate bound is valid and
achievable in the presence of such pulse-error effects. If
pulse imperfections generate an effective Hamiltonian that
deviates from a pure dephasing [92,94], then a different
approach to calculate the ultimate bound must be pursued.
However, for parameter estimation, control pulses with
good fidelity are essential. Alternatively, one may have to
resort to more elaborate controls, nicknamed by us selective
dynamical recoupling, which we have shown to allow

MAXIMIZING INFORMATION ON THE ENVIRONMENT BY … PHYS. REV. APPLIED 5, 014007 (2016)

014007-13



selective probing of the targeted noise source by factoring
out uncontrollable noise sources, such as an intrinsic T2

decoherence due to a white-noise (Markovian) process or
due to pulse imperfections [10,11].

APPENDIX E: INFORMATION GAIN FOR
THE REAL-TIME ADAPTIVE-ESTIMATION

PROTOCOL

The best total control and measurement time t0 to be
chosen for the next iteration of the real-time estimation
protocol are determined by the averaged information gain
from the currently available probability distribution of xB,
pðxBj; d; tÞ, assuming that experimental outcome d is
obtained in the iteration measured at t [60].
The expected probability to obtain the outcome d0 by

measuring the controlled spin probe at time t0 from the
current probability distribution of xB is

pðd0jt0; d; tÞ ¼
Z

pðd0jxB; tÞpðxBj; d; tÞdτc: ðE1Þ

The total information gain of a measurement at time t0 is
given by

Uðt0Þ ¼
X
d0
pðd0jt0; d; tÞUðd0; t0Þ; ðE2Þ

where Uðd0; t0Þ is the information gain if the measurement
at t0 gives the result d0.
The information gain of an outcome, according to

information theory, is measured by the entropy

Uðd0; t0Þ ¼
Z

pðxBjd0; t0; d; tÞ log½pðxBjd0; t0; d; tÞ�dxB:

ðE3Þ
Then, the best time for the next control or measurement tm
is defined by the value that maximizes the expected
information

UðtmÞ ¼ max
t0

�X
d0
pðd0jt0; d; tÞ

×
Z

pðxBjd0; t0; d; tÞ log½pðxBjd0; t0; d; tÞ�dxB
�
.

ðE4Þ

APPENDIX F: EMULATION OF
QND MEASUREMENTS INDUCED BY
LASER-INDUCED DEPHASING IN NVC

We propose to emulate QND measurements for NVC
probes by laser-induced relaxation between the electronic
ground and excited states.
As the probe state is initialized in the electronic ground

state of the NVC, we probe the environment within this
subspace. In order to mimic the QND measurements, one

may use fast laser pulses for the transition from the ground
to the excited electronic state, such that after ∼10 ns
the electron spin is dephased in the excited electronic state,
as shown in Ref. [77]. Then the radiative decay to the
electronic ground states, which is (longitudinally) spin
conserving, completes the emulation of a projective QND
measurement in the j�i basis [78].
However, in a real experiment we may have to mimic

imperfect, partial QND measurements. In particular, in real
experiments we should consider that the radiative decay is
circa 8 and 15 ns for the j � 1i and j0i electron spin states,
respectively [95–97]. Concurrently, nonradiative decay of
the j � 1i states to the ground electronic state will occur on
a time scale of 300 ns, mainly to the j0i spin state [78].
Therefore, the emulation of a QND measurement will not
be perfect, and laser pulses have to be suitably optimized to
enhance the estimation efficiency. Such specific optimiza-
tion is beyond the scope of this work.
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