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Decoherence scaling transition in the dynamics of quantum information scrambling
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Reliable processing of quantum information for developing quantum technologies requires precise control of
out-of-equilibrium many-body systems. This is a highly challenging task because the fragility of quantum states
to external perturbations increases with the system size. Here, we report on a series of experimental quantum
simulations that quantify the sensitivity of a controlled Hamiltonian evolution to perturbations that drive the
system away from the targeted evolution. Based on out-of-time ordered correlations, we demonstrate that the
decay rate of the process fidelity increases with the effective number K of correlated qubits as Kα . As a function
of the perturbation strength, we observe a decoherence scaling transition of the exponent α between two distinct
dynamical regimes. In the limiting case below the critical perturbation strength, the exponent α drops sharply
below 1, and there is no inherent limit to the number of qubits that can be controlled. This resilient quantum
feature of the controlled dynamics of quantum information is promising for reliable control of large quantum
systems.
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I. INTRODUCTION

The characterization and understanding of the complex
dynamics of interacting many-body quantum systems is an
outstanding problem in physics [1,2]. They play a crucial
role in condensed-matter physics, cosmology, quantum infor-
mation processing and nuclear physics [3–6]. A particularly
urgent issue is the reliable control of many-body quantum
systems, as it is perhaps the most important step towards the
development and deployment of quantum technologies [1,7–
9]. Their control is never perfect and the fragility of quantum
states to perturbations increases with system size [10–12].
Accordingly, information processing with large quantum sys-
tems remains a challenging task. It is therefore of paramount
importance to reduce the sensitivity to perturbations, partic-
ularly for large systems, to minimize the loss of quantum
information. As we show here, achieving this goal may be
more realistic than it is currently assumed: we demonstrate
that the sensitivity of a quantum evolution to imperfections
in the control operation can become qualitatively smaller,
provided that perturbation strengths are below a certain
threshold.

Perturbations to the control Hamiltonian due to uncon-
trolled degrees of freedom, degrade the quantum information
in a process generally known as decoherence. Mitigating
this effect has been the goal of numerous studies to allow
information storage by protecting quantum states from per-
turbations [12,13]. However, characterizing and controlling
decoherence effects during the dynamics of quantum infor-
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mation remain challenging tasks, since out-of-equilibrium
many-body physics is involved [6,7,14–16]. Theoretical and
experimental approaches were developed to reduce deco-
herence in few-body systems [12,17–20]. Extending these
approaches to larger quantum systems is not a straightforward
scaling operation, since the evolution in these systems gen-
erates high-order quantum correlations that are spread over
degrees of freedom of many qubits. Controlling and probing
these correlations was tackled only recently [5,11,16,21–23].
Novel techniques are therefore required to address this task,
in particular with quantum simulations [7,8,11,15,24,25].

The dynamics of the build-up of many-body quantum su-
perpositions was initially measured within nuclear magnetic
resonance (NMR) by observing multiple quantum coherences
(MQCs) [26]. MQCs are relatively easy to characterize be-
cause they do not require a full quantum state tomography
and the coherence order provides a hard lower bound on the
number of correlated particles (spins) [6,11,27,28]. MQCs
can be useful tools to measure the sensitivity of controlled
dynamics to perturbations [11,29] combined with the time
reversal of quantum evolutions that leads to a Loschmidt
echo [30–32]. Loschmidt echoes and MQC evince out-of-time
order correlations (OTOC) [4,6], as they measure the scram-
bling of the information over a large system from an initially
localized state [27,28,33]. They are therefore promising tools
for finding answers to open questions related to quantum
chaos [34–36], irreversibility [33,37], thermalization [38], and
entanglement [28]. Hence, these OTOCs trigger a broad in-
terest in diverse fields of physics, such as condensed matter
and quantum gravity [27,28,35,36,38–41], opening avenues
for understanding the dynamics of quantum information in
complex systems [4,6].

2469-9926/2021/104(1)/012402(10) 012402-1 ©2021 American Physical Society

https://orcid.org/0000-0002-7328-357X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.012402&domain=pdf&date_stamp=2021-07-01
https://doi.org/10.1103/PhysRevA.104.012402


FEDERICO D. DOMÍNGUEZ et al. PHYSICAL REVIEW A 104, 012402 (2021)

Here, we use tools of solid-state NMR to assess the sen-
sitivity to perturbations of a controlled quantum dynamics
in a many-body system. We drive the system away from
equilibrium by suddenly imposing on it an experimentally
controllable Hamiltonian that does not commute with the
initial condition and that can be inverted in order to drive
the system forward or backward in time. The forward mo-
tion causes the quantum information to spread over a large
system (with thousands of particles), but in the case where
the inversion of the Hamiltonian is perfect, the system returns
exactly to the initial state—this is known as a Loschmidt
echo [30–32].

In practice, the inversion of the Hamiltonian is never
perfect, and the deviations result in imperfect return to the
initial condition and therefore to a reduction of the echo sig-
nal, which is proportional to the overlap between the initial
and final state. Here, we study the effect of such deviations
from the ideal Hamiltonian by adding perturbations with vari-
able strength p and measuring their effect on the evolution.
This sets a paradigmatic model system where initial infor-
mation stored on local states spreads over a spin network
of about 5000 spins. This information spreading process is
called scrambling [4,6,34] to indicate that the local initial
condition can no longer be accessed by local measurements.
We experimentally design an OTOC measure to probe high-
order quantum correlations and compare the scrambling of
information from the initial state by the ideal and the per-
turbed quantum dynamics. This is done by implementing a
Loschmidt echo with a forward evolution driven by the per-
turbed Hamiltonian and a backward evolution driven by the
ideal one, so as to quantify the difference between the scram-
bling dynamics. We derive an OTOC that defines an effective
cluster size, the number of correlated spins K over which
the information was spread by the ideal control Hamiltonian.
We demonstrate that the fidelity decay rate of the controlled
dynamics—measured with the Loschmidt echo—increases
with the instantaneous cluster size K as a power law ∝Kα ,
with α depending on the perturbation strength p. Strikingly,
our results evince two qualitatively different fidelity decay
regimes with distinctive scaling laws associated with a sudden
change of the exponent α. For perturbations larger than a
given threshold, the controlled dynamics is localized, as man-
ifested by a saturation of the cluster-size growth K (t ). This
imposes a limit on the number of qubits that can be controlled
during a quantum operation. However, for perturbations lower
than the threshold, the cluster size K grows indefinitely and
the exponent α drops abruptly, making the quantum dynamics
of large systems qualitatively more resilient to perturbations.
This sudden sensitivity reduction to perturbations is a promis-
ing quantum feature that may be used to implement reliable
quantum information processing with many-body systems for
quantum technologies and for studying quantum information
scrambling.

II. QUANTUM INFORMATION DYNAMICS

We perform experimentally all quantum simulations on
a Bruker Avance III HD 9.4T WB NMR spectrometer with
a 1H resonance frequency of ωz = 400.15 MHz. We con-
sider the spins of the hydrogen nuclei of polycrystalline

adamantane, where the strength of the average dipolar inter-
action can be determined from the full width at half maximum
of the resonance line at 13 kHz. They constitute an interacting
many-body system of equivalent spins I = 1/2 in a strong
magnetic field. In the rotating frame of reference, the Hamil-
tonian reduces to [42]

Hdd =
∑
i< j

di j
[
2I i

zI j
z − (

I i
xI j

x + I i
yI j

y

)]
, (1)

where I i
x, I i

y, and I i
z are the spin operators and di j are the

spin-spin coupling strengths that scale with the distance be-
tween spins ∝1/r3

i j . The dipolar interaction Hdd is truncated
to the part that commutes with the stronger Zeeman interac-
tion (ωz � di j), as the effects of the noncommuting part are
negligible.

The NMR quantum simulations start from the
high-temperature thermal equilibrium state ρ(0) ≈
(I + h̄ωz

kBT Iz )/Tr{I}, where Iz = ∑
i I i

z commutes with the
Hamiltonian Hdd [42]. The unity operator I does not
contribute to an observable signal (see Appendix A). In this
state, the spins are uncorrelated and form the ensemble of
local states that we consider as the initial local information.

To spread the local information, we drive the system out of
equilibrium with the evolution operator U0(t ) = e−itH0 , with
the double-quantum Hamiltonian

H0 = −
∑
i< j

di j
[
I i
xI j

x − I i
yI j

y

]
(2)

as the ideal—nonperturbed—Hamiltonian. This Hamiltonian
flips simultaneously two spins with the same orientation. Ac-
cordingly, the z component of the magnetization Mz changes
by M = �Mz = ±2. At the same time, the number K of corre-
lated spins changes by �K = ±1 [43] (see Appendix D). The
coherence order M = Mz, j − Mz,i classifies the coherences
|Mz,i〉〈Mz, j | of the density matrix, where Iz|Mz,i〉 = Mz,i|Mz,i〉.
The change of coherence order allows us to probe high-order
spin correlations associated with the number of correlated
spins that witness the information spreading over the system
from the initial ensemble of localized states [26,43] (see Ap-
pendix D).

To quantify the sensitivity to perturbations of the controlled
quantum dynamics, we control the deviation from H0 with the
dimensionless perturbation strength p of the Hamiltonian

H(p) = (1 − p)H0 + p�. (3)

Here � is a perturbation Hamiltonian. The Hamiltonian H
is engineered with average Hamiltonian techniques using a
NMR pulse sequence [11,29] (see Appendix B). We consider
the effect of two different perturbations: (i) a two-spin oper-
ator perturbation given by the dipolar Hamiltonian � = Hdd ,
and (ii) a single-spin operator perturbation given by a longi-
tudinal offset field � = Hz = �ωzIz [38]. Both perturbations
induce a controlled relative dephasing with respect to the ideal
evolution that produces decoherence effects.

III. FIDELITY AND LOSCHMIDT ECHO

The observable in the experiments is the magnetization
operator Iz. Since the trace of this observable is zero, the unity
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term I in the initial state ρ(0) does not contribute to its expec-
tation value, and our observable signal Tr[Izρ(t )] ∝ Tr[IzIz(t )]
gives the Iz evolution. Therefore, we can quantify the devia-
tion between the actual driven state Iz(t ) = Up(t )IzU †

p (t ) and

the ideally driven state I0
z (t ) = U0(t )IzU

†
0 (t ), where Up(t ) =

e−itH(p) is the perturbed operation and U0(t ) = e−itH0 the
ideal control operation. The instantaneous state fidelity is
defined by the inner product between Iz(t ) and I0

z (t ) that is
determined after a proper normalization of the NMR signal

f (t ) = Tr
[
Iz(t )I0

z (t )
]
/Tr

(
I2
z

)
, (4)

where the factor Tr(I2
z )−1 ensures that f (0) = 1 (see

Appendix C).
This fidelity is identical to the Loschmidt echo [30–32] by

choosing the observable magnetization Iz equal to the initial
magnetization. We first evolve the system with the perturbed
evolution operator Up(t ) and then we time reverse the evo-
lution with the unperturbed evolution operator U †

0 (t ). The
observable signal ∝Tr(U †

0 UpIzU †
pU0Iz ) gives the many-body

Loschmidt echo:

f (t ) = Tr(U †
0 UpIzU

†
pU0Iz )

/
Tr

(
I2
z

)
, (5)

which is equal to the fidelity after considering cyclic permu-
tations (see Appendix C).

IV. MULTIPLE-QUANTUM FIDELITY AND OUT-OF-TIME
ORDER CORRELATIONS

We perform a partial tomography of the density-matrix
fidelity by applying a rotation operation φz = eiφIz between
the forward Up(t ) and backward evolution U †

0 (t ). The global
fidelity becomes

fφ (t ) = Tr(U †
0 φzUpIzU

†
p φ†

z U0Iz )/Tr
(
I2
z

)
= Tr

[
Iz(t )φ†

z I0
z (t )φz

]
/Tr

(
I2
z

)
= ∑

MeiφM fM (t )/Tr
(
I2
z

)
, (6)

where we decompose it into the partial MQC inner products

fM (t ) = Tr
[
Iz,M (t )I0

z,M (t )
]
/Tr

(
I2
z

)
(7)

of different coherence orders M. The overlap fM (t ) quan-
tifies the deviation of the density operator elements with a
given M of the perturbed evolution from the ideal ones (see
Appendix D).

If the perturbation strength p = 0, Eq. (6) gives a conven-
tional OTOC

fφ (p = 0, t ) = 〈
I0
z (t )φ†

z I0
z (t )φz

〉
β=0 (8)

= 〈φz(t )Izφ
†
z (t )Iz〉β=0, (9)

with φz(t ) = U0(t )φzU
†
0 (t ). Here 〈·〉β=0 = Tr(·)/Tr(I2

z ) is an
expectation value normalized to its value at t = 0 if the sys-
tem is assumed at infinite temperature (see Appendix E). It
quantifies the scrambling into the system of the local informa-
tion stored in the initial state ρ(0) [6,27]. The components
fM (p = 0, t ) = Tr[I0

z,M (t )I0
z,M (t )]/Tr(I2

z ) are the amplitudes
of the MQC spectrum representing the distribution of coher-
ences (nondiagonal terms in the eigenbasis of Iz) of the density

matrix that were built by the control Hamiltonian H0 [11,26].
The second moment of the MQC spectrum fM (p = 0, t ) pro-
vides the average cluster size of correlated spins,

K0(t )

2
=

∑
M

M2 fM (p = 0, t ) (10)

= Tr
([

I0
z (t ), Iz

]†[
I0
z (t ), Iz

])
/Tr

(
I2
z

)
, (11)

at the evolution time t [11,26–28] (see Appendix E).
The expression Tr([I0

z (t ), Iz]†[I0
z (t ), Iz])/Tr(I2

z ) = 〈[I0
z (t ), Iz]†

[I0
z (t ), Iz]〉β=0 is a commutator OTOC that quantifies the de-

gree by which the initially commuting operators I0
z (t ) and Iz

fail to commute at time t due to the scrambling of information
induced by the spin-spin interactions of H0 [27,28].

Considering the perturbed evolution (p �= 0), the fidelity
fφ (t ) is a more general OTOC that quantifies the deviation of
the information scrambling induced by H(p) with respect to
the one driven by H0. This is seen from the second moment
of fM (t ),∑

M

M2 fM (t ) = Tr
(
[Iz(t ), Iz]

†
[
I0
z (t ), Iz

])
/Tr

(
I2
z

)
, (12)

which, based on the inner product between the commutators
[Iz(t ), Iz] and [I0

z (t ), Iz], gives the degree of noncommu-
tation shared by the evolved states I0

z (t ) and Iz(t ) with
respect to Iz (see Appendix E). Since

∑
M fM = f (t ) =

Tr[Iz(t )I0
z (t )]/Tr(I2

z ) decays as a function of time, the cluster
size of correlated spins is determined from the normalized
second moment

K (t ) = 2
∑

M M2 fM (t )∑
M fM (t )

. (13)

As the perturbation Hamiltonians Hdd and Hz do not generate
MQC by themselves, the OTOC of Eq. (12) provides the
scrambling of information by the spin-spin interactions of H0

that survived the perturbation effects. Based on the second
moment of fM (t ), K (t ) defines a “coherence length” between
the two scrambling dynamics of information in terms of an
average hamming weight [36,38,39] for the fidelity of the
density matrix. Therefore, K (t ) quantifies how comparable
the perturbed and unperturbed density-matrix dynamics are
as a function of the coherence order M. This coherence length
K (t ) defines the effective cluster size of correlated spins on
which the density matrices are comparable based on the inner
product fM (t ) = Tr[Iz,M (t )I0

z,M (t )]/Tr(I2
z ) as a kind of fidelity

in Eq. (12). In experimental implementations of quantum sim-
ulations, there are always uncontrolled perturbations [12] (see
Appendix F). These interactions add extra terms to � that are
responsible for the fidelity decay even when the controlled
perturbation is p = 0. This can be interpreted as the effective
perturbation strength is no null.

We measure the time evolution of the MQC fidelities fM (t )
for different perturbations to determine the global fidelity
f (t ) and the effective cluster size K (t ). Both are shown in
Figs. 1(a) and 1(b), respectively, for a weak (p = 0.0017) and
a strong perturbation strength (p = 0.108) when � = Hdd .
The fidelity decays faster as a function of time with increasing
perturbation strength. The fidelity decays even in the unper-
turbed case p = 0 as described above due to terms that are
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FIG. 1. Time evolution of the controlled-dynamics’ fidelity and the corresponding effective cluster size of correlated spins as a measure of
the scrambling of information. (a) The fidelity decay f (t ) = Tr[Iz(t )I0

z (t )]/Tr(I2
z ) is shown for two perturbation strengths for the perturbation

Hamiltonian � = Hdd . The strongest perturbation shows an exponential decay law for times >0.3 ms (inset). A MQC-fidelity fM (t ) between
the perturbed dynamics Iz(t ) and the ideal—nonperturbed—dynamics I0

z (t ) as a function of the coherence order M. The enclosed area gives
the global fidelity f (t ). (b) Evolution of the cluster size of correlated spins K (t ) determined from the second moment of the MQC fidelity
(inset). The number K (t ) of correlated spins defines the “coherence length” on which the density matrices are comparable. For the weakest
perturbations, the cluster size grows indefinitely, while for the strongest ones, K (t ) reaches a stationary value—an effect we call localization.
(c) The instantaneous decoherence rate χ ′(p, t ) = dχ

dt (p, t ) of the fidelity f (t ) as a function of time t . The exponential decay regimen of f (t )
is manifested here when the decoherence rate χ ′(t ) achieves a constant value. (d) The instantaneous decoherence rate χ ′ as a function of the
cluster size K . The plateau of χ ′(t ) that appears when the cluster size K (t ) localizes in panel (c), here is manifested by the accumulation of
points at the end of the curve χ ′(K ).

not included in the Hamiltonian of Eq. (3) (see Appendix F).
The perturbation p = 0.0017 represents a limiting case p → 0
from which f (t ) no longer improves, indicating that the re-
maining decay is originated by the uncontrolled perturbation
sources. The cluster size K (t ) initially grows exponentially
as a function of time and then slows down to a power-law
behavior whose growth rate reduces with increasing pertur-
bation strength. For strong perturbations, K (t ) saturates to
a value independent of time that decreases with increasing
perturbation strength [11]. We call this effect the localization
of the “coherence length” of the MQC fidelity that quantifies
the “localization” of the scrambling of information shared
between the perturbed and ideal dynamics determined from
the OTOC of Eq. (12). The fidelity f (t ) reaches an exponential
decay regime with a constant rate when the dynamics of K (t )
is localized [Fig. 1(a)]. Analogous results are observed for
� = Hz.

V. FIDELITY DECAY RATE SCALING WITH THE
INSTANTANEOUS COHERENCE LENGTH

The fidelity decay

f (p, t ) = e−χ (p,t ) (14)

is determined by the instantaneous decoherence rate
[Fig. 1(c)]

χ ′(p, t ) = dχ

dt
(p, t ). (15)

For strong perturbations, the decoherence rate χ ′(t ) reaches a
plateau—a constant value—that depends on the perturbation
strength when the dynamics of K (t ) is localized. However, for
weak perturbations when the dynamics of K (t ) does not evi-
dence localization, this plateau is not manifested. Consistently
when localization effects are observed, χ ′(K ) evinces an ac-
cumulation of points as shown in Fig. 1(d). This demonstrates
that the saturation of χ ′(t ) and K (t ) occur at the same time.

Moreover, the experimental results show that χ ′(K ) ∝ Kα for
long times, indicating that the fidelity decay rate is determined
by a scrambling rate defined by the instantaneous effective
cluster-size of correlated spins K .

Figure 2 shows χ ′ as a function of K , now for both
perturbation Hamiltonians � = Hdd and � = Hz and differ-
ent perturbation strengths. The power-law functional form

FIG. 2. Instantaneous decoherence rate χ ′ as a function of the
effective cluster size K . The two perturbation Hamiltonians are
considered: (a) � = Hdd and (b) � = Hz. At long times, the fidelity
decay rate is driven by the scrambling rate χ ′(K ) ∼ Kα given by
the instantaneous cluster-size, with a power-law exponent that de-
pends on the perturbation strength p. (c) The power-law exponent
α decreases with decreasing the perturbations strength, showing two
plateau values at the weakest (α0) and at strongest perturbation (α∞).
To estimate α0 and α∞, we fit α(p) with a sigmoid function (solid
line).
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FIG. 3. Decoherence scaling transition between two dynamical regimes of the fidelity decay evinced by the finite-time scaling analysis.
Scalings for both perturbation Hamiltonians (a) � = Hdd and (b) � = Hz are shown. (c) The corresponding scaling factors ζ (p) and their fit-
tings to the function ζ (p) = A|p − pc|−ν + B. In the case of � = Hdd , the critical exponents are ν = (−0.57 ± 0.03) and s = (−0.93 ± 0.06)
and the critical perturbation pc = (0.026 ± 0.001). For � = Hz, the critical perturbation is pc = (0.065 ± 0.01), and the critical exponents are
ν = (−0.47 ± 0.05) and s = (−0.93 ± 0.06). The curves of ζ (p) are normalized to satisfy ζ (p∞) = [χ ′(K )/Kα∞ ]1/2, where p∞ = 0.108 for
� = Hdd and p∞ = 0.24 for � = Hz are the largest perturbation strength used in the experiments.

χ ′(K ) ∼ Kα holds for all cases considered. The exponents α

are shown in Fig. 2(c). They give qualitative different limiting
values for the localized (strong perturbation) and delocalized
curves (weak perturbation). For the strongest perturbations,
the asymptotic behavior at long times shows a power law
χ ′(K ) ∼ Kα∞ , where α∞ = 0.96 ± 0.02 for the perturbation
Hdd and α∞ = 0.91 ± 0.03 for Hz, both near to a linear
scaling. However, the exponents drop for the weakest pertur-
bations as p → 0. In the limit we obtain α0 = (0.48 ± 0.03)
for both � with the asymptotic behavior χ ′(K ) ∼ Kα0 . We
expect this exponent to be determined by the uncontrolled per-
turbation effects that were not accounted in the experimental
quantum simulations (see Appendix F).

VI. SCALING TRANSITION ON THE FIDELITY DECAY
LAW: A PERTURBATION THRESHOLD

To quantitatively analyze the different scaling laws de-
termined by the exponent α, we implement finite-time
scaling techniques typically used to describe localization-
delocalization transitions from finite-time experimental
data [11,44,45]. We consider the evolution time dependence
implicit on the cluster size K (t ). We use the following ansatz
for the scaling behavior at long times (see Appendix G):

χ ′(p, K ) ∼ Kk1 F [(pc − p)K−k2 ], (16)

where F is an arbitrary function. The constants k1 and
k2 are determined to reproduce the asymptotic behavior at
weak and strong perturbations. This assumption leads to the
functional regimes χ ′ ∼ (pc − p)sKα0 for p < pc and χ ′ ∼
(p − pc)−2νKα∞ for p > pc at long times. We determine the
critical exponents from the asymptotic experimental data, ob-
taining s = (−0.911 ± 0.004), ν = (−0.57 ± 0.03) for � =
Hdd , and s = (−0.93 ± 0.06), ν = (−0.47 ± 0.05) for � =
Hz. We then find the scaling factor ζ (p) that produces a
universal scaling (see Appendix G). Rescaled curves of χ ′
as a function of K that collapse into the universal scaling
curve are shown in Figs. 3(a) and 3(b). The two branches

of the functional behavior evince two dynamical phases for
the decoherence effect on the controlled quantum operation
characterized by the scrambling dynamics given by K (t ).

The scaling factors ζ (p) that lead to the universal scalings
for both perturbations are consistent with the single-parameter
ansatz of Eq. (16) that predicts a functional form ζ (p) ∼ (p −
pc)−ν [Fig. 3(c)]. The critical perturbation pc = (0.026 ±
0.001) for � = Hdd is in agreement with previous experimen-
tal values that evinced a localization-delocalization transition
in the dynamics of the cluster size K (t ) on the same sys-
tem [11]. This coincidence of pc suggests that the critical
effects in the dynamics behavior of K (t ) and χ ′(K ) might
be related by a common physical phenomenon. However, the
scaling transition of the exponent α is not determined by the
scaling transition of the dynamic behavior of K (t ). The effect
of the localization behavior on χ ′(K ) is the accumulation of
points at the end of the curve, as shown in Fig. 1(d), but it
does not determine the power-law exponent for the relation
χ ′(K ) ∼ Kα .

VII. CONCLUSION

In summary, we have designed an experiment to quantify
the deviation of a perturbed dynamics from the ideal one
based on monitoring the scrambling of information with MQC
and OTOCs. Analyzing many-body Loschmidt echoes, we
demonstrated that the fidelity decay rate of the ideal quantum
information dynamics is driven by the instantaneous cluster
size K (t ) of correlated spins, which quantifies the information
spreading induced by the control operation. This instanta-
neous cluster size K (t ) is an OTOC that gives the common
number of correlated spins shared by the ideal I0

z (t ) and per-
turbed Iz(t ) dynamics. The fidelity decay shows a transition
between two different scaling laws that depend on the scram-
bling rate Kα , whose power-law exponent changes suddenly
as a function of the perturbation strength. By reducing the
perturbation strength below a threshold, the exponent α drops
abruptly below 1 and there is no inherent limit to the number
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of qubits that can be controlled as expected by the ideal
dynamics. This is encouraging as the dynamical decoherence
rate does not scale linearly with the system size. Although the
transition from one regime to another is smooth due to the
finite evolution time of the experimental data, the finite-time
scaling indicates the existence of the two dynamical regimes.
The fact that the controlled dynamics is more resilient to
perturbations if they are below a finite critical value pc, is
also promising for allowing reliable quantum control of large
quantum systems. The presented methods provide alternative
avenues for characterizing the control of many-body systems
out-of-equilibrium with realistic—imperfect—operations for
designing quantum technologies.
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APPENDIX A: INITIAL STATE

The spin system is described as an ensemble of states with
the density operator. The initial state is a thermal state at room
temperature where kBT � h̄ωz. Therefore, the initial density
matrix is approximated by [42]

ρ(0) = e− h̄ωz Iz
kBT

tr
{
e− h̄ωz Iz

kBT
} ≈

(
I + h̄ωz

kBT
Iz

)/
Tr{I}. (A1)

Notice that, as our experimental observable is the spin
operator Iz, then as Tr(IzI) = 0, the unity operator I in
Eq. (A1) does not contribute to an observable signal. Then
as the NMR signal is S(t ) ∝ Tr(Izρ(t )) = Tr(IzU (t )IzU (t )) ×
( h̄ωz

kBT /Tr{I}), it gives the time evolution of the operator Iz

multiplied by a constant term.

APPENDIX B: HAMILTONIAN ENGINEERING

The effective Hamiltonian of Eq. (3) is generated by
concatenating short evolution periods e−iτ0H0 and e−iτ�� of
duration τ0 and τ� , respectively. We get e−iτ0H0 e−τ�� =
e−iτc[(1−p)H0+p�]+O[(τcd )2] if the cycle time τc = τ0 + τ� �
d−1, where d ≈ 13 kHz is the full width at half maximum
of the resonance line determined by the homogeneous broad-
ening induced by the dipolar coupling between the spins.
Here p = τ�/τc is controlled by adjusting τ�. Then based on
the Suzuki-Trotter expansion, the evolution operator Up(t ) is
achieved by applying repetitively N cycles e−iτ0H0 e−τ�� of
duration τc,

Up(Nτc) ≈ e−i[(1−p)H0+p�]Nτc , (B1)

where the evolution time t = Nτc.
To engineer the double quantum Hamiltonian H0, we use

the eight-pulse sequence developed in Refs. [26,46]. We ap-
plied π/2 rf pulses in the x direction of duration τp = 3.24 μs,
with delays � = 2 μs and �′ = 2� + τp. The evolution op-

erator of one cycle is

U0(τ0) = e−i�/2Hdd X −1e−i�′Hdd X −1e−i�Hdd X −1

× e−i�′Hdd X −1e−i�Hdd Xe−i�′Hdd Xe−i�Hdd

× Xe−i�′Hdd Xe−i�/2Hdd ,

where X is the π/2 pulse in the x direction. The duration of the
pulse-sequence’s cycle in our experiments was τ0 = 62.88 μs.
Again, if τ0d � 1, U (τ0) is approximated by

U0(τ0) ≈ e−iτ0H0 . (B2)

The perturbation � = Hdd was prepared by a free-evolution
period of duration τ� following the cycle of H0 of duration
τ0 [11,29]. The perturbation � = Hz = �ωzIz is produced by
phase shifts of the pulses that generate the H0 Hamiltonian by
following the protocol proposed in Ref. [38]. The nth cycle
of the eight-pulse sequence that generates H0 is shifted by
an angle (n − 1)ϕ. Then, the evolution operator for the nth
cycle is

Un(τ0) = e−iIz (n−1)ϕ e−iH0τ0 eiIz (n−1)ϕ, (B3)

and the concatenation of N cycles is then

Up(N τ0) = UN · · · U1 (B4)

= e−iNϕIz [e−iτ0H0 eiϕIz ]N

= e−iNϕIz [e−iτ0H0 eiτ�dIz ]N (B5)

 e−iNϕIz e−iτcN[(1−p)H0+p�ωzIz], (B6)

where we have defined τ� = ϕ/d and �ωz = −d . As in the
case � = Hdd , p = τ�/τc. The extra phase e−iNϕIz is cor-
rected by increasing the codification phase φ for determining
the MQC spectrum in an angle Nϕ [38]. The resulting effec-
tive Hamiltonian is then

H(p)  (1 − p)H0 + pHz. (B7)

APPENDIX C: FIDELITY

We implement a Loschmidt echo as a measure of the
fidelity between the ideal density matrix evolving with
U0(t ) = e−itH0 and the perturbed one evolving with Up(t ) =
e−itH(p). The resulting NMR signal is therefore S(t ) ∝
Tr[U †

0 Upρ(0)U †
pU0Iz] ∝ Tr[UpIzU †

pU0IzU
†
0 ] = Tr[Iz(t )I0

z (t )].
We normalized the experimental data in Fig. 1(a) at t = 0 to

obtain the fidelity f (t ) = S(t )/S(0) = Tr(Iz (t )I0
z (t ))

Tr(I2
z ) .

APPENDIX D: DETERMINATION OF
MULTIPLE-QUANTUM-COHERENCE SPECTRUM AND

MULTIPLE-QUANTUM-COHERENCE FIDELITY

The double-quantum Hamiltonian of Eq. (2) flips simul-
taneously two spins with the same orientation. Taking into
account the selection rules of the transitions, the z component
of the magnetization Mz changes by M = �Mz = ±2 to add
or subtract �K = ±1 to the number of correlated spins K
among which the coherence is shared [43]. Therefore the
change of coherence order allows us to probe the number
of correlated spins as a witness of the quantum information
spreading [26]. The spin density matrix after evolving with
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the evolution operator U0(t ) from the initial state can be de-
composed on the coherence orders as

ρ(t ) =
∑

M

∑
mj−mi=M

ρi j (t )|mi〉〈mj | =
∑

M

ρM (t ), (D1)

where the operator ρM (t ) = ∑
mj−mi=M ρi j (t ) contains all the

elements of the density operator involving the coherences of
order M. Then a rotation φz = e−iφIz of a phase φ around the
z axis changes the density operator to

ρ(φ, t ) = φzρ(t )φ−1
z =

∑
M

eiMφρM (t ). (D2)

The fidelity fφ (t ) with the proper normalization results then
takes the form

fφ (t ) = Tr[φzUpIzU
†
p φzU0IzU

†
0 ]/Tr

(
I2
z

)
(D3)

= Tr
[
Iz(φ, t )I0

z (t )
]
/Tr

(
I2
z

)
(D4)

=
∑
M ′

eiMφTr
[
Iz,M (t )I0

z,M (t )
]
/Tr

(
I2
z

)
(D5)

=
∑

M

eiMφ fM, (D6)

where fM (t ) = Tr[Iz,M (t )I0
z,M (t )]/Tr(I2

z ) is a inner prod-
uct that with a proper normalization can be interpreted
as a MQC fidelity. The MQC-fidelity is therefore deter-
mined by performing a Fourier transform on φ of the
echo signal fφ (t ). Similarly, when p = 0, fM (p = 0, t ) =
Tr[I0

z,M (t )I0
z,M (t )]/Tr(I2

z ) gives the MQC-spectrum [26].

APPENDIX E: OUT-OF-TIME ORDER CORRELATIONS
AND EFFECTIVE CLUSTER SIZE K(t )

At p = 0, the fidelity fφ (p = 0, t ) = Tr[φz(t )Izφ
†
z (t )Iz]/

Tr(I2
z ) = 〈φz(t )Izφ

†
z (t )Iz〉β=0 is a conventional OTOC, where

the expectation value 〈O(t )〉β = Tr{O(t )ρβ}/Tr{O(0)ρβ} of
the operator O(t ) is normalized at t = 0, where ρβ =
e−βH/Tr(e−βH) is the equilibrium density matrix of the sys-
tem at the inverse temperature β [28,34,38,47]. In our case the
OTOC provides information of the system at infinite temper-
ature with β = 0, i.e., ρβ=0 = I/Tr(I). The fidelity fφ (p =
0, t ) quantifies the degree of noncommutation of φz(t ) and Iz

according to the relation

fφ (p = 0, t ) = 1 − 1
2 Tr

(
[φz(t ), Iz]

†[φz(t ), Iz]
)
/Tr

(
I2
z

)
. (E1)

Performing a Taylor expansion of fφ (p = 0, t ) for small φ, we
get the second moment of the MQC spectrum [28,48]:

m0
2(t ) =

∑
M

M2 fM (p = 0, t ) (E2)

= Tr
([

I0
z (t ), Iz

]†[
I0
z (t ), Iz

])
/Tr

(
I2
z

)
. (E3)

It is possible to deduce from m0
2 the number of correlated

spins K0 by making assumptions on the MQC spectrum
fM [48]. The most extended model was proposed by Baum
et al. [26,49] that gives a Gaussian distribution for fM as a
function of M, where K0(t ) = 2m0

2(t ) is determined from the
width of the Gaussian distribution. The exact value of K0 will
depend on the assumed model for the MQC distribution [48].

When p �= 0, fφ (t ) = Tr[Iz(t )φ†
z I0

z (t )φz]/Tr(I2
z ) = 〈Iz(t )φ†

z

I0
z (t )φz〉β=0 is a more general OTOC [47] that satisfies

fφ (t )={
Tr

[
Iz(t )I0

z (t )
]− 1

2 Tr
(
[Iz(t ), φz]

†[I0
z (t ), φz

])}/
Tr

(
I2
z

)
= fφ=0(t ) − 1

2 Tr
(
[Iz(t ), φz]

†
[
I0
z (t ), φz

])/
Tr

(
I2
z

)
. (E4)

Expanding fφ (t ) in powers of φ, equivalently as was done for
obtaining Eq. (E2), we obtain the second moment of the MQC
distribution fM (t ):

m2(t ) =
∑

M

M2 fM (t ) (E5)

= Tr
(
[Iz(t ), Iz]

[
I0
z (t ), Iz

]†)/
Tr

(
I2
z

)
. (E6)

The second moment m2(t ) quantifies the overlap between
the scrambling of the ideal evolution I0

z (t ) and the perturbed
evolution Iz(t ), determined by the inner product between the
corresponding commutators [I0

z (t ), Iz] and [Iz(t ), Iz], respec-
tively. Due to the effect of the perturbation, the total intensity
of the MQC spectrum

∑
M fM (t ) = fφ=0(t ) decreases as a

function of time, so the second moment m2 must be nor-
malized by fφ=0(t ) to determine the width of the MQC
distribution. In analogy with the case p = 0, the effective
number of correlated spins is K (t ) = 2m2(t )/ fφ=0(t ).

APPENDIX F: INTRINSIC DECOHERENCE EFFECTS

The ideal form of the effective Hamiltonian H0 of Eq. (2) is
based on a zeroth-order approximation using average Hamil-
tonian theory [50]. It can only be achieved if the dipolar
couplings di j are time independent, all pulses of the NMR
sequences are ideal, and the condition τc = τ0 + τ� � d−1

is good enough. However, typically these couplings are time
dependent due to thermal fluctuations, and the pulses are
not ideal. In addition, there are nonsecular terms neglected
in Eq. (1), and they might also contribute to the quantum
dynamics. All these effects introduce extra terms in the ef-
fective Hamiltonian H of Eq. (3) and in H0 of Eq. (2).
These extra perturbation terms produce decoherence effects
on ms timescales during the quantum simulations, even for
p = 0. These decoherence effects reduce the detected signal
and the overall fidelity f (t ). Then also the MQC spectrum
is attenuated with an overall global factor. However, in this
study, this decoherence effects do not cause localization of
the information scrambling dynamics on the timescale of our
experiments when p → 0 (see Fig. 2, black squares). When
p �= 0, we quantify the scrambling rate K from the second
moment of Eq. (12) generated by H0 after a time-reversed
evolution under −H0. This means that these clusters have
survived the decoherence effects. Therefore, the nonequilib-
rium many-body dynamics observed by the OTOC of Eq. (12)
thus reflects the coherent quantum dynamics generated by
the engineered Hamiltonians. We notice that the experimen-
tally observed quantum dynamics occurs over times scales
much shorter than the spin-lattice relaxation time T1 ≈ 1 s,
so we also neglect the effect of thermalization with the lattice.
Therefore, when the controlled perturbation is set to p = 0,
we consider that the effective perturbation is not null and we
determine the cluster size of correlated spins using K (t ) =
2

∑
M M2 fM (t )∑
M fM (t ) as for the p �= 0 case.
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APPENDIX G: FINITE-TIME SCALING PROCEDURE

To implement the finite-time scaling technique [11,44,45],
we used the asymptotic experimental data for p → 0, which
shows that χ ′(p → 0, K ) ∝ Kα0 for long times. Then we used
the asymptotic experimental data for the largest perturbation
strengths p∞ = 0.108 for � = Hdd and p∞ = 0.24 for � =
Hz, which in these cases χ ′(p∞, K ) ∝ Kα∞ is satisfied for
long times. If there is a transition from these two regimes
at a perturbation pc, then close to the transition one expects
a power-law dependence on (p − pc) for the decoherence
rate [11,44,45]. We then consider the following asymptotic
functional dependence at long times:

χ ′(p, K ) ∼
{

(pc − p)sKα0 , p < pc

(p − pc)−2νKα∞ , p > pc,
(G1)

where the time dependence is implicit on K .
We use the single-parameter ansatz for the scaling behavior

at long times in order to find the scaling of the curves of Fig. 2,
which is consistent with previous experimental findings [11]:

χ ′(K, p) ∼ Kk1 F [(pc − p)Kk2 ]. (G2)

Here F (x) is an arbitrary function. Based on the asymptotic
behavior of the experimental data, if p < pc, then χ ′ ∼ (pc −
p)sKα0 , implying that F (x) ∼ xs and

k1 + sk2 = α0. (G3)

Then for p > pc, χ ′ ∼ (pc − p)−2νKα∞ implies F (x) ∼
(−x)−2ν and

k1 − 2k2ν = α∞. (G4)

We estimate pc from Fig. 2(c) and we found that the exper-
imental data satisfy these asymptotic limits for p � 0.009
and p � 0.05 for Hdd , and for p � 0.05 and p � 0.17 for
Hz. We obtain s = (−0.911 ± 0.004), ν = (−0.57 ± 0.03)
for � = Hdd , and s = (−0.93 ± 0.06), ν = (−0.47 ± 0.05)
for � = Hz.

The scaling hypothesis is then generalized to

χ ′(K, p) ∼ Kk1�[ζ (p)K−k2ν] (G5)

for accounting for the intermediate time regimes, where �(x)
and ζ (p) again are arbitrary functions. This equation is less
restrictive than Eq. (G2) but includes it. Using the obtained
critical exponents, and the values of α0 and α∞ obtained
from the asymptotic limits in Fig. 2(c), we get k1 = 0.69 ±
0.05 and k2ν = −0.13 ± 0.02 for � = Hdd and k1 = 0.69 ±
0.07 and k2ν = −0.11 ± 0.02 for � = Hz from Eqs. (G3)
and (G4). The scaling behavior is then found by a proper
determination of ζ (p).

To find the scaling factor ζ (p), we plot the curves of χ ′

Kk1

as a function of K−k2ν and shift them by ζ (p) to overlap
with each other for different values of p in such a way that
they generate a single curve, as in Fig. 3. A single curve is
only obtained if the experimental data are consistent with the
scaling assumptions. To assure the consistency of the scaling
determination, according to Eqs. (16) and (G5), then the scal-
ing factor must satisfy

ζ (p) ∼ (p − pc)−ν . (G6)

The curves of ζ (p) are normalized to satisfy ζ (p∞) =
[χ ′(K )/Kα∞ ]1/2 for the largest perturbation strength used in
the experiments p∞ = 0.108 for � = Hdd and p∞ = 0.24 for
� = Hz. We then fit the experimental data with the function
ζ (p) = A|p − pc|−ν + B, where the parameter B accounts for
the finite-time experimental data and external decoherence
process that smooth the transition [11,44,45]. We observed the
consistency of the fit curves and the extracted critical expo-
nents with the assumed single-parameter ansatz of Eq. (16).
The critical perturbations from these fittings are then pc =
(0.026 ± 0.006) and (0.065 ± 0.01) for Hdd and Hz respec-
tively. These values are consistent with those estimated from
Fig. 2(c).

We emphasize that the critical behavior of the scaling ex-
ponent α is a different physical phenomenon which cannot
be deduced from the localized-delocalized transition previ-
ously reported in K (t ) [11]. When the decoherence rate χ ′
is parametrized as a function of time, then localization of
K (t ) implies localization of χ ′(t ), as shown in Fig. 1(c).
Instead, the decoherence rate parametrized as a function of the
systems size χ ′(K ) ∝ Kα provides a scaling exponent α that is
independent of the temporal behavior of K . Thus localization
of K (t ) has no implications in α.
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