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Out-of-time-order correlators (OTOCs) serve as a proxy for quantum information scrambling, which refers to
the process where information stored locally disperses across the many-body degrees of freedom in a quantum
system, rendering it inaccessible to local probes. Most experimental implementations of OTOCs to probe
information scrambling rely on indirect measurements based on global observables, using techniques such as
Loschmidt echoes andmultiple quantum coherences, via time-reversal evolutions. In this article, we establish
a direct connection between OTOCs with global and local observables in the context of NMR experiments,
where the observable is the total magnetization of the system. We conduct a numerical analysis to quantify the
differences in the evolution of both magnitudes, evaluating the excitation dynamics in spin ring systems with 8 to
16 spins, using a many-body Hamiltonian and long-range interactions. Our analysis decomposes the global echo
into a sum of local echoes and cross-contributions, leading to local and global OTOCs. The results indicate that,
after an initial transient period, local OTOCs determine the global ones. We observe that the difference between
the average of local OTOCs and the global one, as well as their fluctuations, becomes negligible as the system
size increases. Thus, for large homogeneous systems, global and local OTOCs become equivalent. This behavior
aligns with that observed in highly interacting or chaotic systems in several experiments.
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I. INTRODUCTION

In recent years, the concept of out-of-time-order correla-
tors (OTOCs) captured the attention of many theoreticians
and experimentalists alike [1–4] as a tool to identify mani-
festations of chaos in the scrambling of quantum information
and the quantum butterfly effect [5,6]. Quantum information
scrambling refers to how local information propagates into
many degrees of freedom, becoming encoded in complex cor-
relations that prevents its recovery from local measurements.
Such chaotic behavior is a crucial requirement for a quan-
tum field theory to adequately describe the extreme classical
instabilities induced by gravity in the proximity of a black
hole [7,8].

Since OTOCs constitute a quite broad category of mathe-
matical objects, their physical significance and experimental
relevance remained somewhat obscure until Kitaev [9] real-
ized that its basic concept was addressed in a paper by Larkin
and Ovchinnikov [10]. They studied the effects of electron
scattering in disordered superconductors, observing that the
same scattering processes that are responsible for the mean-
free path also lead to the dynamical growth of the modulus
squared of a pair of initially commuting Heisenberg operators.
Seeking a suitable quantum model with an extremely chaotic
dynamics, Kitaev discarded the standard Heisenberg system
in favor of Majorana fermions with disorder and many-body
infinite range interactions. This is now known as Sachdev-Ye-
Kitaev (SYK) and should show an exponential growth of the

OTO commutator. Nevertheless, an experimental approach to
the problem seemed far-fetched, since it would involve the
time-reverted dynamics of different many-body operators.

In a completely independent pathway, various forms of
OTOCs were discovered and exploited by the nuclear mag-
netic resonance (NMR) community while not using explicitly
this name. The backward evolution of Larmor precession
of individual spins is the basis for the Hahn echo. There,
the echo signal quantifies the failure to recover the initial
state with the timescale T2 [11], which is due to the spread-
ing of a local excitation through the spin-spin interactions.
Decades later, the time reversal of the evolution driven by
a many-body Hamiltonian enabled the observation of magic
echoes and other generalized echoes [12]. In particular, the
initial quantum excitation scrambles into correlations between
different spin projections, dubbed multiple quantum coher-
ences (MQCs) [13,14]. The echoes that result from reverting
the dynamics after imposing perturbative pulses of different
strengths enable the extraction of a MQC spectrum [15]. In
this context, time-reversal protocols are regularly employed
for spin counting, i.e., to determine the number of correlated
spins. The protocol of polarization echoes enabled to address
a set of individual spins [16,17], and the reduced evolution of
the polarization echoes sequence (REPE) [18], constituted a
first attempt to scale down forward and backward dynamics
with the purpose to disclose and quantify the role of the
environment and perturbations which prevent the reversal of
the many-body quantum dynamics within a timescale T3 > T2.
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All of these protocols are now encompassed in the category
of Loschmidt echoes (LEs) [1,19]. Nowadays, LEs are one of
the primary tools for studying quantum chaos, thermalization,
excitation and information scrambling, as well as many-body
localization. These studies are performed using both NMR
and a variety of NMR-inspired innovative experimental tech-
niques [2,20–31]. Time-reversal implementation also plays a
key role in unmasking the environmental noise, eventually
achieving its elimination through strategies broadly known as
dynamical decoupling [22,32–36].

As one experimental limitation, in particular in NMR
measurements of solid-state systems, resides in the diffi-
culty of exciting and detecting individual spins, most of
the experimental studies are based on global observables
[20–22,24,26,27,30,37–40]. Although local probing can be
implemented in some very specific cases [16,17,28,41,42],
this is not the general situation. Thus, while a great majority
of theoretical analyses address local observables on small sys-
tems, most LE or OTOC experiments still hinder their direct
connection to the theoretical and analytical predictions.

This article aims to verify that the LEs and OTOCs that re-
sult from global observables, e.g., total polarization, evaluated
over the entire system in these experimental implementations,
accurately reflect the ensemble average of OTOCs that result
from uncorrelated local observables, i.e., local spin projection.
This equivalence hypothesis, already stated in Ref. [27], is
a crucial step to interpret the emergence of many-body irre-
versibility from the observation in terms of the dynamics of
local excitations [17,39]. Here, we demonstrate the validity
of the equivalence hypothesis in the context of spin systems
in NMR experiments in homogeneous lattices of equivalent
spins, where the observable is the total magnetization, by
employing a paradigmatic model for both numerical and
analytical analyses. This confirmation is important because
experimental implementations based on global control and
readout are easier to perform compared with those requir-
ing stringent and challenging conditions for local control
and readout. Thus, already available experimental platforms
based on global observables, such as NMR quantum simu-
lations [20,21,24,26,27,30,37–40], experiments with trapped
ions [22,25], and ultracold polar molecules [43], can be fur-
ther exploited to probe information scrambling from local
observables.

To pose a formal ground for the equivalence hypothe-
sis, Sec. II first examines the analytical form of the specific
OTOCs arising from MQC experiments and the spin-counting
determined from the second moment of the MQC spectrum.
There, we define the global and local observables, identifying
in both cases the particular contributions of OTOCs to local
observables. Section III presents the numerical evaluation
of these magnitudes. Since it is impossible to solve a real
system configuration, in which various dynamical regimes
are present, we restrict the study to a paradigmatic model:
a ring of spins with long-range interactions. This configura-
tion partially mitigates the unavoidable finite-size effects. In
a one-dimensional (1D) system, long-range interactions are
necessary to ensure coherence between multiple spin projec-
tion subspaces, while we introduce a local Zeeman disorder to
crucially prevent symmetry-induced interferences. Given the
small size of the systems that can be computationally studied,

we show that the long-time behavior is representative of the
equivalence between local and global observables and thus is
a more robust numerical metric when compared with the short
and intermediate-time regimes, which are more sensitive to
the system’s particularities. We compare the time evolution
and the equilibrium values of the global and local OTOCs for
different system sizes, finding evidence that supports the va-
lidity of the mentioned equivalence as the complexity and size
of the systems increase. This clarifies the role of long-range
interactions and local disorder, emphasizing the long-time
behavior. These results are discussed explicitly in Sec. IV
because they are of interest to a wide community pursuing
related efforts [31,44] in characterizing scrambling dynamics
under different Hamiltonians in connection with existing ex-
periments [4,45].

II. OUT-OF-TIME-ORDER CORRELATORS AND ECHOES
CONNECTION

The out-of-time-order (OTO) commutator is defined as

CV̂Ŵ (t ) = Tr{[Ŵ (t ), V̂ ]†[Ŵ (t ), V̂ ]}. (1)

In the case of Hermitian Heisenberg operators Ŵ and V̂ and
unitary evolution, Ŵ (t ) = e−iĤt/h̄Ŵ eiĤt/h̄, where Ĥ is the
system Hamiltonian, the expression can be rewritten in the
form

CV̂Ŵ (t ) = 2[1 − Tr{Ŵ (t )†V̂ †Ŵ (t )V̂ }]. (2)

In the theoretical and numerical literature, Ŵ and V̂ are
generally considered local operators as, e.g., Pauli matrices,
due to their direct interpretation as a measure of space-time
propagation of quantum information [46].

Considering that the operators V̂ and Ŵ initially commute,
the OTO commutator of Eq. (1) quantifies the degree by which
the initially commuting operators fail to commute at time t
due to the scrambling of information induced by the Hamilto-
nian that drives the evolution. The correlator F (t ) defined as

F (t ) = Tr{Ŵ (t )†V̂ †Ŵ (t )V̂ } (3)

decays with time. According to Eqs. (2) and (3), the correla-
tor F (t ) and the commutator CV̂Ŵ (t ) are related. In certain
systems, a weak decay of F (t ) at short times determines
the growth of CV̂Ŵ (t ) with the same Lyapunov exponent
that controls the corresponding classical system. Beyond the
Ehrenfest time, however, the decay is dominated by Ruelle-
Pollicott resonances [47] and is stabilized by dephasing noise.
As a result, both correlators serve as indicators of information
scrambling and quantum chaos [48–50]. Nonetheless, assess-
ing chaos lies beyond the scope of this paper, as we focus
on the equivalence between OTOCs defined through local and
global observables under general statistical considerations.

The correlator F (t ) involves a time-reversal protocol and
its calculation can be thought of as an experiment in which V̂
sets a quantum excitation that evolves for a time t , and then
it suffers the action of Ŵ . Later, it follows a time-reversal
evolution before a measurement is applied (V̂ †) [27,30,51].
Under this view, F (t ) has the form of a Loschmidt echo with
a brief perturbation Ŵ = exp[−i�̂�t], where �̂ is a Hamilto-
nian (e.g., describing a global Zeeman field [13,14] or a field
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gradient [51]) that acts for a very short period �t (pulse label-
ing) after the forward evolution lapse [27]. The operator Ŵ (t )
can be interpreted as a Loschmidt echo evolution operator as it
includes a forward evolution, a perturbation, and a backward
evolution. Consequently, Ŵ (t )V̂Ŵ †(t ) is the Loschmidt echo
dynamics of the operator V̂ .

In actual NMR experiments on many-body systems, there
is also a small but mostly uncontrollable perturbation �̂

that persists during the whole time-reversal period. Thus,
there is no possible factorization in the above form [27].
As a consequence, the recovered signal when Ŵ = Î has
an overall decay with a timescale T3 defined as the time at
which F (t ) is half of its initial value, an example is shown
in Appendix B. In single-particle semiclassical models that
idealize this situation, the decay is exponential. For weak �̂

the decay rate depends on the perturbation strength according
to the Fermi golden rule, as expected. However, once 1/T3

reaches the classical Lyapunov timescale [19,52], it remains
constant for a wide range of �̂, i.e., it becomes perturbation
independent. These results contrasts with the observation of
many-spin systems. When reversible many-body interactions
dominate the dynamics T3 depends on the Hamiltonian and
the Fermi golden rule regime is never reached, i.e., T3 be-
comes perturbation-independent and precisely proportional to
spin-spin characteristic time T2, defined through the inverse
second moment of the Hamiltonian driving the dynamics [27].
The stability of T3 towards decoherent noise has a resem-
blance to the Ruelle-Pollicott regime of F (t ) [49]. Besides
its conceptual value, the global Loschmidt echo magnitude is
widely used in experimental setups as a practical tool for the
normalization of the signal for quantifying OTOCs and for
characterizing the many-body dynamics and its information
scrambling [30,37–39].

The dynamics of OTOCs as a measure of growth in “size”
and complexity of the spreading of an initial local operator
have been studied in closed and open systems [44], linking
this complexity with the system’s sensitivity to decoherence
[30,37], and a manifestation of quantum chaos [46]. The dy-
namical regimes for the OTOCs can be separated into short,
intermediate, and long times. The short and intermediate times
are highly dependent on the Hamiltonian and on the particular
nature of the initial operators (local or global). At long times,
the OTOCs of a finite system oscillate or, for highly chaotic
systems, fluctuate around a mean value [50].

In Ref. [27] we proposed that the information extracted
from global OTOCs is indicative of the behavior of the local
observables. Specifically, we use the Lanczos expansion of
the density-matrix dynamics to infer the intermediate time
behavior of local OTOCs from the global observables. The
main hypothesis was that the latter is mainly composed of a
set of almost identical local magnitudes plus small interfer-
ence terms that tend to cancel out. Then, Zhou and Swingle
studied the contribution of local OTOCs to global observables,
arguing that, in an expansion, the “diagonal” terms are those
that contribute the most [31]. As with most numerical results,
their verification was restricted to the dynamics of 1D chains
of spins. In the present work, we take a different perspective
on this matter, making a particular focus on the experimental
observables in NMR experiments, which are the average mag-
netization associated with generalized time-reversal echoes.

FIG. 1. (a) (top) Evolution sequence of a MQC experiment. (bot-
tom) Pictorial representation of the equivalence hypothesis regarding
the global Loschmidt echo and the MQC experiment. This picture
shows the complete evolution of two contributions to the total mag-
netization, expressly at site i and j in green and maroon colors. After
the evolution, perturbation, and reversal protocol, each magnetization
returns mainly to the original sites. The magnetization that arrives
at different sites cancel each other (sites with a superposition of
green and maroon). The global magnetization Î z measured at the
time-reversal echo is given by all the local echoes, as the polarization
coming from other sites interfere destructively. (b) Scheme of the
considered spin ring systems for the numerical simulations. The
range of the interspin couplings are chosen in terms of the “bond-
distance” between spins, which is ∝1/rα for α = 1, 2, 3.

A. Generalized echoes and multiple quantum
coherence in NMR

In numerous real situations, particularly those connected
to many-body spin systems analyzed through the solid-state
NMR techniques, the acquired signal is related to global oper-
ators. In NMR, the observable is the total magnetization of the
sample, which is proportional to the total spin magnetization
denoted as Î z = ∑

Î z
i , which adds the contribution of individ-

ual spin polarizations. The direction z is determined by the
external magnetic field. Correspondingly, the initial condition
is usually the equilibrium magnetization of an ensemble of
polarized spins, in which the density matrix is ρ̂(t = 0) ∝ Î z,
i.e., also a global operator describes the initial excitation. No-
tice that ρ̂(t = 0) is determined by the Boltzmann equilibrium
in the high-temperature limit, where terms proportional to
the identity do not contribute to an observable signal and are
therefore omitted [20,21,24,26,27,30,37–40].

In a solid sample, the natural interaction between spins
I = 1/2 is given by the dipolar Hamiltonian [53]. A huge
number of protocols of radio frequency pulse sequences were
developed to engineer the spin-spin Hamiltonian for prac-
tical applications. Typically, a protocol design is based on
the average Hamiltonian theory, which is typically based on
the Magnus expansion and/or the Floquet approximation, as
referenced in several works [54–56]. The key feature of these
approaches is the ability to reverse the quantum dynamics by
implementing a change in the sign of the acting Hamiltonian.

The observation of MQC (or generalized echoes) for spin
counting purposes, involves three time periods, see the upper
panel of Fig. 1(a). An initial excitation evolves (forward) with
a specifically tailored Hamiltonian Ĥ; this is followed by a
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brief encoding period that serves to imprint a different phase
to different spin-projection subspaces (phase labeling of the
quantum coherences). Finally, a time reversal is achieved by
imposing a dynamics with a −Ĥ Hamiltonian. Experimen-
tally, the final observable and the initial state are proportional
to the total magnetization Î z operator (i.e., V̂ ∝ Î z). The phase
encoding performed through a rotation around the z axis plays
the role of the perturbation (�̂ ∝ Î z and therefore Ŵ = e−iφ Î z

)
in the OTOCs protocol. According to the “pseudopure state”
description [57,58], this initial thermal state ρ̂(t = 0) ∝ Î z =∑

Î z
i can be thought of as a sum of individual magnetized

spins with no correlations among them [20,21,27,30,37–40].
Each interacting spin will undergo a collective evolution and,
after the perturbation and the backward dynamics, the result-
ing collective state contributes with magnetization not only
at its original site but also to neighboring spins. Our primary
hypothesis is that the main contribution to the global echo
(total magnetization) arises from the individual magnetization
of each spin returning to its original site. This concept is
illustrated schematically in the Fig. 1(a). We conjecture that
any magnetization not returning to the original spin site will
cancel each other out, as they arrive with “random” phases.

The generalized echo sequence of Fig. 1 produces a global
observable signal denoted as MG, which is measured after a
final readout pulse (not appearing in the figure). This echo can
be summarized in the following equation:

MG(t, φ) = 1

Tr{Î z Î z}Tr{Î z(t )R̂† Î z(t )R̂}, (4)

where R̂ = e−iφ Î z
, Î z(t ) = e−iĤt Î zeiĤt , and the normalization

Tr{Î z Î z} = N2N−2 ensures MG(0, φ) = 1. Here, the operators
R̂ and Î z(0) commute, however, this is no longer true once
the state Î z(0) evolved into Î z(t ). This led to the concept of
the magnetization scrambling. In the experiments, the phase φ

is varied between zero and 2π in 2M > mmax steps, enabling
the acquisition of the multiple quantum coherence distribution
MG(t, m) by Fourier transforming the signal MG(t, φ) as a
function of φ, with m ranging from −mmax to mmax (see
Appendix A). This distribution reflects the superposition of
states in different total magnetization subspaces.

In the following section, we clarify the connection of
Eq. (4) with a global OTOC and rewrite it as a combination
of a set of local OTOCs.

B. Local and global observables

The echo in Eq. (4) can be expressed in terms of local
echoes,

MG(t, φ) = 1

N2N−2
Tr{Î z(t )R̂† Î z(t )R̂}

= 1

N2N−2

∑
i, j

Tr
{
Î z
i (t )R̂†Î z

j (t )R̂
}

= 1

N2N−2

∑
i

Tr
{
Î z
i (t )R̂†Î z

i (t )R̂
}

+
∑
j �=i

Tr
{
Î z
i (t )R̂† Î z

j (t )R̂
}
, (5)

where each local component of the polarization emerges from
a local echo (initial excitation at the same site) plus cross-
contribution terms. This allows the separation of the global
echo into two terms containing local echoes and cross terms:

MG(t, φ) =
∑

i

[
Mi

L(t, φ) + Mi
CT (t, φ)

]
(6)

= ML(t, φ) + MCT (t, φ). (7)

By applying the Fourier transformation of MG(t, φ) with
respect to φ, the multiple quantum coherence (MQC) distri-
bution MG(t, m) is obtained. The global MQC distribution can
also be written in terms of contributions from local and cross-
terms, MG(t, m) = ML(t, m) + MCT (t, m). From the early
NMR literature [13,14,59] and subsequent extensive usage,
it is established that the second moment of this distribution
is a statistical measure of the number of correlated spins,
here denoted as KG [20,21,27,30,37–40]. The global number
of correlated spins (sometimes called cluster size) KG, is ex-
pressed as

KG(t ) = 2
∑

m

m2MG(t, m)

= 2
∑

m

m2[ML(t, m) + MCT (t, m)]

= KL(t ) + KCT (t ), (8)

from which, the contributions from local echoes (L subindex)
and cross-terms (CT subindex) are explicitly discriminated.

The global cluster size can also be expressed as the OTOC
[30,37,60],

KG(t ) = − 2

N2N−2
Tr{[Î z, Î z(t )][Î z, Î z(t )]}, (9)

as well as the corresponding local and cross-term contribution,

KL(t ) = −2

N2N−2

( ∑
i,k

Tr
{[

Î z
k , Î z

i (t )
]2}

+
∑
i,q,k
q �=k

Tr
{[

Î z
q, Î z

i (t )
][

Î z
k , Î z

i (t )
]})

, (10)

KCT (t ) = −2

N2N−2

∑
i, j,k,q

i �= j

Tr
{[

Î z
q, Î z

i (t )
][

Î z
k , Î z

j (t )
]}

. (11)

A detailed derivation of these expressions is provided in the
Appendixes A and C. An interesting feature to note is that, in
a similar fashion as the global echo can be thought as the sum
over different initial conditions Î z

i , the equivalent procedure
can be done with both KL(t ) and KCT (t ). Then, the sum over
sites i can be separated in the previous expressions, defining
the on-site averages,

KG(t ) =
∑

i

Ki
G(t )/N,

KL(t ) =
∑

i

Ki
L(t )/N,

KCT (t ) =
∑

i

Ki
CT (t )/N.
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Notice that while the local OTOCs corresponding to a
site i, Ki

L(t ) are composed for both, the (so-called in
Ref. [31]) diagonal terms Tr{[Î z

k , Î z
i (t )]2} and off-diagonal

terms Tr{[Î z
q, Î z

i (t )][Î z
k , Î z

i (t )]}, the cross-contribution corre-
sponding to site i, Ki

CT (t ), only have off-diagonal terms.
Consequently, the same property is valid for their on-site
averages KL(t ) and KCT (t ).

Numerically, we can compute the i contribution of these
magnitudes Ki

L(t ), Ki
G(t ), Ki

CT (t ) using the echo sequence,
shown in Fig. 1, for an initial state Î z

i . Therefore, starting from
an excitation localized at site i, and observing the magnetiza-
tion evolution and the subsequent return (Loschmidt echoes)
to every site j, we can reconstruct Mi

L(t, φ) and Mi
CT (t, φ),

enabling us to compute separately the local and cross-term
OTOCs and the addition of both, which is the global OTOC.

III. NUMERICAL RESULTS

Global, local, and cross-term magnitudes described in the
previous section were calculated considering the paradigmatic
model system shown in Fig. 1(b): a ring of N spins 1/2 inter-
acting through a long-range double quantum Hamiltonian,

Ĥ =
∑

i

hiÎ
z
i +

∑
i, j
i< j

Di j
[
Î x
i Î x

j − Î y
i Î y

j

]
. (12)

This double quantum Hamiltonian is experimentally engi-
neered using NMR pulse sequences developed in the early
Refs. [56,61], and further modified for scaled interactions as
described in Ref. [39].

Extending further the modeling qualities, we assume in-
teractions between spins Di j with different dependencies
Di j = J/|ri j |α on the “bond-distances” ri j for α = 1, 2, 3,
where α = 3 is the usual dipolar case. It is important to
note that ri j is defined as the minimum number of sites
between the two spins rather than as a geometric distance.
This definition is pivotal for preserving system homogeneity
across varying values of N . Since we mostly use nonran-
dom Di j , it is crucial to introduce random fields hi to break
the high symmetry of the ring and wash away recurrences.
We also choose Di j ranging between [−J/2, J/2]. The in-
teractions in typical molecular Hamiltonians have a sign
that depends on the angle between the bond and the ex-
ternal field. However, for this study, we adopt a uniform
sign convention, as would be the case in a Ferrocene ring
[17,36]. Additionally, we explore the incorporation of random
sign assignments in the coupling, considering α = 1 as a
paradigmatic case.

The initial local excitation has the form ρ̂0 ∝ Î z
i , and

evolves, as in a typical MQC sequence [Fig. 1(a)] with the
Hamiltonian defined in Eq. (12). Since a form of self-average
is naturally present in a global observable, a single disorder
realization is considered. The evolution was done following
the Trotter-Susuki [62–64] and quantum parallelism algorithm
[65,66]. As pointed out above, by repeating the simulations for
all the possible initial sites i, the global and local Loschmidt
echoes can be computed, from which the OTOCs K∗ are
derived, where * represents (G, L, CT).

Figures 2(a) and 2(b) show the echoes MG(t, φ) (dashed
curves) obtained by performing the numerical evolution for

a system of N = 16 spins with α = 3, starting from the
initial condition (i.e., the excitation) at the different sites
i and adding all the signals regardless at which site it is
detected. This global magnitude represents the experimen-
tal observable given by the total magnetization Iz, Eq. (4),
see Appendix B. Together with the global echo, Figs. 2(a)
and 2(b) also displays local echo ML(t, φ), which is only
accessible numerically, for different perturbations (phases),
as a function of time. For short times, differences between
local and global echoes are still noticeable, but these become
smaller as the system evolves, becoming indistinguishable at
long times. Appendix F presents a more detailed analysis of
the echoes to different sites.

When analyzing the recovered signal for a fixed time as
a function of phases, Figs. 2(c)–2(e), it becomes clear that
at short times [Fig. 2(c)], the differences between global
and local are still appreciable, but these decrease over time.
This is evinced by the cross terms, which are practically
zero in Fig. 2(e). This temporal behavior is also reflected
in the contributions of the different terms: global, G; local,
L; and cross-terms, CT, to the corresponding distribution
of coherence M∗(t, m), seen in Figs. 2(f)–2(h). The second
moments of these distributions are proportional to KG(t ),
KL(t ), and KCT (t ).

Figure 3 shows the time evolution of the number of corre-
lated spins, global or local KG(t ) and KL(t ) (dashed and solid
lines, respectively) for different sizes of the ring N = 8–16.
These are obtained by averaging over the individual realiza-
tions at different sites Ki

∗. The evolution of individual Ki
∗ is

exemplified in Fig. 4 for the case Di j = J/|ri, j |3 and N = 12.
Ki

∗ present the same behavior of the total values, but differing
in fluctuations. From left to right, Fig. 3 displays the results
for all values of α from three to one, plus α = 1 and random
signs. We observe that, after the initial regime, curves KL

and KG representing the growth in the number of correlated
spins, differ by less than 10%. We use the long-time saturation
value and its fluctuations to quantify this difference as the
number of spins in the system, N , increases. As α decreases,
the magnitudes K∗ reach the saturation values at shorter times,
due to the stronger couplings. Typically, the saturation times ts
are Jts/h̄ ≈ 50 for interaction ∝1/r3, Jts/h̄ ≈ 20 for ∝1/r2,
and Jts/h̄ ≈ 10 for ∝1/r, a more detailed analysis would yield
ts depending on N and α. We can observe that both KG(t )
and KL(t ), at saturation times, tend towards a value around
the system size N .

In the limit of large α the interaction among nearest neigh-
bors predominates, leading to a chain-like behavior. In this
limit, the double quantum Hamiltonian exclusively generates
only second-order coherences [67–70], and the difference
between global and local OTOCs should be more relevant.
Conversely, in the limit of very small α, the interaction ex-
tends infinitely, and in the case of couplings with random
signs, it should behave like the SYK model [9]. The fact that,
for larger systems, the cross terms become relatively less im-
portant means that adding pathways to the dynamics increases
the destructive interferences of cross-terms. This suggests that
one could enhance these destructive interferences by allowing
random signs in Di j , as exemplified in Fig. 3(d). Indeed,
pseudorandom signs appear in an actual crystal due to the
different directions of the coupling.
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FIG. 2. (a), (b) Global echoes MG(t, φ) (dashed curves) and local ones ML (t, φ) (solid curves), as a function of time for five representative
values of φ = {π/16, 2π/16, 3π/16, 5π/16, 8π/16} (colors). Panel (a) shows the short and intermediate time behavior of the echoes, while
panel (b) shows the complete decay. (c)–(e) MG(t, φ) (green), ML (t, φ) (red), and MCT (t, φ) (blue) as a function φ for fixed times. (f)–(h)
Distributions MG(t, m) (red), ML (t, m) (green), and MCT (t, m) (blue) obtained from the FT of curves in panels (c)–(e). The considered times
are (c), (f) t = 0.5J/h̄, (d), (g) t = 7.5J/h̄, and (e), (h) t = 100J/h̄. All panels are computed using a spin ring of N = 16 and α = 3.

At short times and intermediate times, the growth of the
local and global OTOCs looks slightly different, as depicted
in Fig. 5. This fact can be traced back to the particular inter-
ference patterns in the spin dynamics of the double quantum
(DQ) Hamiltonian during time reversal. Components failing
to return to their original sites within this brief time-frame
exhibit a strong tendency to return to their adjacent sites, with
specific phase relationships. Mathematically, the very short
time difference can be analyzed using the Baker-Campbell-
Hausdorff expansion [55]. After performing some algebraic

manipulation, it can be shown (as elaborated in Appendix D)
that, for the DQ Hamiltonian, both the global and local
OTOCs exhibit quadratic behavior at short times, with coef-
ficients differing only by a factor of two:

KG(t ) ≈ 32

N
t2h̄2

∑
i, j

D2
i j, (13)

KL(t ) ≈ 16

N
t2h̄2

∑
i, j

D2
i j . (14)

FIG. 3. Time evolution of the local OTOC KL (t ) (solid curves), and the global OTOC KG(t ) (dashed curves), for a ring system with
interactions given by Eq. (12). Interactions are of the form (a) Di j ∝ J/|ri j |3, (b) Di j ∝ J/|ri j |2, (c) Di j ∝ J/|ri j |, (d) Di j ∝ ±J/|ri j | with
random signs.

042410-6



GLOBAL OUT-OF-TIME-ORDER CORRELATORS AS A … PHYSICAL REVIEW A 110, 042410 (2024)

FIG. 4. Time evolution of individual realizations per site Ki
∗. The

supra-index i represents the site (colors), while the asterisk ∗ indi-
cates whether the OTOC is global (G, dashed curves), local (L, solid
curves), or cross terms (CT, symbols). Panel (b) shows a short-time
zoom of the figure on the left. All data correspond to Di j = J/|ri, j |3
and N = 12.

Consequently, KL(t ) ≈ KCT (t ) at short times. These expres-
sions align well with the numerical findings, as shown in
Fig. 5(b). It is also seen that growth of the OTOCs accelerates
when the exponent α becomes smaller because it increases the
value of

∑
i, j D2

i j . Moreover, this behavior should not change
when random signs are included in the values of Di j , as seen
in Fig. 3(d).

At intermediate times, after this initial quadratic expan-
sion, the complexity of the Hamiltonian makes itself evident
and the growth law changes depending on the exponent α, a
behavior that it is theoretically expected [71–74]. In Fig. 5
we observe that this growth law for local and global OTOCs
shows the same behavior, making the ratio KCT (t )/KG(t )
rapidly smaller as time increases. However, the relatively
small growth window makes it difficult to assign a particu-
lar law, leaving only the saturated regime to systematically
study the dependence of the cross terms KCT (t )/KG(t ) with
N . Indeed, the clear intermediate time dynamics observed in
the experiments are a consequence of the exponential increase
of the number of states of the Hilbert space enabled by the

FIG. 5. (a) Evolution of KL (t ) (solid curves) and KG(t ) (dashed
curves) for times prior to saturation. Interactions of the form Di j ∝
1/|ri j |α with α = {1, 2, 3}, and a ring with N = 16. (b) Zoom at the
short time behavior for α = 3 on a log-log scale. In black dashed
lines the analytical expression given by Eqs. (13) and (14) are shown.

dynamics in three-dimensional (3D) crystals [27,36]. To quan-
tify the difference between the local and global OTOCs at
long times, we computed the time average of the cross term
at saturation 〈Ki

CT 〉 = 1
τ

∫ tmax

ts
Ki

CT (t )dt , where tmax is the final
time in our simulation and τ = tmax − ts, for various systems
sizes. In Fig. 6, we depict these magnitudes relative to the
system size as a function of N , which can be interpreted as the
relative error between KG and KL, as N is approximately their
saturation value. The site contributions 〈Ki

CT 〉/N are shown
with purple crosses, while their average 〈KCT 〉/N is shown
with red dots. In all cases we observe that not only 〈KCT 〉/N
decreases with N but also each 〈Ki

CT 〉/N decreases, implying
that the equivalence of the global or local observation is valid
for each individual initial state, without the necessity of sum-
ming all the initial conditions to have the effect. The error bars
of the red dots in Fig. 6 correspond to the normalized standard
deviation SD(KCT )/N , where

SD(KCT ) =
√

1

τ

∫ tmax

ts

[KCT (t ) − 〈KCT 〉]2dt , (15)

consequently quantifying the temporal fluctuations around the
saturation value. An equivalent expression is used to define
the standard deviation from the average value of each site
SD(Ki

CT )/N .
We observe that, just as 〈Ki

CT 〉/N decreases when N in-
creases, so do their fluctuations, as can be perceived in Fig. 3.
The fluctuations in the long-time behavior of OTOCs in closed
systems have been directly associated with chaos, i.e., the
more chaotic the system the smaller the fluctuations in the
long-time behavior of the OTOC [50]. Given that the fluc-
tuations of KL are considerably smaller than the fluctuations
of KG, we can state that SD(KG) ≈ SD(KCT ). Consequently,
as we increase N , the systems become more chaotic and the
local and global OTOCs become almost identical. This is
evinced by the simultaneous decrease in the average value of
KCT (t ) and its fluctuations. This explains why in an NMR
experiment, where there is a macroscopic number of spins
involved, an environment and intrinsic experimental errors,
these fluctuations cannot be observed.

Moreover, we can extend the analysis to the magnitude of
the fluctuations in individual and total OTOCs. We observe
that fluctuations on 〈KCT 〉 are considerably smaller than the
fluctuation of 〈Ki

CT 〉. It is easy to see the relation between both
magnitudes,

SD2(KCT ) = 1

N2

∑
i

SD2
(
Ki

CT

)

+ 1

N2

∑
i �= j

Cov
(
Ki

CT (t ), K j
CT (t )

)

= σ 2
CT

N
+ 1

N2

∑
i �= j

Cov
(
Ki

CT (t ), K j
CT (t )

)
, (16)

where we denoted

σ 2
CT = 1

N

∑
i

SD2
(
Ki

CT

)
. (17)
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FIG. 6. Time average of the cross contribution to the number of correlated spins, 〈KCT 〉/N (red solid circles), compared with time average
of the cross term contribution of a single site, 〈Ki

CT 〉/N (purple crosses). Also shown the standard deviation from the average value SD(KCT )/N

[Eq. (15), red bars], and the square root of the site’s variance average (σ 2
CT )1/2 [Eq. (17), purple bars] which are slightly shifted for clarity

purposes. (a) Di j ∝ 1/|ri j |3, (b) Di j ∝ 1/|ri j |2, and (c), (d) Di j ∝ 1/|ri j |.

The over-line represents an average over initial sites (purple
bars in Fig. 6). Thus, if there were no correlation between
different Ki

CT (t ), we would have SD2(KCT ) = σ 2
CT /N . This

last expression shows to be valid in the limit of large N , as can
be seen in Appendix E. In fact, we see that the total correlation
(sum of the covariances) decreases very rapidly with N . For
N = 14 they already become of the same order as our sta-
tistical precision. Furthermore, for the Hamiltonian including
random signs in Di j , the correlation between different Ki

CT (t )
happens for N = 12.

Notice that the dispersion between the values of 〈Ki
CT 〉/N is

smaller when α is smaller. This can be rationalized by thinking
that for large α the spins are less interconnected and site
fluctuations, observed in each 〈Ki

CT 〉/N , are highly dependent
on the local fields hi affecting the spin and its neighbors.

Figure 7 shows the average value 〈KCT 〉/N in logarithmic
scale. It highlights the decay discussed above. The sizes are
not large enough for the fittings to discriminate between an
exponential decay or a power law. In the latter case, the ex-
ponent of this decay might vary between −4.3 and −3.1. In
the case of complete random systems, an exponential decay
is expected resulting from a homogeneous distribution of the
states in the Hilbert space. In fact, for a DQ Hamiltonian we
expect that regions of the Hilbert space corresponding to a

FIG. 7. Saturation value 〈KCT 〉/N in log-log scale for spin rings
interacting with Hamiltonian (12), with Di j = 1/rα

i j for α = 1, 2, 3.

total magnetization to have a normal distribution. Under this
assumption, it is reasonable that the decay with N follows a
power law rather than an exponential. Nonetheless, the decay
of the cross terms with N leaves evidence that, in systems
whose complexity is strong enough to generate chaotic dy-
namics, the global echoes are composed of a simple sum of
local ones. Contributions from outside the original site will be
completely uncorrelated (pseudorandom) at long times can-
celing each other. Thus, local and global OTOCs will provide
the same information.

IV. CONCLUSIONS AND DISCUSSION

This work provides numerical evidence supporting the hy-
pothesis that OTOCs obtained from global operators in NMR
experiments are equivalent to an average over local operators
OTOCs. Furthermore, this indicates that in a macroscopic
homogeneous system, the global OTOCs observed in the ex-
periment become representative of the single local OTOCs,
which are of theoretical significance. Specifically, based on
a theoretical analysis and numerical resolution of model sys-
tems, it states that global echoes and global OTOCs coincide
with the average of local echoes and local OTOCs. This
equivalence should be particularly valid as the complexity
increases and the system size becomes macroscopic. How-
ever, as this limit is out of the possibilities of our classical
computer, the numerical verification is restricted to fairly
small systems. Nevertheless, in the numerical computations,
we maintain the key ingredients of an experiment. Thus, the
protocol and observables to extract the global OTOCs are the
same as in an experimental setup. The local OTOCs, inacces-
sible experimentally, follow naturally from an expansion of
the main observable in the experimental procedure, the total
magnetization Î z, as a sum of local spin polarizations (Î z =∑

i Î z
i ). Additionally, such calculation could model liquid

crystal molecules, which were also observed experimentally
[36,75]. In this last case, the scrambling at long times through
the whole Hilbert space acquires particular physical relevance
as K (t ), the number of quantum mechanically correlated spins
determined from the multiple quantum coherence distribution,
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becomes equal to the system size, adding further support to the
spin counting procedure.

Our results show that the evolution of K (t ) has a similar
behavior for the global KG(t ) and local KL(t ) observables.
Indeed, after a brief initial time where they differ, both KG(t )
and KL(t ) grow together, exhibiting the same behavior over
time. This is fundamental for assigning a local meaning to
the global measurements, without being tied to the precise
number of correlated spins. Their discrepancy, measured by
KCT , quickly becomes smaller than 10%. The fact that after
an initial transient, both the KCT values and their fluctua-
tions go to zero with increasing system sizes, endorses the
equivalence hypothesis. In our interpretation, the fundamental
feature behind this correspondence is that the time reversal
after a rotation cannot fully undo the many-body dynamics.
This fact produces that a substantial number of backward
paths in the Liouville space do not lead to the individual initial
magnetization but remain as multispin superposition without
a net polarization. Thus, the observed polarization after a LE
corresponds to small portions of paths that have unscrambled
the multispin correlation into its original state.

Our conclusions are consistent, but not identical, with the
results shown in Ref. [31], by Zhou and Swingle. In that
work, the expressions for the OTOCs discriminate the con-
tribution of “diagonal” and “off-diagonal” correlations. The
local OTOC [KL(t )] determined in our work contains all the
contributions identified as “diagonal” OTOCs in Ref. [31]
along with some of their “off-diagonal” sums. These “off-
diagonal” terms reflect the correlation between two evolutions
that start from the same spin but are disturbed at different
sites. Although these contributions are generally negligible,
they constitute a necessary conceptual difference to formulate
an experimentally relevant vision in terms of local Loschmidt
echoes. The cross-correlation function [KCT (t )] contains the
remaining “off-diagonal” terms [Eq. (11)]. Thus, the assump-
tion and results observed in a spin chain by Zhou and Swingle
that the off-diagonal terms cancel out, implies the decay we
found for KCT (t ). This means that after an initial transient,
the local OTOCs univocally determine the experimentally ob-
served global OTOCs.

The equivalence of global and local OTOCs is important
for already available experimental platforms that allow deter-
mining information scrambling based on global control and
observables. Thus, very diverse experimental results based
on these approaches can now be interpreted as a probe of
the scrambling of local information. In particular, the re-
sults of this article support the hypothesis, explicitly stated
in Ref. [27], that in both Loschmidt echoes and MQCs ex-
periments, the evaluated observables over the whole system
accurately reflect the ensemble average over uncorrelated “lo-
cal” observables. This connection between MQC signal and
local observables is crucial for the thermodynamics inter-
pretation of several experiments in terms of local processes.
Of particular importance are (1) the ballistic growth of the
number of entangled spins in a crystal under a DQ Hamil-
tonian [27]; (2) the diffusive scrambling of spin operators
under transverse dipolar Hamiltonian, showing the relevant
role of the many-body (Ising) terms in preventing ballis-
tic propagation [30,37,39,40]; (3) localization-delocalization
transition of the controlled dynamics of quantum information

in presence of perturbations built by mixing DQ and dipolar
Hamiltonians, where ballistic and many-body terms compete,
as a function of the mixture parameter [20,21,30,37,76,77];
and (4) in a more traditional context, the different excitation
spreading rates observed in liquid crystal molecules before the
saturation over the whole available Hilbert space is reached
[36,75].

While our results focus on NMR experimental conditions,
they are also applicable to other experimental platforms where
global control and observables are more easily achievable than
their local counterparts, such as in experiments with trapped
ions [22,25] and ultracold polar molecules [43].
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APPENDIX A: MULTIPLE QUANTUM COHERENCES

The mth order of coherence corresponds to matrix ele-
ments that represent transitions between many-spin states, in
a Zeeman basis, that have different magnetization m. The
evolution density matrix can be expressed by a superposition
of contributions from different orders as

ρ̂ =
∑

m

ρ̂m, (A1)

where the m-quantum coherence component behaves under
rotation as

eiφ Î z
ρ̂me−iφ Î z = ρ̂meimφ. (A2)

Formally, the m coherence intensity can be defined as

gm = 1

Tr{(Î z )2}Tr{ρ̂mρ̂−m}.

Experimentally, by implementing systematic rotations
around z of angles φ, the coherence distribution can
be decoded through Fourier transformation of the
collected signals,

M(φ, t ) = 1

Tr{(Î z )2}Tr
{
e−iφ Î z

ρ̂(t )eiφ Î z
eiĤt Î ze−iĤt

}
,

where φ is uniformly sample in steps of �φ = 2π/2M , with
2M > mmax the maximum coherence order to be decoded.
By expanding ρ̂(t ) in the form (A1), considering ρ̂(0) =
Î z, and using Eq. (A2) (rotation property), the collected

042410-9



FABRICIO S. LOZANO-NEGRO et al. PHYSICAL REVIEW A 110, 042410 (2024)

FIG. 8. (a) Experimental Loschmidt echo M(t, φ).
(b) Loschmidt Echo decay normalized by M(t, 0). (c) Normalized
LE as a function of φ at times t = {0.12, 0.24, 0.36} ms.
(d) Normalized coherence distribution [Fourier transform of
panel (c)]. The data are part of the measurements carried out to
prepare the results of the Ref. [39].

signals satisfy

M(φ, t ) = 1

Tr{(Î z )2}Tr

{∑
m

ρ̂meimφ
∑

m

ρ̂m

}

=
∑

m

gmeimφ.

Note that, M(φ = 0, t ) = ∑
m gm is the Loschmidt echo in-

tensity at t [39]. Separately, one can observe that the second
moment of this MQC distribution is a global OTOC [60]:∑

m

m2gm = −∂2
φM(φ, t )

∣∣
φ=0

= 1

Tr{(Î z )2}Tr{[Î z, [Î z, Î z(t )]]Î z(t )}

= − 1

Tr{(Î z )2}Tr{[Î z, Î z(t )][Î z, Î z(t )]}.

APPENDIX B: EXPERIMENTAL OBSERVABLES
AND QUALITATIVE COMPARISON WITH

NUMERICAL EVALUATIONS

Here, we provide a qualitative comparison between typical
experimental observations and the simulated data presented
in this article. The experimental global echoes, determined
from the total magnetization Iz as given by Eq. (4), are
shown in Fig. 8(a), for various phases φ, allowing compar-
ison with the simulated curves in Fig. 2. The experimental
data were obtained from 1H spins in an Adamantane crystal

undergoing double quantum evolution. The pulse sequence
used to achieve the average Hamiltonian consists of 16 pulses,
leading to a cycle time tc = 0.12 ms, with evolution times
being multiples of tc. These measurements are part of the
data collected for the results of Ref. [39]. In contrast to
the numerical simulations, where φ = 0 ideally result in no
decay, the experimental data exhibit a slow decay of the
Loschmidt echo, attributed to small uncontrollable perturba-
tions captured by �̂. This decay typically follows a Gaussian
trend at short times and an exponential behavior at longer
times. To account for this, all echoes are renormalized, as
shown in Fig. 8(b). Figure 8(c) illustrates the normalized
echo as a function of the phase φ for t = {0.12, 0.24, 0.36}
ms. Lastly, Fig. 8(d) shows the distribution of multiple
quantum coherence obtained from the Fourier transform
of Fig. 8(c).

APPENDIX C: MAPPING THE LOCAL AND GLOBAL
CONTRIBUTIONS TO THE CLUSTER SIZE K WITH

DIAGONAL AND OFF-DIAGONAL OTOCS

To connect the local and global contributions to the number
of correlated spins with OTOCs we start from definitions in
Eqs. (5) and (8), namely,

MG(t, φ) = 1

N2N−2
Tr{Î z(t )R̂† Î z(t )R̂}

= 1

N2N−2

∑
i, j

Tr
{
Î z
i (t )R̂† Î z

j (t )R̂
}
,

ML(t, φ) = 1

N2N−2

∑
i

Tr
{
Î z
i (t )R̂† Î z

i (t )R̂
}
,

MCT (t, φ) = 1

N2N−2

∑
i, j
i �= j

Tr
{
Î z
i (t )R̂† Î z

j (t )R̂
}
. (C1)

We apply the second derivative to each term and analyze
their contributions to OTOCs,

∑
m

m2gm = −∂2
φMG(φ, t )

∣∣
φ=0

= −∂2
φML(φ, t )

∣∣
φ=0

− ∂2
φMCT (φ, t )

∣∣
φ=0

.

By doing so, we can explicitly write, from the echoes,
KL and KCT as a combination of “diagonal” contribu-
tions of the form

∑
i,k Tr{[Î z

k , Î z
i (t )]2} and “off-diagonal”∑

i, j,k,q
j �=i or k �=q

Tr{[Î z
q, Î z

i (t )][Î z
k , Î z

j (t )]} as defined in Ref. [31].
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We found that the only contribution of “diagonal” terms to
the global OTOC comes from ML(t, φ):

N2N−2KL(t ) = −2
∂2

∂φ2
ML(t, φ)

∣∣∣∣
φ=0

= −2
∑

i

Tr
{
Î z
i (t )Î z Î z Î z

i (t ) − Î z
i (t )Î z Î z

i (t )Î z
}

= −2
∑

i

Tr
{[

Î z
i ,

[
Î z, Î z

i (t )
]
Î z
i (t )

]}

= −2
∑

i

Tr
{[

Î z, Î z
i (t )

]2}
= −2

∑
i,q,k

Tr
{[

Î z
q, Î z

i (t )
][

Î z
k , Î z

i (t )
]}

= −2

( ∑
i,k

Tr
{[

Î z
k , Î z

i (t )
]2}

+
∑
i,q,k
q �=k

Tr
{[

Î z
q, Î z

i (t )
][

Î z
k , Î z

i (t )
]})

,

while only “off-diagonal” terms appear from the cross-term
MCT :

N2N−2KCT (t ) = −2
∂2MCT (t, φ)

∂φ2

= −2
∑
i �= j

Tr
{[

Î z, Î z
i (t )

][
Î z, Î z

j (t )
]}

= −2
∑

i, j,k,q
i �= j

Tr
{[

Î z
q, Î z

i (t )
][

Î z
k , Î z

j (t )
]}

.

APPENDIX D: SHORT-TIME BEHAVIOR

To derive the expression for the short-time behavior of
KG(t ), we start by using the Baker-Campbell-Hausdorff ex-
pansion in Î z(t ), which approximates the time evolution of Î z

under a Hamiltonian Ĥ:

Î z(t ) ≈ Î z +
(

−i
t

h̄

)
[Î z, Ĥ] (D1)

[Î z, Î z(t )] ≈
[

Î z, Î z +
(

−i
t

h̄

)
[Î z, Ĥ]

]
(D2)

≈
(

−i
t

h̄

)
[Î z, [Î z, Ĥ]]. (D3)

At this point, we carry out the commutator for double
quantum Hamiltonian Eq. (12), which yields

[Î z, [Î z, ĤDQ]] = 4h̄2ĤDQ. (D4)

Finally, by substituting these expressions into Eq. (9) and
simplifying, we arrive at

KG ≈ 2
16t2 h̄2

Tr{(Î z )2}Tr
{
Ĥ2

DQ

}
(D5)

FIG. 9. Individual realizations per site, Ki
∗, for a ring of spins

with N = 12 and Di j = J/|ri, j |. The supra-index i represents the site,
while the asterisk ∗ indicates whether the OTOC is global, G; local,
L; or cross terms, CT. Panel (b) is a short-time zoom of panel (a).

= 16t2 h̄2

Tr{(Î z )2}
∑

i, j,k,l,i �= j,k �=l

Di, jDk,l Tr
{
ĤDQi, j ĤDQk,l

}

= 2
16t2 h̄2

Tr{(Î z )2}
∑

i, j,k,l,i �= j,k �=l

2Di, jDk,l Tr
{
Î x
i Î x

j Î x
k Î x

l

}

= 2
16t2 h̄2

Tr{(Î z )2}
∑
i �= j

4D2
i, jTr

{
Î x
i Î x

j Î x
i Î x

j

}

= 2
16t2 h̄2

N2N−2

∑
i �= j

4D2
i, j2

N−4

= 32t2 h̄2

N

∑
i, j,i �= j

D2
i, j . (D6)

Following the same procedure for a local OTOC we found
that the initial growth only differs by a factor of two:

KL(t ) = − 2

N2N−2

∑
i

Tr
{[

Î z, Î z
i (t )

]2}
(D7)

≈ 2

N2N−2
16t2 h̄2

∑
i, j

2D2
i, j2

N−4 (D8)

≈ 16

N
t2 h̄2

∑
i, j

D2
i, j . (D9)

APPENDIX E: BEHAVIOR OF INDIVIDUAL MAGNITUDES
Ki

∗(t ) AND COVARIANCE

In the main text and preceding sections of the Appendix,
we have demonstrated that K∗(t ) can be expressed as an av-
erage of site contributions, denoted as Ki

∗(t ). Each of these
contributions exhibits minimal deviation from the averaged
value K∗(t ), a fact supported by observing the variance of this
average or directly comparing different curves, as depicted
in Fig. 9. The curves corresponding to different initial sites
differ mainly in fluctuations. Therefore, by averaging over
initial sites, the primary effect is to mitigate these fluctuations,
resulting in smoother curves. Nevertheless, one can extract
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FIG. 10. Time average of the cross contribution to the number of correlated spins, 〈KCT 〉. The standard deviation from the average value,
SD(KCT ) [Eq. (15), blue bars], and the square root of the site’s variance average over N [(σ 2

CT /N )1/2, green bars], which are slightly shifted for
clarity. (a) Di j ∝ 1/|ri j |3, (b) Di j ∝ 1/|ri j |2, and (c) Di j ∝ 1/|ri j |.

information about the spin correlation

〈KCT 〉 = 1

N

∑
i

〈
Ki

CT

〉
(E1)

〈
K2

CT

〉 = 1

N2

∑
i, j

〈
Ki

CT K j
CT

〉
(E2)

= 1

N2

⎡
⎢⎢⎣∑

i

〈
Ki

CT
2〉 + ∑

i, j
i �= j

〈
Ki

CT K j
CT

〉
⎤
⎥⎥⎦. (E3)

By expanding Eq. (15) into individual contributions, we
have

SD2(KCT ) =
1

τN2

∑
i, j

∫ tmax

ts

[
Ki

CT (t )K j
CT (t )−〈

Ki
CT

〉〈
K j

CT

〉]
dt,

which can be rearranged in the following form:

SD2(KCT ) = 1

N2

∑
i

SD2(Ki
CT )

+ 1

τN2

∑
i, j
i �= j

∫ tmax

ts

[
Ki

CT (t )K j
CT (t ) − 〈

Ki
CT

〉〈
K j

CT

〉]
dt

= σ 2
CT

N
+ 1

N2

∑
i �= j

Cov
(
Ki

CT , K j
CT

)
.

Here, we denoted

σ 2
CT = 1

N

∑
i

SD2
(
Ki

CT

)
, (E4)

and define the total covariance as

Total Cov. = 1

N2

∑
i �= j

Cov
(
Ki

CT , K j
CT

)
. (E5)

This last term gives a measure of the total correlation between
the dynamics of Ki

∗. If the spin dynamics were uncorrelated,

we would have SD2(KCT ) = σ 2
CT /N . Figure 10 compares

these magnitudes for KCT , we see that the error bars, rep-
resenting SD(KCT ) and (σ 2

CT /N )1/2 (blue and green bars,
respectively), becomes closer as N increases. For a system
with α = 1 plus random signs in the interactions this differ-
ence is small even for a small N .

Figure 11(a) shows the standard deviation SD(KCT ) as a
function of N . As it was seen directly on the plots of K∗(t )
(Fig. 3) the fluctuations decrease with the system size and
are smaller when random signs are included in the Hamil-
tonian. Furthermore, this trend is also observed in the total
covariance, Eq. (E5), as can be seen in Fig. 11(b). Indeed, this
decrease is pronounced, becoming of the same order as our
statistical precision for N = 14.

APPENDIX F: LOSCHMIDT ECHOES AWAY FROM THE
INITIAL SITE

As discussed in the main body of the paper, our numeri-
cal computations of the global and local out-of-time-ordered
correlators (OTOCs) rely on the implementation of the
MQC sequence. Figure 2 show typical results that, apart
for the discrimination between local and global contribu-
tions, are similar to those usually found in experimental
implementations.

FIG. 11. (a) The standard deviation from the average value
SD(KCT ) as a function of N . (b) Total covariance [Eq. (E5)] as a
function of N .
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FIG. 12. Average return observed at a distance n (colors) from
the initial site as a function of time. The inset show a zoom on short
times. Panel (a) corresponds to perturbation value φ = π/8 while
panel (b) corresponds to φ = π/2. The numerical data correspond to
a ring of N = 16 with α = 3.

In this section, we leverage the availability of nu-
merical data and show the contributions to the total
echo plots MG(t, φ) from echoes observed at a distance
n from the initial site: Mn

G(t, φ) = 1
N2N−2

∑
i Tr{[Î z

i+n(t ) +
Î z
i−n(t )]R̂† Î z

i (t )R̂}(1 − δn,0/2). Note that the contribution of

sites −n and n comes from the ring geometry of the system,
and it means a translation of n sites to the right and left of
site i. In the numerical implementation, the periodicity of
the indexed needs to be done carefully. For example, for a
ring of N spins M0

G(t, φ) = 1
N2N−2

∑
i Tr{Î z

i (t )R̂†Î z
i (t )R̂} and

M1
G(t, φ) = 1

N2N−2

∑
i Tr{[Î z

i+1(t ) + Î z
i−1(t )]R̂†Î z

i (t )R̂}, where
Î z
i+1 and Î z

i−1 represent the spin at the right and left of i,
respectively.

The behavior of these echoes are shown in Fig. 12 for two
different perturbations. One might think that, as occurs in the
polarization echo, what is missed from the original site may
end up as polarization in the neighboring spins. However,
in the DQ Hamiltonian it ends up as correlations which in
general are not observable. Some perturbations, as φ = π/2,
could convert these correlations in observed magnetization at
the neighboring sites. These correlations, however, are washed
out much before the saturation times. It is clear how the
system is highly correlated, observing a negative polarization
returning at odd distances n, and positive polarization arriving
at even values of n. This effect is clearer in Fig. 12(b) due to
the magnitude of the echoes. These echoes appear at longer
times as n increases. After this transient effect, we observed
that all returning to n �= 0 go to zero, as already hinted in the
previous analysis.
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