• knowing the system's state at a time t, how to find the state at any later time t'; that is, how to describe the time evolution of a system.

The answers to these questions are provided by the following set of five postulates.

Postulate 1: State of a system

The state of any physical system is specified, at each time t, by a state vector $|\psi(t)\rangle$ in a Hilbert space \mathcal{H} ; $|\psi(t)\rangle$ contains (and serves as the basis to extract) all the needed information about the system. Any superposition of state vectors is also a state vector.

Postulate 2: Observables and operators

To every physically measurable quantity A, called an observable or dynamical variable, there corresponds a linear Hermitian operator \hat{A} whose eigenvectors form a complete basis.

Postulate 3: Measurements and eigenvalues of operators

The measurement of an observable A may be represented formally by the action of \hat{A} on a state vector $|\psi(t)\rangle$. The only possible result of such a measurement is one of the eigenvalues a_n (which are real) of the operator \hat{A} . If the result of a measurement of A on a state $|\psi(t)\rangle$ is a_n , the state of the system *immediately after* the measurement changes to $|\psi_n\rangle$:

$$\hat{A}|\psi(t)\rangle = a_n|\psi_n\rangle,\tag{3.1}$$

where $a_n = \langle \psi_n | \psi(t) \rangle$ Note: a_n is the component of $|\psi(t)\rangle$ when projected onto the eigenvector $|\psi_n\rangle$.

Postulate 4: Probabilistic outcome of measurements

• **Discrete spectra**: When measuring an observable A of a system in a state $|\psi\rangle$, the probability of obtaining one of the nondegenerate eigenvalues a_n of the corresponding operator \hat{A} is given by

$$P_n(a_n) = \frac{|\langle \psi_n | \psi \rangle|^2}{\langle \psi | \psi \rangle} = \frac{a_n^2}{\langle \psi | \psi \rangle},$$
(3.2)

where $|\psi_n\rangle$ is the eigenstate of \hat{A} with eigenvalue a_n . If the eigenvalue a_n is m-degenerate, P_n becomes

$$P_n(a_n) = \frac{\sum_{j=1}^m |\langle \psi_n^j | \psi \rangle|^2}{\langle \psi | \psi \rangle} = \frac{\sum_{j=1}^m |a_n^{(j)}|^2}{\langle \psi | \psi \rangle}.$$
 (3.3)

The act of measurement changes the state of the system from $|\psi\rangle$ to $|\psi_n\rangle$. If the system is already in an eigenstate $|\psi_n\rangle$ of \hat{A} , a measurement of A yields with certainty the corresponding eigenvalue a_n : $\hat{A}|\psi_n\rangle = a_n|\psi_n\rangle$.

• Continuous spectra: The relation (3.2), which is valid for discrete spectra, can be extended to determine the probability density that a measurement of \hat{A} yields a value between a and a + da on a system which is initially in a state $|\psi\rangle$:

$$\frac{dP(a)}{da} = \frac{|\psi(a)|^2}{\langle \psi | \psi \rangle} = \frac{|\psi(a)|^2}{\int_{-\infty}^{+\infty} |\psi(a')|^2 da'};$$
(3.4)

for instance, the probability density for finding a particle between x and x + dx is given by $dP(x)/dx = |\psi(x)|^2/\langle \psi | \psi \rangle$.

¹ To see this, we need only to expand $|\psi(t)\rangle$ in terms of the eigenvectors of \hat{A} which form a complete basis: $|\psi(t)\rangle = \sum_n |\psi_n\rangle\langle\psi_n|\psi(t)\rangle = \sum_n a_n |\psi_n\rangle$.