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e knowing the system’s state at a time ¢, how to find the state at any later time ¢’; that is,
how to describe the time evolution of a system.

The answers to these questions are provided by the following set of five postulates.

Postulate 1: State of a system

The state of any physical system is specified, at each time ¢, by a state vector |y (¢)) in a Hilbert
space H; |w(¢)) contains (and serves as the basis to extract) all the needed information about
the system. Any superposition of state vectors is also a state vector.

Postulate 2: Observables and operators
To every physically measurable quantity 4, called an observable or dynamical variable, there
corresponds a linear Hermitian operator 4 whose eigenvectors form a complete basis.

Postulate 3: Measurements and eigenvalues of operators

The measurement of an observable 4 may be represented formally by the action of A on a state
vector |y (¢)). The only possible result of such a measurement is one of the eigenvalues a,
(which are real) of the operator A. If the result of a measurement of A on a state ly(2)) is ay,
the state of the system immediately after the measurement changes to |y, ):
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where|a, = (wu|y(¢))| Note: a, is the component of |y (¢)) when projected! onto the eigen-
vector |y, ).

Postulate 4: Probabilistic outcome of measurements

e Discrete spectra: When measuring an observable 4 of a system in a state | /), the proba-
bility of obtaining one of the nondegenerate eigenvalues a,, of the corresponding operator

A is given by
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where |y, ) is the eigenstate of A with eigenvalue a,,. If the eigenvalue a,, is m-degenerate,

P, becomes
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The act of measurement changes the state of the system from |y) to |y,). If the sys-
tem is already in an eigenstate |y, ) of 4, a measurement of A4 yields with certainty the
corresponding eigenvalue a,: A|w,) = a,|y»).

e Continuous spectra: The relation (3.2), which is valid for discrete spectra, can be ex-
tended to determine the probability density that a measurement of A yields a value be-
tween a and a 4+ da on a system which is initially in a state |y ):

dP@ _ly@P _ ly@P
da wly)  [*2 |y (@) Pda’’

(3.4)

for instance, the probability density for finding a particle between x and x + dx is given
by dP(x)/dx = ly () [*/ ().

ITo see this, we need only to expand | (¢)) in terms of the eigenvectors of A which form a complete basis: |y (¢)) =

Do ) wnlw (@) = 22, anlyn).




