For every j, the number m has (2j + 1) allowed values: m = -j, -j + 1, ..., j - 1, j.

Since j_1 and j_2 are usually fixed, we will be using, throughout the rest of this chapter, the shorthand notation $|j, m\rangle$ to abbreviate $|j_1, j_2; j, m\rangle$. The set of vectors $\{|j, m\rangle\}$ form a complete and orthonormal basis:

$$\sum_{j} \sum_{m=-j}^{j} |j, m\rangle\langle j, m| = 1, \tag{7.119}$$

$$\langle j', m' \mid j, m \rangle = \delta_{j, j'} \delta_{m', m}. \tag{7.120}$$

The space where the total angular momentum \vec{J} operates is spanned by the basis {| j, m}; this space is known as a problem space. It is important to know that this space is the same as the one spanned by {| $j_1, j_2; m_1, m_2$ }; that is, the space which includes both subspaces 1 and 2. So the dimension of the space which is spanned by the basis {| j, m} is also equal to $N = (2j_1 + 1) \times (2j_2 + 1)$ as specified by (7.106).

The issue now is to find the transformation that connects the bases $\{|j_1, j_2; m_1, m_2\rangle\}$ and $\{|j, m\rangle\}$.

7.3.1.1 Transformation between Bases: Clebsch-Gordan Coefficients

Let us now return to the addition of \hat{J}_1 and \hat{J}_2 . This problem consists in essence of obtaining the eigenvalues of \hat{J}^2 and \hat{J}_z and of expressing the states $|j,m\rangle$ in terms of $|j_1,j_2;m_1,m_2\rangle$. We should mention that $|j,m\rangle$ is the state in which \hat{J}^2 and \hat{J}_z have fixed values, j(j+1) and m, but in general not a state in which the values of \hat{J}_{1z} and \hat{J}_{2z} are fixed; as for $|j_1,j_2;m_1,m_2\rangle$, it is the state in which \hat{J}_1^2 , \hat{J}_2^2 , \hat{J}_{1z} , and \hat{J}_{2z} have fixed values.

The { $|j_1, j_2; m_1, m_2\rangle$ } and { $|j, m\rangle$ } bases can be connected by means of a transformation as follows. Inserting the identity operator as a sum over the complete basis $|j_1, j_2; m_1, m_2\rangle$, we can write

$$|j, m\rangle = \left(\sum_{m_1 = -j_1}^{j_1} \sum_{m_2 = -j_2}^{j_2} |j_1, j_2; m_1, m_2\rangle\langle j_1, j_2; m_1, m_2|\right) |j, m\rangle$$

$$= \sum_{m_1 m_2} \langle j_1, j_2; m_1, m_2 | j, m\rangle |j_1, j_2; m_1, m_2\rangle, \qquad (7.121)$$

where we have used the normalization condition (7.104); since the bases {| $j_1, j_2; m_1, m_2$ } and {| j, m} are both *normalized*, this transformation must be *unitary*. The coefficients $\langle j_1, j_2; m_1, m_2 | j, m \rangle$, which depend only on the quantities j_1, j_2, j, m_1, m_2 , and m, are the matrix elements of the unitary transformation which connects the {| j, m} and {| $j_1, j_2; m_1, m_2$ } bases. These coefficients are called the Clebsch–Gordan coefficients.

The problem of angular momentum addition reduces then to finding the Clebsch–Gordan coefficients $\langle j_1, j_2; m_1, m_2 \mid j, m \rangle$. These coefficients are taken to be *real by convention*; hence

$$\langle j_1, j_2; m_1, m_2 | j, m \rangle = \langle j, m | j_1, j_2; m_1, m_2 \rangle.$$
 (7.122)

Using (7.104) and (7.120) we can infer the orthonormalization relation for the Clebsch–Gordan coefficients:

$$\sum_{m_1,m_2} \langle j', m' | j_1, j_2; m_1, m_2 \rangle \langle j_1, j_2; m_1, m_2 | j, m \rangle = \delta_{j', j} \delta_{m', m},$$
 (7.123)