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Some interesting applications of (7.280) correspond to the cases where the vector operator A
is either the angular momentum, the position, or the hnear momentum operator. Let us consider

these three cases separately. First, substituting A J into (7.280), we recover the usual angular
momentum commutation relations:

L, K] =i, [y, Ll =ihdy,  [J, Ji]l=ihd,. (7.285)

Second, in the case of a spinless particle (i.e., J = Z), and if 4 is equal to the position operator,
A = R, then (7.280) will yield the following relations:

[#.0] =0 [&L]=inz % 1] =-ing, (7.286)
[ﬁ, Zy] — 0, [ﬁ, iz] — ih%, [ﬁ, ZX] — —ihs, (7.287)
[2, iz] —0, [2, Zx] — ihp, [2, Zy] — _ihf. (7.288)
Third, if j i and if 4 is equal to the momentum operato ;IA 1§ , then (7.280) will lead to
[Pl =0 [Pol)] =ik, [Pol:]=-ink, (7.289)
[Pl =0 [Pui:]=inb [Pl =-inP, (7.290)
(i) =0 [P L=ink,  [PL]=-ink. (7.291)
Now, introducing the operators

Ay = A, +id,, (7.292)

and using the relations (7.282) to (7.284), we can show that
[J}, /ii] — Thd,, [Jy, fli] — —ihd., [JZ, /ii] — +hdy. (7.293)

These relations in turn can be shown to lead to

[ji, /ii] —0, [ji, /LF] — 4244, (7.294)

Let us introduce the spherical components A 1, 49, A} of the vector operator A; they are
defined in terms of the Cartesian coordinates A Y A , A, as follows:

1 o en .
— :|:7§(Ax +4,), Ay = 4. (7.295)

For the particular case where Ais equal to the position vector R, we can express the components
Ry (where g = —1, 0, 1),

A+

N | A
Ry = :Fﬁ(x T, Ro =z, (7.296)
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in terms of the spherical coordinates (recall that Ry = % = rsin@ cos @, Ry = y =rsinfsing,
and R3 = z = r cos #) as follows:
+ig

A 1 A
Riy =F——=re sin 6, Ry =rcos 6. (7.297)

V2

Using the relations (7.282) to (7.284) and (7.292) to (7.294), we can ascertain that

[J;, A},] = g A, (¢ =—1,0,1), (7.298)

[J;, A},] =h/2—q@ £ DAdgs1 (@ =-1,0,1). (7.299)

7.4.3 Tensor Operators: Reducible and Irreducible Tensors

In general, a tensor of rank k has 3% components, where 3 denotes the dimension of the space.
For instance, a tensor such as

Ty = 4;B; (i,j =x,y,2), (7.300)

which is equal to the product of the components of two vectors A and E’, is a second-rank
tensor; this tensor has 32 components.

7.4.3.1 Reducible Tensors

A Cartesian tensor Tl, can be decomposed into three parts:

T = fiﬁo) + fiﬁ-]) + 1, (7.301)
with
0 1. <
Iy = 351',1;% (7302)
1) = %(ft/ —T)  G#)), (7.303)
Iy = %(ﬁj + 1) = 77, (7.304)

Notice that if we add equations (7.302), (7.303), and (7.304), we end up with an identity rela-
tion: T;; = Tj;.

The term ]A"l.ﬁ.o) has only one component and transforms like a scalar under rotations. The
second term IA’IS.I) is an antisymmetric tensor of rank 1 which has three independent components;
it transforms like a vector. The third term 725.2) is a symmetric second-rank tensor with zero

trace, and hence has five independent components; YA"I.?) cannot be reduced further to tensors of
lower rank. These five components define an irreducible second-rank tensor.

In general, any tensor of rank & can be decomposed into tensors of lower rank that are
expressed in terms of linear combinations of its 3* components. However, there always remain
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(2k 4+ 1) components that behave as a tensor of rank £ which cannot be reduced further. These
(2k 4+ 1) components are symmetric and traceless with respect to any two indices; they form
the components of an irreducible tensor of rank k.

Equations (7.301) to (7.304) show how to decompose a Cartesian tensor operator, T; j, Into

a sum of irreducible spherical tensor operators 721_5_0), Tig.l), Tig.z). Cartesian tensors are not very
suitable for studying transformations under rotations, because they are reducible whenever their
rank exceeds 1. In problems that display spherical symmetry, such as those encountered in
subatomic physics, spherical tensors are very useful simplifying tools. It is therefore interesting
to consider irreducible spherical tensor operators.

7.4.3.2 Irreducible Spherical Tensors

Let us now focus only on the representation of irreducible tensor operators in spherical coor-
dinates. An irreducible spherical tensor operator of rank k (k is integer) is a set of (2k + 1)
operators 7, q(k), with ¢ = —k, ..., k, which transform in the same way as angular momentum
under a rotation of axes. For example, the case £ = 1 corresponds to a vector. The quantities

T, q(l) are related to the components of the vector A as follows (see (7.295)):

T = :F%(Ax +A)), = 4, (7.305)
In what follows we are going to study some properties of spherical tensor operators and
then determine how they transform under rotations.
First, let us look at the various commutation relations of spherical tensors with the angular
momentum operator. Since a vector operator is a tensor of rank 1, we can rewrite equations
(7.298) to (7.299), respectively, as follows:

[J;, fq“)] = hqTV (G=—1,0,1), (7.306)
[ji, fq(‘)] S N EDEUED (7.307)

where we have adopted the notation ﬁq = f"q(l). We can easily generalize these two relations
to any spherical tensor of rank &, T, q(k), and obtain these commutators:

[jz, f;’f)] —hgT® (@ =k —k+1,... . k=1,k), (7.308)
[J;, fq(“] =n/kG+ D) —qlq DT, (7.309)
Using the relations
(k. q' | J: |k, q) = hqtk, q' | k, q) =hqdy. 4, (7.310)
(k, q' | Jx 1k, @) = i/k(k+1) — q(g £ D)oy, g1, (7.311)

along with (7.308) and (7.309), we can write

k
> 00w a1 Lk @) = gl =1, 1], (7.312)
q'=—k
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Now, taking the matrix elements of (7.309) between | j, m) and |j’, m’), we obtain

VG Em) G Fm + 1) Gom F 0TP | j,om)
=JGFMGEm+ DG m TP | j, m£1)
+VEFQhEq+ 1) m T, | j, m). (7.322)

This equation has a structure which is identical to the recursion relation (7.150). For instance,
substituting j = j',m =m’, j| = j,m| = m, j» = k, my = ¢ into (7.150), we end up with

VG £mYG Fm + D) G m F1] j,k; m,q)
= JVGFmGEm+1) (G, m' | j, ks mE1,q)
+VkFq)ktq+ DG m' | ks mgE1). (7.323)

A comparison of (7.320) with (7.321) and (7.322) with (7.323) suggests that the dependence
of (j/,m |Tq(k) | j, m) onm’, m, q is through a Clebsch—Gordan coefficient. The dependence,
however, of (j’, m’qu(k) | j, m)on j', j, k has yet to be determined.

We can now state the Wigner—Eckart theorem: The matrix elements of spherical tensor

operators T, q(k) with respect to angular momentum eigenstates | j, m) are given by

G\ T j,om) = (ks moqli’, m)y GO TO ) ). (7.324)

The factor (j/ || 7® |l /), which depends only on /', j, k, is called the reduced matrix element
of the tensor 7, q(k) (note that the double bars notation is used to distinguish the reduced matrix
elements, (;' || 7® | j), from the matrix elements, (;’, m’lf“q(k) | j, m)). The theorem
implies that the matrix elements (j’, m’| T, q(k) | j, m) are written as the product of two terms: a
Clebsch—Gordan coefficient {/, k; m, q|;j’, q')—which depends on the geometry of the system
(i.e., the orientation of the system with respect to the z-axis), but not on its dynamics (i.e.,
j', J, k)—and a dynamical factor, the reduced matrix element, which does not depend on the
orientation of the system in space (m’, g, 111). AThe quantum numbers m’, m, g—which specify

the projections of the angular momenta J' , J , and k onto the z-axis—give the orientation of
the system in space, for they specify its orientation with respect to the z-axis. As for j', j, k,
they are related to the dynamics of the system, not to its orientation in space.

Wigner-Eckart theorem for a scalar operator

The simplest application of the Wigner—Eckart theorem is when dealing with a scalar operator
B. As seen above, a scalar is a tensor of rank £ = 0; hence ¢ = 0 as well; thus, equation
(7.324) yields

('sm'|B | j, m)y=(j,0; m,0;", m")(j' | BNl j)= (|| B j)oj'jom'm, (7.325)

since (j, 0; m,0|;’, m'y = Jj'j om'm.

Wigner—Eckart theorem for a vector operator

As shown in (7.305), a vector is a tensor of rank 1: 7M = 40 = /f, with A(()]) = Ag = A,
and Ag = A1 = F(4, :Ii‘/i v)/ V2. An application of (7.324) to the g-component of a vector



