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Abstract: A mean-shift clustering (MSC) algorithm is introduced as a valuable alternative to perform materials
phase classification from multispectral images. As opposed to other multivariate statistical techniques, such as
factor analysis or principal component analysis (PCA), clustering techniques directly assign a class label to each
pixel, so that their outputs are phase segmented images, i.e., there is no need for an additional segmentation
algorithm. On the other hand, as compared to other clustering procedures and classification methods, such as
segmentation by thresholding of multiple spectral components, MSC has the advantages of not requiring
previous knowledge of the number of data clusters and not assuming any shape for these clusters, i.e., neither
the number nor the composition of the phases must be previously known. This makes MSC a particularly
useful tool for exploratory research, assisting phase identification of unknown samples. Visualization and
interpretation of the results are also simplified, since the information content of the output image does not
depend on the particular choice of the content of the color channels. We applied MSC to the analysis of two sets
of X-ray maps acquired in scanning electron microscopes equipped with energy-dispersive detection systems.
Our results indicate that MSC is capable of detecting additional phases, not clearly identified through PCA or

multiple thresholding, with a very low empirical reject rate.
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INTRODUCTION

The aim of phase classification is to determine the spatial
distributions of the components or phases within heteroge-
neous materials samples. By its nature, this task is usually
accomplished by using chemical composition maps, or im-
ages whose intensities correlate with chemical composition
and/or structure, obtained with the aid of local probe
techniques. Also, phase identification in unknown samples
could be performed if quantitative maps or intensity cali-
brated images are analyzed in association with a database.

X-ray maps (XRM:s), obtained by collecting characteris-
tic X-rays from induced radiative transitions of the ele-
ments present in a sample, are particularly useful for
gathering elemental distribution. Usually, the excitation
source is an electron beam, which is scanned in a raster
across the specimen while X-ray intensities are recorded as
pixel gray levels in an 8-bit register proportional to the
physical intensity value.

The spatial resolution of XRMs is limited by the inter-
action volume, which is around 2 um diameter, depending
on the electron beam energy, the overall sample composi-
tion, and the particular element being mapped. The acqui-
sition time required for registering an XRM with 256 X 256
pixels and reasonable statistical uncertainties is about 30 min
(at 20 kcps). Larger maps take longer: a more acceptable
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512 X 512 pixel map acquisition, e.g., may last around 2 h.
Recent advances in energy-dispersive spectrometry (EDS)
have resulted in detector systems with higher counting
rates. Silicon drift detectors, e.g., can produce high quality
images at 60 kcps in a few minutes (Gernet, 2008). The
XRMs acquired with EDS allow the detection of elements
present in concentrations higher than 100 ppm.

Backscattered electron (BSE) images are also useful to
determine the number and distribution of phases, since the
gray level of each pixel is related to the mean atomic
number at the corresponding position on the sample sur-
face. QEMSCAN instruments perform phase segmentation
by gray level thresholding of BSE images followed by analy-
sis of the corresponding energy-dispersive X-ray spectra.
Even though the BSE signal is proportional to the average
atomic number of the sample volume examined, chemical
composition is not taken into account from the beginning.
Chemistry of the particles is investigated only after segmen-
tation. This approach became popular in the last decade
(Allen et al., 2012; Carling et al., 2012) and works well when
there is no overlap of the BSE histograms of the phases.
Information about the crystalline structure can be obtained
with the aid of other techniques like electron backscatter
diffraction (Humphreys, 2001) and transmission electron
microscopy. Nevertheless, costs and difficulties associated
with sample preparation inhibit their frequent use.

Phase contrast can also be produced by cathodolumines-
cence (CL), which can be conducted both in a scanning
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electron microscope (SEM), or in an optical microscope with
specialized optical detectors. CL multispectral images con-
tain information on the composition, structure, and trace
elements. In a SEM, CL images can be acquired simulta-
neously with XRMs, allowing the combination of informa-
tion from different analytical techniques (MacRae et al.,
2005). Calibrated multispectral imaging has also been con-
ducted in optical microscopy for the identification of ore
minerals (Pirard, 2004) and iron oxides (Pirard & Lebichot,
2005).

There are several techniques for the treatment of multi-
spectral images, as well as multimodal images produced by
the above techniques. Composite color images (Russ, 2006),
made by assigning different spectral components to each
color channel in an RGB image, is the most commonly used
visualization technique, which may also provide phase iden-
tification, depending on the sample properties and on the
metainformation available.

Segmentation by thresholding of multiple spectral com-
ponents has been applied to quantitative determination of
mineral abundance in geological samples from CL images
(Gotze et al,, 1997) and to the identification of cement
phases from XRMs (Bentz et al., 1999). The latter problem
has also been approached by Ding and Colpan (2006), who
applied a decision tree induction model for partitioning the
feature space of spectral components.

Multivariate statistical analysis methods have also been
applied to X-ray spectral images (Kotula, 2002; Kotula et al.,
2003; Kotula & Keenan, 2006). Principal component analy-
sis (PCA) is a useful technique for extracting the maximum
contrast and structural information from a set of images. It
is a mathematical procedure that uses an orthogonal trans-
formation to convert a set of observations of possibly corre-
lated variables into a set of values of uncorrelated variables
called principal components (Harris, 2001). PCA can be
applied to multispectral images to produce visual represen-
tations of the phase distribution by assigning each of
the most significant components to a color channel (Neal
& Russ, 2004; Russ, 2006). However, it is important to
be aware that principal components do not correspond
to phases and their linear coefficients are not relative abun-
dances of the elements. As shown by Keenan (2008), fac-
tor rotation can be an effective strategy for deriving
physically realistic factors that are more easily interpreted
than the abstract factors obtained via PCA. However, the
output is not a phase segmented image, so that phase
classification on a pixel-by-pixel basis requires further pro-
cessing and analysis.

In a recent paper, Stork & Keenan (2010) have pointed
out the advantages of clustering (Jain, 2010) in the phase
classification of multispectral materials images, when apply-
ing fuzzy cluster means (FCM) to XRMs of a solder bump
and a braze interface. In FCM each pixel has a degree of
membership in each cluster, identified by the corresponding
spectral profile, or prototype. Both the membership values
and cluster prototypes are iteratively determined in order to
minimize an objective function. Classification is achieved

by assigning each pixel to the cluster in which it has the
highest fuzzy membership value.

Mean shift is a general purpose iterative procedure for
finding data clusters in multivariate datasets, originally de-
scribed by Fukunaga and Hostetler (1975), and later gener-
alized by Cheng (1995). It was first used for color image
segmentation by Comaniciu and Meer (1997). In recent
years, it has been applied to the processing of remote
sensing imagery (Cellier et al., 2005; Bo et al., 2009) and to
hematite grain segmentation from polarized light images
(Borges da Costa et al., 2007).

The mean-shift clustering (MSC) algorithm is based on
the iterative shifting of a kernel to the average of the
encompassed data points (Cheng, 1995; Comaniciu & Meer,
1997, 2002). As compared to other clustering procedures
and to classification methods based on cluster analysis, such
as k-means and support vector machines (SVM), it has the
advantage of not requiring previous knowledge of the num-
ber of phases or the shape of the clusters.

The principal aim of this work is to demonstrate the
applicability of MSC to identify and characterize phases
present in a sample using XRMs, even in the cases where
other techniques have great difficulties, such as archaeolog-
ical samples and nonstoichiometric minerals, e.g., clay
minerals. After a brief presentation of the MSC technique,
two sets of XRMs are analyzed and the results compared
with the outcomes of PCA and segmentation by multiple
thresholding. The first set, from a polished geological
sample, was provided by John C. Russ without the phase
spectra. However, since these maps were acquired with
good statistics and it is easy to identify six major phases
by applying the PCA method (Russ, 2006), it appears this
is a good example to contrast MSC results with a typi-
cal factor analysis technique. The second set is from an
archaeological sample of the Aguada Culture, Catamarca
Valley, Catamarca, Argentina IV-XI A.C. (Galvén Josa et al.,
2009). Archaeological samples offer one of the biggest
technical challenges for phase identification and classifica-
tion, since their surfaces are usually rough and have inho-
mogeneous composition. Particularly, when the paints on
archaeological sherds are applied before cooking, new
mineral phases appear, which complicate the correct
classification.

MATERIALS AND METHODS

Theory

As in Stork and Keenan (2010), throughout this article,
scalars are represented by italics, e.g., n and column vectors
are denoted by boldface lowercase letters, e.g., d. Transposi-
tion of a vector is represented by superscript T, e.g., d”.

In XRM acquisition, the sample surface is irradi-
ated with electrons and the intensities, I(E,AE, x,y), of
the induced X-ray emissions from positions (x, y), in the
energy range from E — AE/2 to E + AE/2, are measured
by an EDS spectrometer, mapped into 8-bit gray level values
(d = 0,1,2,...,255) and assigned to pixels of coordinates



(r,c) = (row, column), where r = 0,1,2,...,R — 1 and c =
0,1,2,...,C — 1. Each energy channel, centered at E, is
selected to encompass the energy range of the X-ray pho-
tons emitted by the atoms of a specific element during a
characteristic transition from an excited state to a lower
energy state. The gray levels d(r,c) of an XRM are therefore
representative of the local concentrations of the selected
element. Pixel coordinates relate to sample surface positions
by (x,y) = (rAx,cAy), where Ax and Ay, are the electron
probe step sizes in x and y directions, respectively. These are
given by Ax = W/C and Ay = L/R, where W and L are the
width and the length of the probed region, C and R are the
number of probed surface points along the corresponding
directions.

If n XRMs are acquired, one for each of a series of
elements, identified by one of its characteristic X-ray ener-
gies, E, and indexed by s = 1,2,...,n, then the gray level
values d,(rc), are directly related to the local chemical com-
position at the corresponding sample surface positions. The
n gray level values, with the same (7, ¢) coordinates, are the
pixel attributes of the resulting multispectral image.

Each multispectral pixel (r, ¢) may be indexed by an
integer i = Cr + ¢ + 1, so that i = 1,2,...,m, where m =
R X C is the total number of pixels. Its attributes may be
represented by a vector d; of components d;, ie., d; =
[di;,dyis...,d,;,] 7. This is a feature vector associated with
the chemical composition of the corresponding sample
surface position. Feature vectors of chemically similar probed
points tend to cluster around their average, p;, forming high
density regions in the feature space, whose dimensions are
the gray levels d.. The vector p; is identified as the prototype
of the class, or phase j. If during XRM acquisition the X-ray
intensities are calibrated to concentrations, then the compo-
nents of a prototype vector directly correspond to the
chemical composition of a phase.

In this context, the problem of phase classification is
the problem of determining to which cluster every pixel
belongs. Two different situations may occur. In the first,
both the number and the chemical composition of the
phases are known, i.e., the set of prototype vectors {p;},
where j = 1,2,..., 1, is given. Then, the problem reduces to
classifying each pixel as belonging to the phase whose
prototype is closest to its feature vector.

Multiple thresholding is frequently used as a supervised
classification method (Russ, 2006). The threshold value of
the intensity of each spectral component is the coordinate
of a hyperplane perpendicular to the respective axis in the
multidimensional feature space, and each pixel is assigned
to a phase if it is inside a hyperparallelepiped (shoe box)
limited by these planes. So, an assumption is implicitly
made about the shape of the pixel clusters in the feature
space (they must be separable by hyperplanes perpendicular
to the feature axes) making these techniques inappropriate
when nonstoichiometric minerals or solid solutions are
present. The reason is that variations on the concentrations
of any element will stretch the clusters along the direction
of the corresponding spectral component in the feature
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space, and produce overlapping of the projections of differ-
ent clusters on that axis, thus precluding the partition of the
feature space into hyperparallelepipeds, each containing
pixels of a single phase. In fact, each hyperparallelepiped
may enclose pixels of the tails of other clusters in its
neighborhood.

Classification methods like SVM give an answer to this
problem (Lizarazo, 2008). In the second, neither the num-
ber nor the chemical composition of the phases are known,
i.e., the phases are to be discovered. Then, since phases are
associated to clusters in the feature space, the problem is to
find the centers of these high density regions. Feature space
analysis methods like k-means can be used for this search.
However, the result may strongly depend on the initial
prototypes of the clusters, which are provided either directly
or indirectly by the user. Better results are obtained when
this initial guess is guided by some previous knowledge of
the structure of the feature space, which can be gained with
the aid of visualization tools. As the k-means algorithm is
usually fast, it is common to run it multiple times with
different starting conditions and then compare the results.

MSC

MSC (Fukunaga & Hostetler, 1975) is a procedure for find-
ing data clusters in multivariate datasets based on the itera-
tive shifting of a kernel to the average, or mean, of the
encompassed data points in the feature space. After a finite
number of mean shifts, and within a precision determined
by the user, the kernel will stop shifting when it is centered
at a maximum of the density of data points. This is the
center of a cluster, whose members have similar coordi-
nates, or feature values. The procedure is repeated with the
kernel starting at every data point, which is assigned to the
cluster where the kernel stops.

Starting at a point dy, taken as the initial prototype p;,
of class j, i.e., p; <= dy, let a kernel function K(d; — p;) be
given, that weights the nearby points d; for estimation of
their mean. The weighted mean, m(p;), of the points encom-
passed by K, is

2 K(d; - pj)'di

d;EN,(pj)

Z K(d; — Pj)

d;EN,(p;j)

m(p;) = (1)

where Ny, (p;) = {d;| |d; — p;| = h} is the set of points in
the hyperspherical neighborhood of p; for which K # 0.

Gaussian kernel (Cheng, 1995) on the distance to the
current prototype has been widely used, particularly in
cases for which some directions in the feature space are
more relevant than others. The simplest kernel, which has
been used in the present work to test the validity of this
approach, is a homogeneous hypersphere, i.e., a fixed multi-
dimensional distance h, measured from p;, within which all
data points have the same weight:

1 if|d; —p;| =h,

2
0 ifld,—p,l > h @

K(d; - Pj) = {
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where

Id; — Pj” = \/(di - pj)T'(di - Pj)

= /S i py)2, 3)

is the euclidean distance between points d; and pj and h is
the radius of the hypersphere, or bandwidth.

For the kernel given by equation (2), the summation
EdiENh(Pj)K(di — p;) in the denominator of equation (1) is
just the number |N,,(p;)| of points in Nj,(p;).

After calculating the mean, the MSC algorithm sets
p; < m(p;), i.e., the center of the kernel is shifted from p;
to m(p;), which then becomes the new p;. These two steps
are repeated until m(p;) converges to a fixed p;, i.e., m(p;) =
p;- This final p; is the prototype of class j, to which the
initial point d, is said to belong. Thus the output of this run
is both the detection of a cluster in the feature space, and
the assignment of the initial point to the corresponding
class. After repeating this run for every data point (every
pixel in the multispectral image), both the distribution of
clusters in the feature space and the phase distribution of
the imaged sample are revealed.

The vector that points from the old to the new p; is
called the mean-shift vector. If the data points are viewed as
samples of a multivariate probability density function of
finding a feature vector in a differential neighborhood of d;,
then the mean-shift vector is an estimate of its local gradi-
ent. The track of the consecutive mean-shift vectors is a
path from the starting point to a local density maximum. In
the image segmentation problem, this function is the prob-
ability of finding a pixel with a given set of spectral intensi-
ties, so that the final prototype relates to the most probable
chemical composition of a phase.

As already mentioned above, no assumption needs to
be made about the number or shape of the clusters when
applying MSC. It is also simple and straightforward to
implement, and is robust under sampling uncertainties.
However, care must be taken when choosing the only input
parameter, the so-called bandwidth, typically represented by
the radius h of the hypersphere. This is not a trivial task,
since an inappropriate choice can either cause merging of
clusters, or detect local fluctuations in sampled data as
clusters. When applied to phase classification, the former
implies that different phases are interpreted as a single one,
and, the latter, that materials defects or image acquisition
artifacts can be detected as additional phases. The use of
variable adaptive bandwidths has been proposed (Comani-
ciu et al,, 2001; Comaniciu, 2003) as a general solution to
over-segmentation of multiscale patterns, such as textured
objects. However, when applied to materials characteriza-
tion, this method may eliminate minor phases. Misclassifi-
cation is better resolved in materials phase analysis by
postprocessing, when spatial information may be added via
morphological operations (Russ, 2006).

The alternative proposed in this work for the choice of
this parameter is intended to give an initial guess for the

bandwidth, which may help the user to achieve the appro-
priate value for this parameter, according to the particular
sample under analysis. Bearing in mind that the scattering
of data in the feature space are mainly due to the experimen-
tal uncertainties associated to the corresponding measured
intensities, a first estimate for the bandwidth can be taken as
the average of the uncertainties assessed for the set of all the
points constituting the feature space. An upper bound for
the uncertainty associated to a point d of the feature space
can therefore be written as

O = 1 ; O-ai) (4)

where o, is the uncertainty corresponding to the s’th
intensity (coordinate) of d. Since the major source of error
in X-ray mapping comes from counting statistics, the value
taken for o is the square root of the corresponding inten-
sity. The criterion suggested in the present approach is that
the initial guess for / should be at least .

Sample Images

Two sets of XRMs were analyzed in order to evaluate the
MSC algorithm as a tool to perform materials phase classi-
fication. For each set of XRMs, MSC and PCA were applied
to obtain the number and distribution of phases and the
results were compared. The first set, provided by Russ
(2006), is composed of the individual 256 X 199 gray scale
(8-bits) images from each of the characteristic X-ray signals
of nine elements present in a polished section of a geologi-
cal sample (Al, Ca, Fe, K, Mg, Na, O, Si, and Ti).

The second set of XRMs, acquired with an EDS equipped
LEO 1450 VP SEM (LEO Electron Microscopy Ltd., Cam-
bridge, UK), corresponds to 8-bit 128 X 100 maps from an
archaeological sample, namely a piece of Portezuelo style
pot sherd (radiocarbon age 600-900 AC) from the Catama-
rca Valley (Galvén Josa et al., 2009). The Portezuelo style is
characterized by a very fine ware, with very complex and
highly variable manufacturing and decorative techniques
(Bertolino & Fabra, 2003; Bertolino et al., 2009). One of the
most outstanding characteristics is its noticeable poly-
chromy. In the selected sample, decorative motives are
painted in burgundy, reddish, black and white, as can be
seen in Figure 1. The X-ray spectra taken at specific zones of
each color, show that the white paint has a high Ca content,
the black one is associated with the presence of Fe and Mn
(plus minor contents of Ca), the burgundy has Fe, Mn, and
Ca, and the reddish is related to Fe and Ca.

Implementation

Both MSC and PCA algorithms used in this work were
implemented in Matlab® environment. The MSC implemen-
tation is an extended version of Bart Finkston’s code (Fink-
ston, 2006) that has been modified to accept multi or
hyperspectral images as input data. In our extended code,
the elements of the m X n input matrix are the gray scale
values of the m pixels in each of the n individual 8-bit
images. The function princomp used for the PCA implemen-
tation is part of the Matlab® standard library. It performs a



Figure 1. Optical photography of the Aguada Portezuelo sherd
sample. The area mapped in the scanning electron microscopy-
energy-dispersive spectrometry has been highlighted.

PCA on the m X n data matrix, where rows correspond to
observations (pixels) and columns to variables (gray levels
corresponding to the intensities of the characteristic X-rays
of each element). The output is the set of principal compo-
nents in decreasing order of significance. They are defined
by the coefficients of the uncorrelated linear combinations
of the original data whose variances are as large as possible.
Segmentation by multiple thresholding can be accom-
plished by a variety of image processing software packages.
In this work, the software QuantiPhase, developed in a
previous work advised by one of the authors (Miranda
et al., 2004), was chosen due to its ability to set multiple
threshold levels simultaneously. The thresholded binary im-
ages depict regions of elementary concentrations which are
characteristic of certain phases. These are then blended by
AND operations in order to take into account the contribu-
tions of the different spectral components. Additionally,
morphological filtering is needed during this process in
order to remove noise.

After running MSC, class labels j, assigned to every
pixel, are mapped into unique colors, according to a user-
defined lookup table (LUT). In spite of the arbitrariness of
the particular choice of colors, the number and the distribu-
tion of phases in the output image is invariant under LUT
changes. The resulting phase classification takes into ac-
count all the information contained in the input images.

On the other hand, after running PCA only a visual
representation of the phase distribution is produced by
assigning the most significant components to the color
channels of an output image. Fach color component of
every pixel in the output image is then determined by a
particular linear combination of the gray levels of the
corresponding pixels in the input images. These combina-
tions must be rescaled in order to remain within the range
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of intensity levels of every channel (usually 256). Hence,
colors are not class labels, and, therefore, another procedure
is needed in order to classify pixels of similar colors as
belonging to the same phases.

Computationally, the PCA algorithm runs much faster
than the MSC algorithm, whose execution time greatly
depends on the number and size of the input image files
and on the choice of the bandwidth. However, the number
and the distribution of phases in the output image depend
on the choice of both the content of the color channels and
the color segmentation algorithm. The output of multiple
thresholding is a color-labeled phase distribution image.
However, appropriate segmentation is achieved only after
many sequences of thresholding, morphological filtering,
and boolean operations supervised by the user. The various
threshold levels and filtering parameters are arbitrarily cho-
sen by the user; this is a tedious and time-consuming task
whose results are subject to many uncertainties.

With the aim of knowing the functional dependency of
the classifications phases as a function of bandwidth, several
runs of MSC code were performed in a wide range of
bandwidth values.

RESULTS AND DiscusSION

The first set of XRMs (Russ, 2006) is shown in Figure 2. The
results of PCA were presented and discussed in the original
publication. A visual representation of the phase distribu-
tion in the sample, shown in Figure 3a, was produced from
those results by using the three most significant compo-
nents, as described in the previous section. Even though this
image contains 83% of the information contained in the
original image set, it is not a truly phase-segmented image,
as pointed out in the previous section. In fact, this image is
not even segmented, because pixel values are just linear
combinations of the gray levels in the input images. Since
XRMs are naturally noisy, so is the output image, whose
colors vary from pixel to pixel. The local fluctuations of the
pixel colors are better visualized in Figure 3b, where the
region outlined in Figure 3a is zoomed in.

While phase classification on a pixel-by-pixel basis re-
quires further processing, the number of phases can be
inferred from colocalization plots, i.e., from the two-
dimensional (2D) projections of the 9D pixel feature space
whose dimensions are the principal components. Clusters
in this feature space are identified with phases and counted
in the colocalization plots.

The results of multiple thresholding are shown in Fig-
ure 3¢, where the unclassified pixels are painted black. Six
phases are clearly identified by this procedure, which corre-
spond to the colored regions, adding up 86.94% of the total
area. The outlined region is zoomed in Figure 3d.

A typical MSC result is shown in Figure 3e. It is a
color-labeled image, where seven phases can be clearly seen.
In Figure 3f the outlined region, containing the seventh
phase, is zoomed in to stress that a single color is attributed
to each phase.
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Figure 2. Scanning electron microscopy images of a polished sample of mica provided by Russ (2006). The individual
X-ray maps show the distribution of the corresponding elements within various minerals in the sample.

After applying the MSC method, the quantification of
phases by area fractions can be readily performed. In all
cases, for values of the bandwidth in this range, the area
fractions of the minor phases are below 0.5%, as shown in
Figure 4, where the results for & = 85 are shown. This has
been used as an heuristic criterion to consider as real phases
only those with area fractions above 0.5%.

The MSC results depend on the particular choice of the
bandwidth, ki, as can be seen in Figure 5. As pointed out in
the Materials and Methods section, small values of this
parameter lead to an artificially high number of clusters,
while this number goes to one when the bandwidth is
comparable to the dynamic range. The question is then how
to find the correct result, and the answer must be given on
the basis of the user knowledge and expertise about the
phase structure of the samples under concern and on the
experimental techniques.

The plateau in Figure 5 suggests that the bandwidth
that produces appropriate results lies in the range between
55 and 120, for which the mean-shift analysis detects a
number of phases between six and eight. Although the
average value of this plateau suggests seven phases, in order
to be conclusive at this point further information must be
provided. Nevertheless, it is important to stress that the
MSC algorithm shows some additional structure, with an
area fraction of about 2%, which could be studied in better
detail.

With the aim of comparing the results obtained by
MSC and PCA for the geological sample, a 3D colocaliza-
tion graph was built with the three most significant compo-
nents obtained by PCA, as shown in Figure 6. Each point in
this graph was colored with the same LUT used in Fig-
ures 3¢ and 4. Six clusters are clearly distinguished in the
colocalization plots of component #1 versus component #2
and component #2 versus component #3 (shown in Russ,
2006), which are 2D projections of the clusters seen in
Figure 6. The seventh region (brown colored) can be sug-
gested only after the use of MSC, since this method labels
the pixels which are mixed up in the 3D colocalization plot.
Whether this region is a true phase or, e.g., a poor spectral
signature due to the noticeable cracks in the specimen, is a
question to be answered by the analyst. What is important
to stress here is that MSC allows a more detailed inspection
of the sample than PCA.

Table 1 displays the area fractions of phases identified
through segmentation by multiple thresholding and MSC.
It can be readily seen that the shoe box method has not
detected the turquoise colored phase and that many pixels
remain unclassified (13.06%), while MSC closure is almost
100%.

In order to test the approach developed here, a set of
XRMs was acquired for the archaeological sample described
in the Sample Images section. These correspond to the K
X-ray lines of Al, Si, Fe, Ca, and Mn (see Fig. 7); they are
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Figure 3. Color representation of the phase distribution in the
geological sample of Figure 2 produced by (a) assigning the three
most significant components obtained by principal components
analysis to the color channels of the image, (¢) ANDing morpho-
logically filtered thresholded images of different spectral compo-
nents and (e) using a lookup table to represent class labels obtained
by mean-shift clustering (h = 85). Zoomed details of images (a),
(c), and (e) are shown in images (b), (d), and (f), respectively.
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Figure 4. Area fractions of the phases detected in the geological
sample of Figure 2 by mean-shift clustering with & = 85. All phases
with area fractions below 0.5% have been neglected.

more difficult to analyze, since they present poor statistics
due to the intrinsic characteristics of the sample (inhomo-
geneous composition, presence of pores, variable thickness
of the surface paints, sample not perfectly flat, etc.). Partic-
ularly, it is important to bear in mind that, for XRMs, each
pixel value is determined by the chemical composition of
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Figure 5. Number of real phases (clusters) detected as a function
of the bandwidth. The full line is drawn to outline the plateau
corresponding to seven phases.

the material encompassed by the interaction volume, which
may also include phase boundaries and defects. Besides, the
process of induced X-ray emission is stochastic. Therefore,
XRMs are naturally noisy, and the precision to which the
intensity values or gray levels can be determined is limited.
As a result, isolated pixels are generated, which may be
interpreted as new clusters, and a particularly high number
of clusters may result. In order to circumvent this problem
the original maps were first submitted to a 5 X 5 Gaussian
filtering (Russ, 2006) (i.e., pixel values were substituted by a
neighborhood weighted average) and then analyzed by PCA
and MSC.

The results obtained after the application of PCA to the
XRMs of the Portezuelo sample are shown in Table 2. In
this case, 93% of the information is contained in the first
three components. The respective colocalization maps do
not allow detection of more than two phases. However, the
phase distribution obtained by combining these compo-
nents, shown in Figure 8a, where they were assigned to the
R, G, and B channels, respectively, suggests that three or
four phases may exist (after contrast expansion). On the
other hand, when the MSC analysis is applied to this sample

Table 1. Area Fractions of Phases Identified through Segmenta-
tion by Multiple Thresholding and MSC.
Shoe Box MSC?

Phase (%) (%)
Yellow 24.85 29.74
Cyan 22.12 23.03
Magenta 18.33 21.49
Red 7.63 9.00
Green 7.79 7.95
Blue 6.22 6.43
Turquoise — 2.33
Total 86.94 99.97

*MSC, mean-shift clustering.
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Figure 6. Identification of the phases detected by mean-shift clustering (MSC) in the three-dimensional colocalization

plot of the three most significant components obtained by principal components analysis. The colors were assigned
according to the MSC lookup table used in Figure 3c.

Figure 7. Secondary electron image and X-ray maps of Aguada Portezuelo sherd sample, showing the distribution of
the different elements recorded.

Table 2. Coefficients Obtained by Principal Components Analysis (PCA) for the Aguada Portezuelo Sherd Sample.

Significance
PC (%) Al Ca Fe Si Ti
1 51.4 —0.5597 —0.6068 0.2269 0.1577 —0.4921
2 28.9 0.2293 —0.7280 0.0072 0.0175 0.6458
3 12.2 —0.7917 0.1902 —0.2426 —0.1606 0.5025
4 6.0 0.0866 —0.2555 —0.7782 —0.4831 —0.2970
5 1.5 0.0012 —0.0184 0.5329 —0.8460 —0.0042




(b)

Figure 8. Phase distribution of the Aguada Portezuelo sherd sam-
ple as revealed by: (a) RGB contrast-expanded image of the three
most significant components obtained by principal components
analysis and (b) color labeling of the pixels belonging to the same
clusters detected by mean-shift clustering of the five X-ray maps of
Figure 7 (after 5 X 5 Gaussian filtering).

following the same procedure described above for the analy-
sis of the geological sample, four phases are clearly detected
as shown in Figure 8b, in accordance with the optical
observation of the sample. This result was obtained for a
bandwidth 4 = 10, which detects 45 clusters, of which 41
have been disregarded, since their area fractions are <0.5%
and amount to only 1.1%.

The isolated regions assigned to the cluster correspond-
ing to the white paint in Figure 8b suggest that, the black
and red colors were applied to the surface after it was
painted white.

CONCLUSIONS

In this work, a MSC algorithm was implemented to per-
form materials phase classification from multispectral im-
ages and successfully applied to XRMs of two different
samples. This approach was compared with a frequently
used multivariate statistical technique, namely the PCA
described in Russ (2006). The assignment of a class (phase)
label to each pixel is an important advantage of MSC, since
there is no need for an additional segmentation algorithm.
On the other hand, MSC does not require any previous
knowledge neither of the number nor of the composition of
the phases sought. This makes MSC a particularly useful
tool for exploratory research, assisting phase identification
of unknown samples.

When applied to the images of the geological sample
analyzed, MSC indicates the same number of major phases
as PCA and shoe box; however, it suggests that a seventh
minor phase may exist. In addition, when compared to
segmentation by multiple thresholding, the empirical reject
rate (Shapiro & Stockman, 2001) of MSC is quite low
(0.03%) whereas for shoe box is as large as 13.06%. On the
other hand, in the case of the archaeological sample, MSC
analysis clearly delineates four phases allowing differentia-
tion between the white and burgundy paints, in accordance
with the optical observation of the sample.

The results obtained by MSC show that the method
proposed is very useful for the characterization of regions of
well-defined composition, and robust when the sample
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preparation conditions are not favorable for the imaging
technique, as in the case of the archaeological paints studied
here.

Finally, the principles and ideas presented in this paper
for the treatment of multispectral images, which we have
applied to XRMs, are also applicable to combined datasets,
i.e., combinations of images produced by different tech-
niques (Ding & Colpan, 2006; MacRae et al., 2009) or
acquired under varying imaging conditions (Pirard et al.,
2007; Borges da Costa et al., 2007). Irrespective of the
physical origin of the information content of the channels,
bands or components of an image, better results are ex-
pected to be obtained when complementary information is
gained by the addition of a new dimension in the feature
space (of course, a compromise with the well known “curse
of dimensionality” must be established). The essential requi-
site to apply MSC to multispectral or multimodal images, is
the coregistration of local information to the same pixel
coordinates, so that pixels can be mapped into a multidimen-
sional feature space in which they cluster around common
properties.
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