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Although the refinement of parameters is a well known method in the scope of X-ray diffraction, it
also appears as a powerful tool in other spectroscopic techniques. This work presents a method for the
refinement of different atomic and experimental parameters in X-ray fluorescence (XRF). It consists of
minimizing the differences between an experimental X-ray spectrum and a function proposed to account
for the characteristic peaks and background spectrum from the corresponding sample, as well as for
detection artifacts. The algorithm starts from some initial values for the different parameters involved,
and a numerical iterative procedure produces improved values for them. After the general aspects of the
method for refining XRF parameters are presented, a simple application is given for spectra measured in
metallic samples with a monochromatic beam from a synchrotron source. In this case, the optimization
algorithm is used for the determination of relative transition probabilities for the K shell. Copyright 
2002 John Wiley & Sons, Ltd.

INTRODUCTION

In X-ray diffraction (XRD), the method of parameter opti-
mization using whole spectra is a widely used technique.
Since the first time it was implemented by Rietveld,1 – 3 it
has yet to be extended to other spectroscopical techniques,
with the exception of the POEMA code4 for electron probe
microanalysis (EPMA). On the basis of the good performance
achieved for EPMA, in this work the method is implemented
for X-ray fluorescence (XRF).

Although the method may be used in different spec-
troscopic systems, the description given here is restricted
to XRF spectra acquired with an energy-dispersive system.
The strategy followed is based on least-squares fitting of a
selected region of the entire observed spectrum. In order
to minimize the differences between the experimental and
the calculated spectra, an iterative procedure is carried out.
For this purpose, the expressions used for the predicted
spectrum are based on fundamental parameters for charac-
teristic lines.5 An algorithm for the background continuum
may be added, although in the examples shown here the
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corresponding intensity was low enough to be considered as
constant. Finally, detection artifacts are conveniently taken
into account.

If the fitted spectrum has N channels, the quantity to be
minimized can be written as:

�2 D 1
N � P

∑
i

�QIi � Ii�2

Ii
�1�

where the summation runs over all the N data points, P
is the number of parameters adjusted, and Ii and QIi denote
respectively the experimental and calculated intensities for
the energy Ei of channel i. Thus, the models chosen for the
prediction of QIi will determine the values for �2 through
the parameters involved. Usually, these are complicated
functions, which generally implies a non-linear least-squares
fitting. Since the risk of falling in local minima is not
negligible, the initial guess for the parameters must be quite
close to the correct values; alternatively, it is recommendable
to begin with different estimates and check that the minimum
achieved is always the same. The procedure proposed
here must be regarded as a method for the refinement or
optimization of parameters, and not for determining them.
Consequently, it may become a fundamental tool when
associated with a quantification routine.

In the next sections, theoretical support is given for the
prediction of whole spectra in XRF, as well as a description of
the method proposed. Some applications are then presented,
including the characterization of detector properties and the
refinement of atomic transition rates for K lines.

DESCRIPTION OF THE PROCEDURE

Two main issues are involved in the construction of the
algorithm. Firstly, a full theoretical description for whole
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spectra acquired in XRF must be given. Secondly, it is
necessary to implement a numerical procedure to minimize
the differences between experimental and predicted spectra.

Intensity predictions
Since all the spectra analysed in this work were measured for
a monochromatic incident beam on sample and detector in
vacuum, the background B�Ei� below the characteristic peak
regions was negligible. Therefore, no particular prediction
for it is necessary, a constant value consequently being used.

When a sample of mass thickness t is irradiated
with photons of energy E0, the expressions arising from
fundamental parameters5 for the characteristic intensity Pj,q

of the line q from element j, is

Pj,q D ˛Cj
NA�j�E0�

Aj
ωj fj,qεj,q

�

4	

ð 1 � expf�[
�E0� cosec  1 C 
�Ej,q� cosec  2]tg

�E0� cosec  1 C 
�Ej,q� cosec  2

�2�

where ˛ is a constant proportional to the number of incident
photons, Cj is the mass concentration of element j, Aj its
atomic weight, NA is Avogadro’s number, �j�E0� is the
photoelectric cross-section of element j for E0, ωj is the
fluorescence yield for the atomic shell considered, fj,q is
the transition rate related to the observed line q, 
�E0� and

�Ej,q� are the mass absorption coefficients of the sample for
the incident and the characteristic energy respectively,  1

and 2 are the incident and take-off angles, εj,q is the detector
efficiency for the corresponding energy and � is the solid
angle subtended by the detector. This expression does not
account for multiple scattering effects, as they are negligible
in the samples analysed. In the applications presented in
this work, the fluorescence yield coefficients were taken
from Hubbell6 and the mass absorption coefficients from
Heinrich,7 whereas transition rates have been optimized in
most cases.

Although the theoretical prediction relies on the expres-
sions given for the background and characteristic intensities,
different X-ray detection effects must also be taken into
account. The detector used in this work for spectrum acqui-
sition was a silicon detector. For this kind of detector, the
basic detection process involves a proportional conversion
of photon energy into an electrical signal, which is shaped
and amplified, and then passed to a multichannel anal-
yser. A relationship between the channel number in which
photons are registered and the corresponding energy must
be supplied. A simple linear calibration is usually enough,
involving two parameters: the ‘gain’ and the ‘zero’.

For photons of energy E, the detector system response is
a broadened peak whose distribution can be considered as
Gaussian to a first approximation; its standard deviation �
being a function of photon energy:8

� D �n2 C εFE�1/2 �3�

where n is the uncertainty due to the electronic noise of the
amplification process, F is the Fano factor and ε is the mean
energy required for a single electron–hole pair formation
(3.62 eV at 300 K).

Detector efficiency in Si detectors may strongly influence
the results if it is not adequately taken into account. Typically,
it is close to 100% between 3 and 10 keV. At lower energies,
efficiency falls owing to absorption in the front window
and layers; on the other hand, higher-energy photons
have increasing probabilities of traversing the active silicon
volume without being detected. The different thicknesses
that must be known are typically an isolating beryllium
window, a gold layer contact evaporated onto the front
surface, a dead silicon layer, and the active detector thickness.
For the examples shown in this work, energies were high
enough to make the effect of absorption in the three front
layers negligible. However, it is worth mentioning that
correction for detection losses due to the finite active volume
of Si were important.

Spectra collected with Si detectors may also show a
spurious Si peak due to the photoelectric absorption of
a photon within the dead Si layer of the detector. The
consequent Si K photon may enter the active region and
be registered, whereas Auger and photoelectrons are much
more likely to be absorbed in the dead layer.9 As a result, a
photon of only 1.739 keV, corresponding to the Si K peak is
registered instead of the one actually emitted by the sample.
For the spectral energy regions considered in this work, these
peaks were always excluded.

Finally, some of the charge carriers produced by a
photon arriving at the detector may be ‘trapped’ before
being collected. Thus, the output sent to the amplifier
corresponds to an energy lower than the original one. This
effect is manifested in asymmetrical peaks with low-energy
tails, departing from the assumed Gaussian shape. Since the
highest concentration of traps occurs in a transient region
close to the detector surface, between the active volume and
the dead layer, peaks appear to be more asymmetric for
soft X-ray lines. Therefore, a modification to the Gaussian
function is necessary in order to account for this effect, which
is the most important in the examples presented in this work.
This modification was included by means of the Hypermet10

function

Hj,q�Ei� D A[Gj,q�Ei�C Sj,q�Ei�C Tj,q�Ei�]

in which A is a normalization factor, Gj,q�Ei� is a Gaussian
function centred at the characteristic energy Ej,q:

Gj,q�Ei� D 1p
2	�j,q

exp

[
� �Ei � Ej,q�2

2�2
j,q

]

Sj,q�Ei� is the step function of height sj,q convoluted by the
Gaussian:

Sj,q�Ei� D sj,q erfc

(
Ei � Ej,qp

2�j,q

)

and Tj,q�Ei� is an exponential tail of width ˇj,q and height tj,q

convoluted by the Gaussian:

Tj,q�Ei� D tj,q e�Ei�Ej,q�/ˇj,q erfc

(
Ei � Ej,qp

2�j,q
C �j,qp

2ˇj,q

)
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In these functions, the parameters sj,q, tj,q and ˇj,q are not
known a priori and must be refined if peak asymmetries
must be taken into account.

There are two further artifacts that have not been
considered in this first stage, since they would not influence
the results. First, there is a finite probability that Si K photons
produced in the detector following absorption of an incident
photon will escape from the detector. In this event, the energy
of the escape photon is not deposited in the detector, and the
height of the consequent pulse is correspondingly reduced,
i.e. an ‘escape peak’ occurs 1.739 keV below the main peak.
Second, two pulses may reach the main amplifier within a
very short time interval, resulting in the appearance of a
spurious peak in the spectrum, corresponding to the sum of
the energy of the two original pulses (‘sum peak’).

With all these spectral characteristics taken into account,
the next step is to proceed with the minimization of �2 in
Eqn (1).

Parameter optimization
Some of the magnitudes involved in the previous expressions
may not be precisely known a priori; the challenge, therefore,
is to find the set of parameters that best fits the general shape
of the proposed function to the experimental spectrum:

QIi D B�Ei�C
∑

j,q

Pj,qHj,q�Ei�C PSiGSi�Ei� �4�

where Hj,q is the modified Gaussian function associated with
the peak intensity Pj,q and PSi is the internal fluorescent Si
peak, spread by means of a Gaussian distribution GSi. The
parameters that may be optimized are: the scaling factor ˛
of Eqn (2), and a possible scale factor for the background
spectrum; the zero and gain of the detection chain; the peak-
width factors n and F of Eqn (3); the transition rates fj,q;
the fluorescence yields ωj and the mass concentrations Cj

of Eqn (2); the parameters involved in the function Hj,q for
each peak; the four thicknesses associated with the detector
efficiency; the amplitude of the PSi peak; the transition
energies for the involved decays; etc.

The algebraic expression for Eqn (1) involves the intensi-
ties QIi of Eqn (4) in a complex way, and the minimization of �2

must be performed numerically. Although no perfect mini-
mization procedure exists, certain characteristics of a given
routine make it suitable for a particular application. Among
the different possibilities (e.g. see Ref. 11), the downhill sim-
plex algorithm12 was chosen because, besides being a robust
routine, it requires only function evaluations, not derivatives.
This fact is particularly important, since it is often necessary
to deal with functions whose computed derivatives do not
accurately point the way to the minimum, usually because
of truncation error in the method of derivative evaluation.

The algorithm is given a starting guess, i.e. a P-vector of
independent variables, as the first point to try. Around this
vector, a set of P additional points is generated, which build
the P C 1 vertices of a P-dimensional figure called ‘simplex’.
The function to be minimized is evaluated in each of these
vertices. Then, a sequence of reflections and contractions of
the simplex is generated; through the corresponding function

evaluation in the new P-points, the P-dimensional space is
scanned until a minimum is found.

As in every extremization routine, care must be taken
about the possibility of falling in local minima instead of
the desired global extremum. A good way to overcome this
problem is to start from a reasonable initial guess for the
parameters to optimize; in addition, it is frequently a good
idea to restart the minimization routine at the point where
it claims to have found the minimum, reinitializing certain
ancillary scale factors.11 Another solution for confirming
that the minimum found is the global one, is trying to get
it by starting from widely varying initial values for the
parameters.

A recommendable strategy for performing the minimiza-
tion procedure is to carry it out by choosing only one or two
parameters at a time; once their values have been achieved,
they are set fixed and a new reduced group of parameters is
allowed to vary. When all the chosen parameters are refined,
the procedure may be restarted with the values obtained as
initial guesses, varying all of them simultaneously.

Usually, a visual examination of the intermediate results
helps in making an appropriate decision for the strategy to
adopt. For this purpose, it is useful to plot the predicted and
experimental spectra, as well as their differences, after the
criterion of convergence is fulfilled.

Once convergence is achieved, an estimate for the
uncertainties in the parameters concerned is assessed.
For this purpose, the selected region of the experimental
spectrum is regarded as a vector y whose components
are the number of counts at each channel. The optimized
parameters can also be thought as a vector x, and the
function relating both vectors, as a matrix M (x). It can be
seen13 that the uncertainties of the parameters xi, arising
from the variance–covariance matrix Vx, can be related
to the variance–covariance matrix Vy for the experimental
spectrum by means of:

Vx D [AT�Vy�
�1A]�1

where Aij D ∂Mi/∂xj. These derivatives are calculated
numerically in order to yield the matrix Vx, whose diagonal
elements are the searched variances for the parameters xi.

The optimization method described above was imple-
mented in the computer program PRAXIS (an acronym for
parameter refinement in the analysis of X-ray irradiated sam-
ples). The applications shown in the next section have been
carried out by means of this program.

APPLICATIONS OF THE METHOD

Several spectra of standard metallic thin samples were
measured in the XRD-beamline of the Laboratório Nacional
de Luz Sı́ncrotron (in Campinas, Brazil). Samples were
positioned in a 45° –45° geometry and X-ray detection was
carried out by means of an Amptek XR100 Si detector of
300 µm thickness, 7 mm2 front area and a 25 µm Be window.
The associated electronic chain resulted in a full width at
half maximum (FWHM) of 287 eV at Mn K˛. The white
synchrotron radiation beam was monochromatized by using
an Si(111) double-crystal monochromator. Incident beams of
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energies ranging from 6 to 12.5 keV were used; samples and
detector were mounted in a chamber evacuated to 0.1 mbar,
in order to reduce absorption in the air. In addition, a
negligible background radiation was achieved because of
the very low scattering in the incident beam, as well as in
the fluorescence beam paths. The sample thicknesses were
chosen so that the contribution of multiple scattering events
was not important.

These experimental data were then processed with the
program developed. For illustrating the methodology, an
input data file was written for a pure vanadium sample
7.5 µm thick irradiated with an 8 keV beam. The gross initial
estimates for the different parameters are given in Table 1.
With this crude initial guess, the value obtained for �2

was 1300. Figure 1 shows the experimental data, the initial
predicted spectrum (plot a), and some of the subsequent
refined spectra. The first step of the process was to improve
the calibration parameters, obtaining a �2 value of 406 (plot
b). After the second step, which consisted in the refinement
of the scaling factor ˛, a �2 value of 75.1 was obtained (plot c).
The third and fourth steps were devoted to the improvement
of n2 and ˛ respectively, yielding �2 D 13.7 (plot d).

After a number of further optimization steps, a final
set of data was achieved, also shown in Table 1. As can
be seen, although the Fano factor obtained is in agreement
with values reported in the literature,14 its uncertainty is too

Table 1. Example of the refinement process in a vanadium
spectrum

Parameter Initial Final

˛ 5000 18 880 š 130
Zero (keV) 0 �0.196 76 š 0.000 98
Gain (keV/channel) 0.020 0.022 156 3 š 0.000 004 2
n2 (keV2) 0.043 0.0874 š 0.0011
F 0.11 0.122 š 0.058
f˛ 0.9 0.8795 š 0.0063
s 0.0005 0.000 47 š 0.000 68
t 0.13 0.123 š 0.036
ˇ (keV) 0.25 0.223 š 0.031
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Figure 1. Vanadium spectrum predicted with PRAXIS at
different stages. Dots: experimental; (a) initial guess; (b) after
first step; (c) after second step; (d) after fourth step.
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Figure 2. Vanadium spectrum predicted with PRAXIS after the
refinement of several parameters.

large because of the high influence of n2 in the FWHM of
both peaks. If precision in this factor is required, a spectrum
containing quite separate peaks must be used. Despite this
uncertainty, the detector response is well described, since
the value of n2 compensates deviations in F. On the other
hand, even when a poor initial guess has been given for f˛,
this example evidences the ‘refinement’ of this parameter,
since the final value obtained for this transition rate is in
agreement with those appearing in the literature (see below).
In this case, the uncertainty is quite small, which allows one
to ensure that the value obtained is clearly distinguishable
from the initial one.

The plot corresponding to this final set of values is shown
in Fig. 2. As can be seen, the whole predicted spectrum
region shows a very good agreement with experimental
data. Figure 2 also shows the importance of including the
asymmetry correction for incomplete charge collection: the
best value for �2 obtained with purely Gaussian peaks is
14.6, which is reduced to 4.84 when shapes are corrected.

The process was repeated starting from different initial
values, obtaining the same set of final results. The good
performance of this application of the method implies that the
models used for the different processes involved are correct.

Transition rates
Special attention has frequently been paid to inner-shell tran-
sition probabilities, because reliable experimental values can
be used as a straight test for theoretical atomic models. In par-
ticular, separate relativistic Hartree–Fock solutions for atoms
in their initial and final states have been used for calculating
radiative decays of K or L vacancy states.15,16 In addition
an adequate knowledge of the transition rates allows one to
improve the analyses performed by different spectroscopic
techniques based on X-ray emission analysis, since peak over-
laps between e.g. K˛ and Kˇ lines of neighbouring elements
are frequently a problem for the analyst. Also, standardless
algorithms must include accurate values for line ratios, since
there is no comparison with standards, and it is not possible
to cancel these factors out (e.g. see Ref. 17).

The spectra selected for this example were first fitted
to find adequate values for scale factors and detector
response, as explained above. Once the proper values for
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Table 2. Transition rates for K decays determined by PRAXIS
compared with values from the literature

Khan and
Element This work Scofield15 Karimi18 Bé et al.19

Ti 0.879 š 0.006 0.881 0.883 0.880
V 0.880 š 0.006 0.880 0.883 0.878
Cr 0.875 š 0.006 0.882 0.882 0.877
Mn 0.878 š 0.005 0.878 0.883 0.878
Fe 0.874 š 0.005 0.878 0.882 0.876
Co 0.876 š 0.006 — 0.882 0.878

these parameters had been achieved, they were fixed and
the line fractions refined instead. In this particular case, it is
convenient to perform the refinement along with the peak
scale factor ˛ of Eqn (2), since changes in the intensity ratios
may influence its value.

The values obtained for transition rates are compared
with theoretical15 and experimental18,19 data from the lit-
erature in Table 2. As can be seen, a good agreement is
achieved, following the general trend of data presented by
other authors.

CONCLUSIONS

The implementation of a method for parameter optimization
has been carried out for XRF, allowing the refinement of
different magnitudes of interest in the frame of atomic
physics as well as analytical and physical chemistry.
Some examples have been shown here, involving spectra
measured with monochromatic incident beams. However,
the extension to conventional XRF (i.e. irradiation with
polychromatic spectra generated in an X-ray tube) spectra is
also possible: in this case, the incident spectral description is
necessary, and work is being done for the optimization of the
parameters involved in such a description. In addition, the
scope of the proposed method includes other spectroscopic
techniques, such as EPMA, particle-induced X-ray emission,
etc., for which the corresponding theoretical description
should be supplied.

The capabilities of this kind of procedure may be very
useful in the knowledge of several basic magnitudes and
atomic parameters. The examples for K-shell transition
rate refinement given here show a good agreement with
experimental and theoretical data from the literature. In

view of these results, work is being done in the study of
ratios between K˛1, K˛2, Kˇ1 and Kˇ2 lines, as well as L-shell
transition rates. Further work will be carried out next in the
optimization of Coster–Kronig yields, fluorescence yields,
mass attenuation coefficients for low photon energies, etc.
Alternatively, the effect of chemical bonds on transition rates
and energies can also be faced by means of the procedure of
parameter optimization proposed. An additional application
may consist in the implementation of the refinement of
compositions in multielemental samples, as a complement
to the approach given by empirical algorithms or calibration
methods.
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