Chapter 1

Monte Carlo simulation. Basic
concepts

The name “Monte Carlo” was coined in the 1940s by scientists working on the nuclear
weapon project in Los Alamos to designate a class of numerical methods based on the
use of random numbers. Nowadays, Monte Carlo methods are widely used to solve
complex physical and mathematical problems (James, 1980; Rubinstein, 1981; Kalos
and Whitlock, 1986), particularly those involving multiple independent variables where
more conventional numerical methods would demand formidable amounts of memory
and computer time. The book by Kalos and Whitlock (1986) gives a readable survey of
Monte Carlo techniques, including simple applications in radiation transport, statistical
physics, and many-body quantum theory.

In Monte Carlo simulation of radiation transport, the history (track) of a particle is
viewed as a random sequence of free flights that end with an interaction event where
the particle changes its direction of movement, loses energy and, occasionally, produces
secondary particles. The Monte Carlo simulation of a given experimental arrangement
(e.g. an electron beam, coming from an accelerator and impinging on a water phantom)
consists of the numerical generation of random histories. To simulate these histories we
need an “interaction model”, i.e. a set of differential cross sections (DCS) for the relevant
interaction mechanisms. The DCSs determine the probability distribution functions
(PDF) of the random variables that characterize a track; 1) free path between successive
interaction events, 2) kind of interaction taking place and 3) energy loss and angular
deflection in a particular event (and initial state of emitted secondary particles, if any).
Once these PDFs are known, random histories can be generated by using appropriate
sampling methods. If the number of generated histories is large enough, quantitative
information on the transport process may be obtained by simply averaging over the
simulated histories.

The Monte Carlo method yields the same information as the solution of the Boltz-
mann transport equation, with the same interaction model, but is easier to implement
(Berger, 1963). In particular, the simulation of radiation transport in finite samples is
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straightforward, while even the simplest finite geometries (e.g. thin foils) are very diffi-
cult to be dealt with by the transport equation. The main drawback of the Monte Carlo
method lies in its random nature, all the results are affected by statistical uncertainties,
which can be reduced at the expense of increasing the sampled population and, hence,
the computation time. Under special circumstances, the statistical uncertainties may be
lowered by using variance-reduction techniques (Rubinstein, 1981; Bielajew and Rogers,

1988).

1.1 Elements of probability theory

The essential characteristic of Monte Carlo simulation is the use of random numbers
and random variables. A random variable is a quantity that results from a repeatable
process and whose actual values (realizations) cannot be predicted with certainty. In
the real world, randomness originates either from uncontrolled factors (as occurs e.g.
in games of chance) or from the quantum nature of microscopic systems and processes
(e.g. nuclear disintegration and radiation interactions). As a familiar example, assume
that we throw two dice in a box; the sum of points in their upper faces is a discrete
random variable, which can take the values 2 to 12, while the distance = between the
dice is a continuous random variable, which varies between zero (dice in contact) and
a maximum value determined by the dimensions of the box. In the computer, random
variables are generated by means of numerical transformations of random numbers (see

below).

Let z be a continuous random variable that takes values in the interval zp;, < z <
Tmax- 10 measure the likelihood of obtaining x in an interval (a,b) we use the probability
P{z|a < x < b}, defined as the ratio n/N of the number n of values of x that fall within
that interval and the total number N of generated x-values, in the limit N — oc. The
probability of obtaining x in a differential interval of length dz about z; can be expressed
as

P{z|z; <z < 21 + da} = p(x) dz, (1.1)

where p(z) is the probability distribution function (PDF) of z. Since 1) negative
probabilities have no meaning and 2) the obtained value of & must be somewhere in
(ZminsTmax), the PDF must be definite positive and normalized to unity

p(z) >0 and /jmx p(z)de = 1. (1.2)

Any “function” that satisfies these two conditions can be interpreted as a PDF. In Monte
Carlo simulation we shall frequently use the uniform distribution,

1/(xmax - xmin) if Tmin < T < Tiax,

Usin s () = { (1.3)

0 otherwise,
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which is discontinuous. The definition (1.2) also includes singular distributions such as
the Dirac delta, §(x — x¢), which is defined by the property

flzo) ifa<azg<b,

/ab F(2)8(z — x0) dz = { (1.4)

0 if g <aorazy>b
for any function f(x) that is continuous at zo. An equivalent, more intuitive definition

is the following,
0 — 20) = lim Ury-sna(0), (1.4)

which represents the delta distribution as the zero-width limit of a sequence of uniform
distributions centred at the point xg. Hence, the Dirac distribution describes a single-
valued discrete random variable (i.e. a constant). The PDF of a random variable x
that takes the discrete values x = x{, x5, ... with point probabilities p;, ps, ... can be
expressed as a mixture of delta distributions,

p(x) = sz d(x — ;). (1.5)

Discrete distributions can thus be regarded as particular forms of continuous distribu-
tions.

Given a continuous random variable x, the cumulative distribution function of z is

defined by N
P(z) z/x p(z') da'. (1.6)

This is a non-decreasing function of x that varies from P(zpin) =0 to P(Tmax) = 1. In

the case of a discrete PDF of the form (1.5), P(x) is a step function. Notice that the
probability P{z|a < < b} of having x in the interval (a,b) is

P{z| a<x<b}:/abp(x)dx:73(b)—73(a), (1.7)

and that p(z) = dP(x)/dx.
The n-th moment of p(x) is defined as

(2" = / " e p(e) da. (1.8)
The moment (z°) is simply the integral of p(z), which is equal to unity, by definition.
However, higher order moments may or may not exist. An example of a PDF that has
no even-order moments is the Lorentz or Cauchy distribution,

_1 7

ru(z) = T2+ 22

—00 < x < 00. (1.9)

Its first moment, and other odd-order moments, can be assigned a finite value if they
are defined as the “principal value” of the integrals, e.g.
ta ]

(o= Jim [0

dz =0, (1.10)
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but the second and higher even-order moments are infinite, irrespective of the way they
are defined.

The first moment, when it exists, is called the mean or expected value of the random
variable z,

(z) = /:Ep(w)dx. (1.11)

The expected value of a function f(z) is defined in a similar way,

(f(@) = [ F@)p() d. (1.12)

Since f(x) is a random variable, it has its own PDF, n(f), which is such that the
probability of having f in a certain interval of length df is equal to the probability of
having x in the corresponding interval or intervals!. Thus, if f(z) is a monotonously
increasing function of @ (so that there is a one-to-one correspondence between the values

of z and f), p(z)da = 7(f)df and

m(f) = p(e) (df/de)™". (1.13)

It can be shown that the definitions (1.11) and (1.12) are equivalent. If f(2) increases
monotonously with z, the proof is trivial: we can start from the definition (1.11) and
write

()= [ £a(5)df = [ F@)p(e) (defdf) df = [ F(@)ple) da.

which agrees with (1.12). Notice that the expectation value is linear, i.e.

(a1 fi(@) + azfo(7)) = ar(fi(x)) + azx(fa(2)), (1.14)

where a; and a; are arbitrary real constants.

If the first and second moments of the PDF p(x) exist, we define the variance of «

for of p()] by

var(z) = {(z — (2))%) = /(1' = ()" ple) de = (%) — (2)*. (1.15)

The square root of the variance, ¢ = [var(x)]'/?, is called the “standard deviation”

(and sometimes the “standard uncertainty”); it gives a measure of the dispersion of the
random variable (i.e. of the width of the PDF). The Dirac delta is the only PDF that

has zero variance. Similarly, the variance of a function f(z) is defined as

var{f(2)} = (f3(2)) — (f(2))* (1.16)

Thus, for a constant f(z) =a, (f) = ¢ and var{f} = 0.

'When f(z) does not increase or decrease monotonously with z, there may be multiple values of »
corresponding to a given value of f.
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1.1.1 Two-dimensional random variables

Let us now consider the case of a two-dimensional random variable, (z,y). The corre-
sponding (joint) PDF p(z,y) satisfies the conditions

p(z,y) >0 and /dx/dyp(x,y) =1. (1.17)
The marginal PDFs of x and y are defined as
q(z) = /p(:cqy) dy and  q(y) = /p(:cqy) dz, (1.18)

i.e. g(x) is the probability of obtaining the value z and any value of y. The joint PDF
can be expressed as

p(x,y) = q(z) p(ylz) = q(y) p(z|y), (1.19)
where
_rley) R CH)

are the conditional PDFs of x and y, respectively. Notice that p(x|y) is the normalized
PDF of z for a fixed value of y.

The expectation value of a function f(z,y) is

(lasy) = [ do [ dy fla,y) ple,y) (1.21)
The moments of the PDF are defined by

(z"y™) = /dx/dy "y p(z,y). (1.22)
In particular,
(z") = /dx/dy " px,y) = /x”q(:z;) dz. (1.23)

Again, the only moment that is necessarily defined is (z%y°) = 1. When the correspond-
ing moments exist, the variances of = and y are given by

var(e) = (a%) — () and var(y) = (4) — ()", (1.24)
The variance of x + y is

var(z +y) = ((z + y)?) — (z + y)? = var(z) + var(y) + 2 cov(z,y), (1.25)

where

cov(z,y) = (av) — {2} (4) (1.26)
is the covariance of x and y, which can be positive or negative. A related quantity is
the correlation coefficient,

x = cov(z,y) 1.27
() var(z) Var(y)7 (1:27)
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which takes values from —1 to 1. Notice that cov(z,z) = var(z). When the variables
and y are independent, i.e. when p(z,y) = p.(2) p,(y), we have

cov(z,y) =0 and var(z +y) = var(z) + var(y). (1.28)
Moreover, for independent variables,

var{a,z + agy} = aj var(zx) + aj var(y). (1.29)

1.2 Random sampling methods

The first component of a Monte Carlo calculation is the numerical sampling of random
variables with specified PDFs. In this section we describe different techniques to generate
random values of a variable x distributed in the interval (2in, max) according to a
given PDF p(x). We concentrate on the simple case of single-variable distributions,
since random sampling from multivariate distributions can always be reduced to single-
variable sampling (see below). A more detailed description of sampling methods can be

found in the textbooks of Rubinstein (1981) and Kalos and Whitlock (1986).

1.2.1 Random number generator

In general, random sampling algorithms are based on the use of random numbers ¢ uni-
formly distributed in the interval (0,1). These random numbers can be easily generated
on the computer (see e.g. Kalos and Whitlock, 1986; James, 1990). Among the “good”
random number generators currently available, the simplest ones are the so-called mul-
tiplicative congruential generators (Press and Teukolsky, 1992). A popular example of
this kind of generator is the following,

Ry = TR,y (mod 2" — 1), & = R,/(2* — 1), (1.30)

which produces a sequence of random numbers ¢, uniformly distributed in (0,1) from a
given “seed” Ry (< 23! —1). Actually, the generated sequence is not truly random, since
it is obtained from a deterministic algorithm (the term “pseudo-random” would be more
appropriate), but it is very unlikely that the subtle correlations between the values in
the sequence have an appreciable effect on the simulation results. The generator (1.30)
is known to have good random properties (Press and Teukolsky, 1992). However, the
sequence is periodic, with a period of the order of 10°. With present-day computational
facilities, this value is not large enough to prevent re-initiation in a single simulation
run. An excellent critical review of random number generators has been published by
James (1990), where he recommends using algorithms that are more sophisticated than
simple congruential ones. The generator implemented in the FORTRANT77 function RAND
(table 1.1) is due to L’Ecuyer (1988); it produces 32-bit floating point numbers uniformly
distributed in the open interval between zero and one. Its period is of the order of 10'®,
which is virtually infinite for practical simulations.
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Table 1.1: FORTRANT7 random number generator.
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FUNCTION RAND
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FUNCTION RAND(DUMMY)

Qa0

This is an adapted version of subroutine RANECU written by F. James
(Comput. Phys. Commun. 60 (1990) 329-344), which has been modified to
give a single random number at each call.

The ’seeds’ ISEED1 and ISEED2 must be initialized in the main program
and transferred through the named common block /RSEED/.

Qa0

IMPLICIT DOUBLE PRECISION (A-H,0-Z), INTEGER#4 (I)
PARAMETER (USCALE=1.0D0/2.0D0%**31)
COMMON/RSEED/ISEED1,ISEED2

I1=ISEED1/53668
ISEED1=40014* (ISEED1-I11%53668)-I11*%12211
IF(ISEED1.LT.0) ISEED1=ISEED1+2147483563

I12=ISEED2/52774
ISEED2=40692* (ISEED2-12%52774)-12*3791
IF(ISEED2.LT.0) ISEED2=ISEED2+2147483399

IZ=ISEED1-ISEED2
IF(IZ.LT.1) I1Z=I17Z+2147483562
RAND=IZ*USCALE

RETURN
END

1.2.2 Inverse transform method

The cumulative distribution function of p(z), eq. (1.6), is a non-decreasing function of
and, therefore, it has an inverse function P~(¢). The transformation £ = P(z) defines
a new random variable that takes values in the interval (0,1), see fig. 1.1. Owing to the
correspondence between x and £ values, the PDF of &, pg(§), and that of z, p(z), are
related by pe(€) d€ = p(x) dz. Hence,

pe(6) = pl) (j—f) ~ p(a) (‘”Z—“) 1, (1.31)

that is, ¢ is distributed uniformly in the interval (0,1).

Now it is clear that if £ is a random number, the variable z defined by z = P~1(¢)
is randomly distributed in the interval (2min, ¥max) with PDF p(z) (see fig. 1.1). This
provides a practical method of generating random values of = using a generator of
random numbers uniformly distributed in (0,1). The randomness of x is guaranteed by
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that of £. Notice that x is the (unique) root of the equation
e= [ pa)de, (1.32)

which will be referred to as the sampling equation of the variable x. This procedure for
random sampling is known as the inverse transform method; it is particularly adequate
for PDFs p(z) given by simple analytical expressions such that the sampling equation
(1.32) can be solved analytically.

1.0
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Figure 1.1: Random sampling from a distribution p(z) using the inverse transform method.

Consider, for instance, the uniform distribution in the interval (a, b),

1
p(x) = Uyp(x) = T
The sampling equation (1.32) then reads
T—a
=1t (1.33)
which leads to the well-known sampling formula
r=a+&b—a). (1.34)
As another familiar example, consider the exponential distribution
p(s) = %exp(—s/)\), s> 0, (1.35)

of the free path s of a particle between interaction events (see section 1.4.1). The
parameter A represents the mean free path. In this case, the sampling equation (1.32)
is easily solved to give the sampling formula

s=-=An(l—-¢) =—-AIn¢&. (1.36)

The last equality follows from the fact that 1 — £ is also a random number distributed
in (0,1).
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Numerical inverse transform

The inverse transform method can also be efficiently used for random sampling from
continuous distributions p(z) that are given in numerical form, or that are too compli-
cated to be sampled analytically. To apply this method, the cumulative distribution
function P(x) has to be evaluated at the points x; of a certain grid. The sampling
equation P(z) = £ can then be solved by inverse interpolation, i.e. by interpolating in
the table (&;,x;), where { = P(x;) (£ is regarded as the independent variable). Care
must be exercised to make sure that the numerical integration and interpolation do not
introduce significant errors.

Figure 1.2: Random sampling from a continuous distribution p(z) using the numerical inverse
transform method with N = 20 grid points. a) Piecewise constant approximation. b) Piecewise

linear approximation.

A simple, general, approximate method for numerical sampling from continuous
distributions is the following. The values x, (n = 0, 1, ..., N) of z for which the
cumulative distribution function has the values n/N,

Tn n
P(zn) =/ ple)de =+, (1.37)
are previously computed and stored in memory. Notice that the exact probability of
having  in the interval (2, ,41) is 1/N. We can now sample z by linear interpolation:
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we generate a random number ¢ and consider the quantity y = ¢ N, which takes values
in the interval (0, N). We set n = [y], where the symbol [y] denotes the integer part of
y (i.e. the largest integer that is less than y). The value of x is obtained as

T =1, + (Tpr1 — Tn)u, u=y—ne(0,1). (1.38)

This is equivalent to approximating the PDF by a piecewise constant function (see fig.
1.2a). Since the spacing between the points z,, (at which the cumulative distribution
function is specified) is roughly proportional to 1/p(x,), the approximation is more
accurate in regions where p(x) is large.

The algorithm can be improved by storing the values p(z,) of the PDF at the points
T, in memory and approximating the PDF in the interval (z,, ©,41) linearly,

P(Tns1) — p(2n) (z
Tn+l — Tn

Pia(z) ~ C |p(zn) + —Tn)| s (1.39)
with a normalization constant C,, such that the integral of pi,(z) over the interval (z,,
Tp41) equals 1/N. In general, this piecewise linear approximation is not continuous. Of
course, pa(x) will differ from the exact PDF p(z) when the latter is not linear in the
interval, but the differences are smaller than for the piecewise constant approximation
with the same number N of grid points (see fig. 1.2). Again, the approximation is better
where p(z) is larger. An exact algorithm for random sampling from the piecewise linear
approximation (1.39) is the following,
(i) Generate a random number ¢ and set y = éEN, n = [y] and u =y — n.

(ii) If p(x,,) # 0, set r = p(xyg1)/p(x,) and
(1 —u+r2u)/? -1

l= r—1
u if r=1.

ifr#1, (1.40)

(iii) If p(z,) = 0, set t = u'/2,

(iv) Deliver @ = x,, 4+ (21 — x5)t.

1.2.3 Discrete distributions

The inverse transform method can also be applied to discrete distributions. Consider

that the random variable x can take the discrete values x = 1,..., N with point proba-
bilities py, ..., pnN, respectively. The corresponding PDF can be expressed as

p(z) = Z}M(l‘-i), (1.41)

where d(x) is the Dirac distribution. Here p(z) is assumed to be defined in an interval
(a,b) with a <1 and b > N. The corresponding cumulative distribution function is

o]
P(x) = ;pz-, (1.42)
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where [z] stands for the integer part of x. Notice that P(z) =0 when z < 1. Then, eq.
(1.32) leads to the sampling formula

r=1 if&<p

=2 ifp<&<pi+pe
: (1.43)
=j fToip<E<Thp

We can define the quantities

N
P=0, Po=p;, Ps=pi+ps ..., Pvpi=> pi=1 (1.44)
=1

To sample x we generate a random number ¢ and set x equal to the index 7 such that

P < €< Py (1.45)

If the number N of z-values is large, this sampling algorithm may be quite slow
because of the large number of comparisons needed to determine the sampled value.
The easiest method to reduce the number of comparisons is to use binary search instead
of sequential search. The algorithm for binary search, for a given value of &, proceeds
as follows:

i) Sett=1and j =N + 1.

(i) Set k = [(i +5)/2].

(iii) If Py < &, set @ = k; otherwise set j = k.
(iv) If y — ¢ > 1, go to step (ii).

(v) Deliver u.

When 2" < N < 2"+ i is obtained after n+1 comparisons. This number of comparisons
is evidently much less than the number required when using purely sequential search.

Walker’s aliasing method

Walker (1977) described an optimal sampling method for discrete distributions, which
yields the sampled value with only one comparison. The idea underlying Walker’s
method can be easily understood by resorting to graphical arguments (Salvat, 1987).
For this purpose, let us represent the PDF (1.41) as a histogram constructed with N
bars of width 1/N and heights Np; (see fig. 1.3). Now, the histogram bars can be cut
off at convenient heights and the resulting pieces can be arranged to fill up the square of
unit side in such a way that each vertical line crosses, at most, two different pieces. This
arrangement can be performed systematically by selecting the lowest and the highest
bars in the histogram, say the /th and the jth, respectively, and by cutting the highest
bar off to complete the lowest one, which subsequently is kept unaltered. In order to
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keep track of the performed transformation, we label the added piece with the “alias”
value K, = j, giving its original position in the histogram, and introduce the “cutoft”
value £y defined as the height of the lower piece in the /th bar of the resulting square.
This lower piece keeps the label /. Evidently, iteration of this process eventually leads
to the complete square (after N — 1 steps). Notice that the point probabilities p; can
be reconstructed from the alias and cutoff values. We have

Np; = F: +3.(1 - F})$(i, K;), (1.46)
J#

where 4(7, j) denotes the Kronecker delta (=1 if ¢ = 7 and = 0 otherwise). Walker’s
method for random sampling of x proceeds as follows: We sample two independent
random numbers, say £; and ;, and define the random point (£;,£2), which is uniformly
distributed in the square. If ({;,£2) lies over a piece labelled with the index 7, we take
x =1 as the selected value. Obviously, the probability of obtaining 7 as a result of the
sampling equals the fractional area of the pieces labelled with 7, which coincides with

Pi-
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Figure 1.3: Graphical representation of the inverse transform method (top) and Walker’s
aliasing method (bottom) for random sampling from a discrete distribution. In this example,
the random variable can take the values ¢+ = 1, 2, 3 and 4 with relative probabilities 1, 2, 5
and 8, respectively.

As formulated above, Walker’s algorithm requires the generation of two random
numbers for each sampled value of x. With the aid of the following trick, the z-value
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can be generated from a single random number. Continuing with our graphical picture,
assume that the N bars in the square are aligned consecutively to form a segment of
length N (bottom of fig. 1.3). To sample z, we can generate a single random value
(N, which is uniformly distributed in (0,/V) and determines one of the segment pieces.
The result of the sampling is the label of the selected piece. Explicitly, the sampling
algorithm proceeds as follows:

(1) Generate a random number ¢ and set B = (N + 1.

(ii) Set s =[R] and r = R — 1.

(iii) If r > £}, deliver z = K.

(iv) Deliver @ = 1.
We see that the sampling of x involves only the generation of a random number and
one comparison (irrespective of the number N of possible outcomes). The price we
pay for this simplification reduces to doubling the number of memory locations that
are needed: the two arrays K; and F; are used instead of the single array p; (or P;).
Unfortunately, the calculation of alias and cutoff values is fairly involved and this limits
the applicability of Walker’s algorithm to distributions that remain constant during the
course of the simulation.

1.2.4 Rejection methods

The inverse transform method for random sampling is based on a one-to-one correspon-
dence between x and ¢ values, which is expressed in terms of a single-valued function.
There is another kind of sampling method, due to von Neumann, that consists of sam-
pling a random variable from a certain distribution [different from p(«)] and subjecting
it to a random test to determine whether it will be accepted for use or rejected. These
rejection methods lead to very general techniques for sampling from any PDF.

The rejection algorithms can be understood in terms of simple graphical arguments
(fig. 1.4). Consider that, by means of the inverse transform method or any other available
sampling method, random values of x are generated from a PDF 7(z). For each sampled
value of @ we sample a random value y uniformly distributed in the interval (0, C'm(z)),
where C' is a positive constant. Evidently, the points (z,y), generated in this way, are
uniformly distributed in the region A of the plane limited by the z-axis (y = 0) and
the curve y = C'w(x). Conversely, if (by some means) we generate random points (z,y)
uniformly distributed in A, their z-coordinate is a random variable distributed according
to m(z) (irrespective of the value of C'). Now, consider that the distribution m(z) is such
that C'n(z) > p(z) for some C' > 0 and that we generate random points (z, y) uniformly
distributed in the region A as described above. If we reject the points with y > p(z),
the accepted ones (with y < p(z)) are uniformly distributed in the region between the
z-axis and the curve y = p(x) and hence, their z-coordinate is distributed according to

p(e).
A rejection method is thus completely specified by representing the PDF p(x) as

p(z) = Cr(a)r(z), (1.47)
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Cr(x) .

-

Figure 1.4: Random sampling from a distribution p(z) using a rejection method.

where m(z) is a PDF that can be easily sampled e.g. by the inverse transform method,
(' is a positive constant and the function r(z) satisfies the conditions 0 < r(z) < 1. The
rejection algorithm for sampling from p(x) proceeds as follows:

(i) Generate a random value  from 7 (z).
(ii) Generate a random number .
(iii) If € > r(a), go to step (i).
(iv) Deliver x.

From the geometrical arguments given above, it is clear that the algorithm does
yield = values distributed according to p(x). The following is a more formal proof:
Step (i) produces z-values in the interval (z,z + dz) with probability =(z)dz, these
values are accepted with probability r(z) = p(x)/[C7(z)] and, therefore, (apart from
a normalization constant) the probability of delivering a value in (z,z + dz) is equal
to p(z)dz as required. It is important to realize that, as regards Monte Carlo, the
normalization of the simulated PDF is guaranteed by the mere fact that the algorithm
delivers some value of z.

The efficiency of the algorithm, i.e. the probability of accepting a generated z-value,
is ) .
€= / r(z)m(z)de = ok (1.48)
Graphically, the efficiency equals the ratio of the areas under the curves y = p(z) and
y = Cm(x), which are 1 and C, respectively. For a given w(x), since r(z) < 1, the
constant C' must satisfy the condition Cm(z) > p(x) for all . The minimum value of
C, with the requirement that C'm(x) = p(x) for some z, gives the optimum efficiency.

The PDF 7(z) in eq. (1.47) should be selected in such a way that the resulting
sampling algorithm is as fast as possible. In particular, random sampling from 7(z)
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must be performed rapidly, by the inverse transform method or by the composition
method (see below). High efficiency is also desirable, but not decisive. One hundred
percent efficiency is obtained only with m(z) = p(z) (but random sampling from this
PDF is just the problem we want to solve); any other PDF gives a lower efficiency.
The usefulness of the rejection method lies in the fact that a certain loss of efficiency
can be largely compensated with the ease of sampling « from m(z) instead of p(z). A
disadvantage of this method is that it requires the generation of several random numbers
¢ to sample each z-value.

1.2.5 Two-dimensional variables. Composition methods
Let us consider a two-dimensional random variable (z,y) with joint probability distri-

bution p(z,y). Introducing the marginal PDF ¢(y) and the conditional PDF p(z|y) [see
eqs. (1.18) and (1.20)],

_ p\r.y
aw) = [plaw)de,  plaly) = A0
the two-variate distribution can be expressed as

p(z,y) = q(y) p(z|y). (1.49)

It is now evident that to generate random points (z,y) from p(z,y) we can first sample
y from ¢(y) and then z from p(z|y). Hence, two-dimensional random variables can be
generated by using single-variable sampling methods. This is also true for multivariate
distributions, because an n-dimensional PDF can always be expressed as the product of
a single-variable marginal distribution and an (n — 1)-dimensional conditional PDF.

From the definition of the marginal PDF of z,

a(e) = [ p(e.y)dy = [ aly) plly) dy, (150)

it is clear that if we sample y from ¢(y) and, then, z from p(z|y), the generated values of
x are distributed according to ¢(z). This idea is the basis of the composition methods,
which are applicable when p(z), the distribution to be simulated, is a probability mixture
of several PDFs. More specifically, we consider that p(x) can be expressed as

p(a) = [ w(y)py(x)dy, (1.51)

where w(y) is a continuous distribution and p,(z) is a family of one-parameter PDF's,
where y is the parameter identifying a unique distribution. Notice that if the parameter
y takes only integer values y = 7 with point probabilities w;, we would write

p(z) = Zwi pi(x). (1.52)
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The composition method for random sampling from the PDF p(z) is as follows. First,
a value of y (or ) is drawn from the PDF w(y) and then z is sampled from the PDF
py(2) for that chosen y.

This technique may be applied to generate random values from complex distributions
obtained by combining simpler distributions that are themselves easily generated, by the
inverse transform method or by rejection methods.

Devising fast, exact methods for random sampling from a given PDF is an interesting
technical challenge. The ultimate criterion for the quality of a sampling algorithm is its
speed in actual simulations: the best algorithm is the fastest. However, programming
simplicity and elegance may justify the use of slower algorithms. For simple analytical
distributions that have an analytical inverse cumulative distribution function, the in-
verse transform method is usually satisfactory. This is the case for a few elementary
distributions (e.g. the uniform and exponential distributions considered above). The
inverse transform method is also adequate for discrete distributions and for continu-
ous PDFs given in numerical form. By combining the inverse transform, rejection and
composition methods we can devise sampling algorithms for virtually any (single- or
multivariate) PDF.

Example 1. Sampling from the normal distribution

Frequently, we need to generate random values from the normal (or Gaussian) distribu-
tion

pa(z) = \/12_7Texp(—:1;2/2). (1.53)

Since the cumulative distribution function cannot be inverted analytically, the inverse
transform method is not appropriate. The easiest (but not the fastest) method to sample
from the normal distribution consists of generating two independent random variables at
a time, as follows. Let x; and x5 be two independent normal variables. They determine
a random point in the plane with PDF

1
P (@1, ¥2) = pale1) pa(ez) = o~ exp[—(a] +23)/2].
Introducing the polar coordinates r and ¢,

Ty = T Cos P, Ty = rsin @,

the PDF can be expressed as

pac(xy, x9) day dag = %exp(—rZ/Z) rdr d¢ = {exp(—rZ/Z) rdr} [%dqﬁ] .

We see that r and ¢ are independent random variables. The angle ¢ is distributed
uniformly on (0,27) and can be sampled as ¢ = 2r{. The PDF of r is exp(—r?/2) r and
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the corresponding cumulative distribution function is P(r) = 1—exp(—r?/2). Therefore,
r can be generated by the inverse transform method as

r=y/—2ln(l — ¢ = /-2In¢.

The two independent normal random variables are given by

1= \/—21Hfl cos(2m&y),
Ty = y/—2In&; sin(2n&y), (1.54)

where ¢ and & are two independent random numbers. This procedure is known as the
Box-Miiller method. It has the advantages of being exact and easy to program (it can
be coded as a single FORTRAN statement).

The mean and variance of the normal variable are (z) = 0 and var(z) = 1. The
linear transformation

X =m+ox (o >0) (1.55)
defines a new random variable. From the properties (1.14) and (1.29), we have
(X)=m and var(X) =" (1.56)
The PDF of X is
dx 1 (X —m)?
X) = pa(z) 38— A om) 1.57
) = pote) 1 =~ enp | -2, (157

i.e. X is normally distributed with mean m and variance o2 Hence, to generate X

we only have to sample x using the Box-Miller method and apply the transformation

(1.55).

Example 2. Uniform distribution on the unit sphere

In radiation transport, the direction of motion of a particle is described by a unit vector
d. Given a certain frame of reference, the direction d can be specified by giving either
its direction cosines (u, v, w) (i.e. the projections of d on the directions of the coordinate
axes) or the polar angle # and the azimuthal angle ¢, defined as in fig. 1.5,

A

d = (u,v,w) = (sin  cos ¢, sin § sin ¢, cos ). (1.58)
Notice that 0 € (0,7) and ¢ € (0,27).

A direction vector can be regarded as a point on the surface of the unit sphere.
Consider an isotropic source of particles, i.e. such that the initial direction (6,¢) of
emitted particles is a random point uniformly distributed on the surface of the sphere.

The PDF is

p(0, ) d6 do = i sinf0do dg = lSiga d&] [%d(ﬁ] . (1.59)



18 Chapter 1. Monte Carlo simulation. Basic concepts
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Figure 1.5: Polar and azimuthal angles of a direction vector.

That is,  and ¢ are independent random variables with PDFs pg(f) = sin6/2 and
ps(®) = 1/(27), respectively. Therefore, the initial direction of a particle from an

isotropic source can be generated by applying the inverse transform method to these
PDFs,

0 = arccos(1 — 2&), ¢ = 2m&s. (1.60)
In some cases, it is convenient to replace the polar angle 6 by the variable
p=(1—cosf)/2, (1.61)

which varies from 0 (0 = 0) to 1 (§ = 7). In the case of an isotropic distribution, the

PDF of p is
Pu(p) = pa(0) (i—g) = 1. (1.62)

That is, a set of random points (i, #) uniformly distributed on the rectangle (0,1) x
(0,27) corresponds to a set of random directions (6, ¢) uniformly distributed on the unit
sphere.

1.3 Monte Carlo integration

As pointed out by James (1980), at least in a formal sense, all Monte Carlo calculations
are equivalent to integrations. This equivalence permits a formal theoretical founda-
tion for Monte Carlo techniques. An important aspect of simulation is the evaluation
of the statistical uncertainties of the calculated quantities. We shall derive the basic
formulae by considering the simplest Monte Carlo calculation, namely, the evaluation
of a unidimensional integral. Evidently, the results are also valid for multidimensional
integrals.
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Consider the integral
b
= / F(z)de, (1.63)

which we recast in the form of an expectation value,

[_/f ) de = (f), (1.64)

by introducing an arbitrary PDF p(z) and setting f(x) = F(z)/p(x) [it is assumed that
p(z) > 0in (a,b) and p(z) = 0 outside this interval]. The Monte Carlo evaluation of the
integral [ is very simple: generate a large number N of random points z; from the PDF
p(z) and accumulate the sum of values f(x;) in a counter. At the end of the calculation
the expected value of f is estimated as

S S (1.65)

=1

N
The law of large numbers says that, as N becomes very large,
f — I (in probability). (1.66)

In statistical terminology, this means that f, the Monte Carlo result, is a consistent
estimator of the integral (1.63). This is valid for any function f(z) that is finite and
piecewise continuous, i.e. with a finite number of discontinuities.

The law of large numbers (1.66) can be restated as

(f) = lim — Zf (1.67)
By applying this law to the integral that defines the variance of f(z) [cf. eq. (1.16)]

var{f(2)} = [ F(e)p(x)dz — ()2, (1.68)

we obtain
1 X 1 X ’
wrlf2)) = Jim {5 S - |5 31| b (169)
The expression in curly brackets is a consistent estimator of the variance of f(x). It is
advisable (see below) to accumulate the squared function values [f(z;)]?
and, at the end of the simulation, estimate var{f(z)} according to eq. (1.69).

in a counter

It is clear that different Monte Carlo runs [with different, independent sequences of
N random numbers z; from p(z)] will yield different estimates f. This implies that the
outcome of our Monte Carlo code is affected by statistical uncertainties, similar to those
found in laboratory experiments, which need to be properly evaluated to determine the
“accuracy” of the Monte Carlo result. For this purpose, we may consider f as a random
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variable, the PDF of which is, in principle, unknown. Its mean and variance are given

by
N = (F576) = 5 20 =11 (170
and

var(f) = var lﬁZf(xz)] = % Zva‘r{f(:v)} = %Var{f(a:)}7 (1.71)

where use has been made of properties of the expectation and variance operators. The
standard deviation (or standard error) of f,

op = /var(f) = Hw, (1.72)

gives a measure of the statistical uncertainty of the Monte Carlo estimate f. The
result (1.72) has an important practical implication: in order to reduce the statistical
uncertainty by a factor of 10, we have to increase the sample size N by a factor of
100. Evidently, this sets a limit to the accuracy that can be attained with the available
computer power.

We can now invoke the central limit theorem (see e.g. James, 1980), which establishes
that, in the limit N — oo, the PDF of f is a normal (Gaussian) distribution with mean
(f) and standard deviation o7y,

oL T
p(f)—gf\/z—w p( 207 ) (1.73)

It follows that, for sufficiently large values of N, for which the theorem is applicable,
the interval f 4 no; contains the exact value (f) with a probability of 68.3% if n = 1,
95.4% if n = 2 and 99.7% if n = 3 (30 rule).

The central limit theorem is a very powerful tool, since it predicts that the gener-
ated values of f follow a specific distribution, but it applies only asymptotically. The
minimum number N of sampled values needed to apply the theorem with confidence
depends on the problem under consideration. If, in the case of our problem, the third
central moment of f,

po = [ 1f(2) = (DI pla) da, (1.74)

exists, the theorem is essentially satisfied when
|lus| < o}V N. (1.75)

In general, it is advisable to study the distribution of the estimator to ascertain the
applicability of the central limit theorem. In most Monte Carlo calculations, however,
statistical errors are estimated by simply assuming that the theorem is satisfied, irre-
spective of the sample size. We shall adopt this practice and report Monte Carlo results
in the form f 4 30;. In simulations of radiation transport, this is empirically validated
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by the fact that simulated continuous distributions do “look” continuous (i.e. the “error
bars” define a smooth band).

Each possible p(z) defines a Monte Carlo algorithm to calculate the integral I, eq.
(1.63). The simplest algorithm (crude Monte Carlo) is obtained by using the uniform
distribution p(z) = 1/(b—a). Evidently, p(z) determines not only the density of sampled
points x;, but also the magnitude of the variance var{f(x)}, eq. (1.68),

var{ f(z)} = /abp(x) [i((;))r do— 12 = /ab F(z) [i((;)) _ [] dz. (1.76)

As a measure of the effectiveness of a Monte Carlo algorithm, it is common to use the
efficiency €, which is defined by
€= 1/[UJ%T], (1.77)

where T' is the computing time (or any other measure of the calculation effort) needed
to get the simulation result. Since JJ% and T are roughly proportional to N~ and N,
respectively, € is a constant (i.e. it is independent of N), on average.

The so-called variance-reduction methods are techniques that aim to optimize the
efficiency of the simulation through an adequate choice of the PDF p(x). Improving
the efficiency of the algorithms is an important, and delicate, part of the art of Monte
Carlo simulation. The interested reader is addressed to the specialized bibliography (e.g.
Rubinstein, 1981). Although of common use, the term “variance reduction” is somewhat
misleading, since a reduction in variance does not necessarily lead to improved efficiency.
To make this clear, consider that a Monte Carlo algorithm, based on a certain PDF
p(x), has a variance that is less than that of crude Monte Carlo (i.e. with the uniform
distribution); if the generation of x-values from p(z) takes a longer time than for the
uniform distribution, the “variance-reduced” algorithm may be less efficient than crude
Monte Carlo. Hence, one should avoid using PDFs that are too difficult to sample.

1.4 Simulation of radiation transport

In this section, we describe the essentials of Monte Carlo simulation of radiation trans-
port. For the sake of simplicity, we limit our considerations to the detailed simulation
method, where all the interaction events experienced by a particle are simulated in
chronological succession, and we disregard the production of secondary particles, so
that only one kind of particle is transported.

1.4.1 Scattering model and probability distribution functions

Consider a particle with energy F (kinetic energy, in the case of electrons and positrons)
moving in a given medium. We limit our considerations to homogeneous “random
scattering” media, such as gases, liquids and amorphous solids, where the “molecules”
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are distributed at random with uniform density. The composition of the medium is
specified by its stoichiometric formula, i.e. atomic number Z; and number of atoms
per molecule n; of all the elements present. The stoichiometric indices n; need not
have integer values. In the case of alloys, for instance, they may be set equal to the
percentage in number of each element and then a “molecule” is a group of 100 atoms with
the appropriate proportion of each element. The “molecular weight” is Ay = ¥n; A,
where A; is the atomic weight of the i-th element. The number of molecules per unit
volume is given by

p
= Ny — 1.78
N A AMv ( )

where Ny is Avogadro’s number and p is the mass density of the material.

In each interaction, the particle may lose energy W and/or change its direction of
movement. The angular deflection is determined by the polar scattering angle 6, i.e.
the angle between the directions of the particle before and after the interaction, and
the azimuthal angle ¢. Let us assume that the particle can interact with the medium
through two independent mechanisms, denoted as “A” and “B” (for instance, elastic
and inelastic scattering, in the case of low-energy electrons). The scattering model is
completely specified by the molecular differential cross sections (DCS)

d2O'B
dWdQ

d20'A
dWdQ

(E; W, 0) and (E; W, 0), (1.79)
where df) is a solid angle element in the direction (6, ¢). We have made the paramet-
ric dependence of the DCSs on the particle energy E explicit. Considering that the
molecules in the medium are oriented at random, the DCS is independent of the az-
imuthal scattering angle, i.e. the angular distribution of scattered particles is axially
symmetrical around the direction of incidence. The total cross sections (per molecule)

are
2

_[F . d*oaB ,
aA,B(E)_/O dW/O 2msin 0 d0 TZNE (B3 W, 0). (1.80)

The PDFs of the energy loss and the polar scattering angle in individual scattering
events are

21 sinf d?oa B

U'A,B(E) deQ

Notice that pa(F; W,0)dWdf gives the (normalized) probability that, in a scattering
event of type A, the particle loses energy in the interval (W, W + dW) and is deflected
into directions with polar angle (relative to the initial direction) in the interval (6,
6 + df). The azimuthal scattering angle in each collision is uniformly distributed in the
interval (0,27), i.e.

pA,B(E; W7 0) =

(E; W, 0). (1.81)

p(¢) = 5 (1.82)

The total interaction cross section is

UT(E) = O'A(E) + O'B(E). (183)
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When the particle interacts with the medium, the kind of interaction that occurs is a
discrete random variable, that takes the values “A” and “B” with probabilities

pa = oa/or and  pg =oB/oT. (1.84)

It is worth recalling that this kind of single scattering model is only valid when diffrac-
tion effects resulting from coherent scattering from several centres (e.g. Bragg diffrac-
tion, channelling of charged particles) are negligible. This means that the simulation is
applicable only to amorphous media and, with some care, to polycrystalline solids.

To get an intuitive picture of the scattering process, we can imagine each molecule
as a sphere of radius re such that the cross-sectional area mr? equals the total cross
section op. Now, assume that a particle impinges normally on a very thin material
foil of thickness ds. What the particle sees in front of it is a uniform distribution of
N ds spheres per unit surface. An interaction takes place when the particle strikes one
of these spheres. Therefore, the probability of interaction within the foil equals the
fractional area covered by the spheres, N'or ds. In other words, Aot is the interaction
probability per unit path length. Its inverse,

Ar = (Nop)™, (1.85)

is the (total) mean free path between interactions.

Let us now consider a particle that moves within an unbound medium. The PDF
p(s) of the path length s of the particle from its current position to the site of the next
interaction may be obtained as follows. The probability that the particle travels a path
length s without interacting is

F(s) = / " p(s') ds. (1.86)

The probability p(s)ds of having the next interaction when the travelled length is in the
interval (s,s + ds) equals the product of F(s) (the probability of arrival at s without
interacting) and A7' ds (the probability of interacting within ds). It then follows that

p(s) = gt /OO p(s')ds’. (1.87)

S

The solution of this integral equation, with the boundary condition p(co) = 0, is the
familiar exponential distribution

p(s) = A\t exp (—s/A1) . (1.88)

Notice that the mean free path At coincides with the average path length between

(s) = /OOO sp(s)ds = Ar. (1.89)

collisions:

The differential inverse mean free path for the interaction process A is defined as

dQO'A
dWdQ

A2t
dWdQ

(E;W,0)=N (E; W, 0). (1.90)
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Evidently, the integral of the differential inverse mean free path gives the inverse mean
free path for the process,

A2yt
-1 _ . A . .
Ay = /dW /27r81n0d0d dQ(E’ W,0) = Noy. (1.91)

In the literature, the product Moy is frequently called the macroscopic cross section,
although this name is not appropriate for a quantity that has the dimensions of inverse
length. Notice that the total inverse mean free path is the sum of the inverse mean free
paths of the different active interaction mechanisms,

At = A3+ 8 (1.92)

1.4.2 Generation of random tracks

Each particle track starts off at a given position, with initial direction and energy in
accordance with the characteristics of the source. The “state” of a particle immediately
after an interaction (or after entering the sample or starting its trajectory) is defined
by its position coordinates r = (x,y, z), energy F and direction cosines of the direction
of flight, i.e. the components of the unit vector d= (u,v,w), as seen from the labora-
tory reference frame. Fach simulated track is thus characterized by a series of states
r,, F,, dn7 where r, is the position of the n-th scattering event and F,, and d,, are the
energy and direction cosines of the direction of movement just after that event.

The generation of random tracks proceeds as follows. Let us assume that a track has
already been simulated up to a state r,,, F,,, d,,. The length s of the free path to the next
collision, the involved scattering mechanism, the change of direction and the energy loss
in this collision are random variables that are sampled from the corresponding PDFs,
using the methods described in section 1.2. Hereafter, ¢ stands for a random number
uniformly distributed in the interval (0,1).

The length of the free flight is distributed according to the PDF given by eq. (1.88).
Random values of s are generated by using the sampling formula [see eq. (1.36)]

s=—Ar Iné. (1.93)
The following interaction occurs at the position
Tpy1 = In + sd,. (1.94)

The type of this interaction (“A” or “B”) is selected from the point probabilities given
by eq. (1.84) using the inverse transform method (section 1.2.2). The energy loss W and
the polar scattering angle # are sampled from the distribution pa g(F; W, 0), eq. (1.81),
by using a suitable sampling technique. The azimuthal scattering angle is generated,
according to the uniform distribution in (0,27), as ¢ = 2n¢.

After sampling the values of W, § and ¢, the energy of the particle is reduced,
E.+1 = E, — W, and the direction of movement after the interaction d,+; = (v, v, w’)
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Figure 1.6: Angular deflections in single-scattering events.

is obtained by performing a rotation of d,, = (u,v,w) (see fig. 1.6). The rotation matrix
R(0, ¢) is determined by the polar and azimuthal scattering angles. To explicitly obtain
the direction vector d,4+1 = R(6,¢)d, after the interaction, we first note that, if the
initial direction is along the z-axis, the direction after the collision is

sin 6 cos ¢
sinfsing | = R.(¢)R,(0)z, (1.95)
cos f
where z=(0,0,1) and
cos 0 sinf cos¢ —sing 0
R,(0) = 0 1 0 and R.(¢)=| sing cos¢p 0 (1.96)
—sind 0 cosd 0 0 1

are rotation matrices corresponding to active rotations of angles # and ¢ about the y-
and z-axes, respectively. On the other hand, if ¥ and ¢ are the polar and azimuthal
angles of the initial direction

N

d, = (sin? cos ¢, sin ¥ sin ¢, cos V), (1.97)

the rotation R,(—9)R.(—¢) transforms the vector d, into z. It is then clear that the
final direction vector an+1 can be obtained by performing the following sequence of
rotations of the initial direction vector: 1) R,(—v)R.(—¢), which transforms d, into 2
2) R.(¢)R,(0), which rotates z according to the sampled polar and azimuthal scattering
angles; and 3) R,(¢)R,(?), which inverts the rotation of the first step. Hence

R(0,¢) = R-(¢)Ry(V)R(6) By (0) By (=) R(—0). (1.98)
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The final direction vector is

sin # cos ¢
doti = R(0,$)d, = R.(¢)R,(?) | sinfsin o (1.99)
cos 8
and its direction cosines are
sin
V1 — w?
sin 8
V11— w?
w' = wecosfh — /1 — w?sin b cos ¢.

These equations are indeterminate when w ~ %1, i.e. when the initial direction is nearly

u = ucosf + [uw cos @ — vsin @],

[vw cos & + usin @], (1.100)

v’ = vcosh +

parallel or antiparallel to the z-axis; in this case we can simply set
u==+sinf cos¢, v==Lsinbsing, w=+cosh. (1.101)

Moreover, eqs. (1.100) are not very stable numerically and the normalization of an+1
tends to drift from 1 after repeated usage. This must be remedied by periodically
renormalizing d,;;. The change of direction expressed by eqs. (1.100) and (1.101) is
performed by the subroutine DIRECT (see the PENELOPE source listing).

The simulation of the track then proceeds by repeating these steps. A track is finished
either when it leaves the material system or when the energy becomes smaller than a
given energy F,ps, which is the energy where particles are assumed to be effectively
stopped and absorbed in the medium.

1.4.3 Particle transport as a Markov process

The foregoing concepts, definitions and simulation scheme rest on the assumption that

2 i.e. “future values of a random

particle transport can be modelled as a Markov process
variable (interaction event) are statistically determined by present events and depend
only on the event immediately preceeding”. Owing to the Markovian character of the
transport, we can stop the generation of a particle history at an arbitrary state (any
point of the track) and resume the simulation from this state without introducing any

bias in the results.

In mixed simulations of electron/positron transport, it is necessary to limit the length
s of each “free jump” so that it does not exceed a given value sp.x. To accomplish this,
we still sample the free path length s to the next interaction from the exponential PDF

?The quoted definition is from the Webster’s Encyclopedic Unabridged Dictionary of the English
Language (Portland House, New York, 1989).
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(1.88), but when s > smax we only let the particle advance a distance smax along the
direction of motion. At the end of the truncated free jump we do nothing (i.e. the
particle keeps its energy and direction of motion unaltered); however, for programming
convenience, we shall say that the particle suffers a delta interaction (actually, a “non-
interaction”). When the sampled value of s is less than $y.x, a real interaction is
simulated. After the interaction (either real or delta), we sample a new free path s,
move the particle a distance s’ = min(s, Syax), etc. From the Markovian character of
the transport, it is clear that the insertion of delta interactions keeps the simulation
unbiased. If you do not see it so clearly, here comes a direct proof. First we note that
the probability that a free jump ends with a delta interaction is

ps = / p(s) ds = exp(—Smax/Ar). (1.102)

To obtain the probability p(s)ds of having the first real interaction at a distance in the
interval (s,s + ds), we write 8 = nspax + 8’ With n = [s/smax] and, hence, s < spax.
The sought probability is then equal to the probability of having n successive delta
interactions followed by a real interaction at a distance in (s', s + ds) from the last,
n-th, delta interaction,

p(s)ds = p§ A\7'exp(—s'/Mr)ds = A" exp(—s/A1)ds, (1.103)

which is the correct value [cf. eq. (1.88)].

Up to this point, we have considered transport in a single homogeneous medium.
In practical cases, however, the material structure where radiation is transported may
consist of various regions with different compositions. We assume that the interfaces
between contiguous media are sharp (i.e. there is no diffusion of chemical species across
them) and passive (which amounts to neglecting e.g. surface plasmon excitation and
transition radiation). In the simulation code, when a particle arrives at an interface, it
is stopped there and the simulation is resumed with the interaction properties of the
new medium. Obviously, this procedure is consistent with the Markovian property of
the transport process.

Consider two homogeneous media, 1 and 2 (with corresponding mean free paths At
and At ), separated by an interface, which is crossed by particles that move from the
first medium to the second. The average path length between the last real interaction in
medium 1 and the first real interaction in medium 2 is Ay ; + A1 2, as can be easily verified
by simulation. This result seemed paradoxical to some authors and induced confusion in
the past. In fact, there is nothing odd here as you may easily verify (again by simulation)
as follows. Assume particles being transported within a single homogeneous medium
with an imaginary plane that acts as a “virtual” interface, splitting the medium into
two halves. In the simulation, the particles do not see this interface, i.e. they do not
stop when crossing. Every time a particle crosses the plane, we score the length spiane
of the track segment between the two real interactions immediately before and after the
crossing. It is found that the average value of spjane is 2AT, in spite of the fact that the
free path length between consecutive collisions was sampled from an exponential PDF
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with the mean free path At [yes, the scored values spjane Were generated from this PDF!)].
The explanation of this result is that, as a consequence of the Markovian character, the
average path length from the plane (an arbitrary fized point in the track) back to the
last collision (or up to the next collision) is Ar.

1.5 Statistical averages and uncertainties

For the sake of being more specific, let us consider the simulation of a high-energy
electron beam impinging on the surface of a semi-infinite water phantom. Each primary
electron originates a shower of electrons and photons, which are individually tracked
down to the corresponding absorption energy. Any quantity of interest () is evaluated
as the average score of a large number N of simulated random showers. Formally, ()
can be expressed as an integral of the form (1.64),

Q= /QP(Q) dq, (1.104)

where the PDF p(¢) is usually unknown. The simulation of individual showers provides
a practical method to sample ¢ from the “natural” PDF p(gq): from each generated
shower we get a random value ¢; distributed according to p(¢). The only difference to
the case of Monte Carlo integration considered above is that now the PDF p(q) describes
a cascade of random interaction events, each with its characteristic PDF. The Monte
Carlo estimate of () is

_ 1 X
Q= N;qz-. (1.105)

Thus, for instance, the average energy Fq4e, deposited within the water phantom per
incident electron is obtained as

1 N
Faep = ﬁzew (1.106)
=1

where ¢; is the energy deposited by all the particles of the i-th shower. The statistical
uncertainty (standard deviation) of the Monte Carlo estimate [eq. (1.72)] is

7o =9 _ J% [%Zq? —@2]. (1.107)

=1

As mentioned above, we shall usually express the simulation result in the form @ +
30g, so that the interval (@) — 309, () — 30g) contains the true value @ with 99.7%
probability. Notice that to evaluate the standard deviation (1.107) we must score the
squared contributions ¢?. In certain cases, the contributions ¢; can only take the values

0 and 1, and the standard error can be determined without scoring the squares,

1

o0 =@ - Q). (1.108)
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Simulation/scoring can also be used to compute continuous distributions. The sim-
plest method is to “discretize” the distributions, by treating them as histograms, and to
determine the “heights” of the different bars. To make the arguments clear, let us con-
sider the depth-dose distribution D(z), defined as the average energy deposited per unit
depth and per incident electron within the water phantom. D(z)dz is the average energy
deposited at depths between z and z+4dz per incident electron, and the integral of D(z)
from 0 to oo is the average deposited energy Fq., (again, per incident electron). Since
part of the energy is reflected back from the water phantom (through backscattered
radiation), Fgep is less than the kinetic energy Ei,. of the incident electrons. We are
interested in determining D(z) in a limited depth interval, say from z = 0 to z = Zpax.
The calculation proceeds as follows. First of all, we have to select a partition of the inter-
val (0, zmax) into M different depth bins (zx—1, %), with 0 = 20 < 21 < ... < ZM = Zmax-
Let e;;x denote the amount of energy deposited into the k-th bin by the j-th particle of
the i-th shower (each incident electron may produce multiple secondary particles). The
average energy deposited into the k-th bin (per incident electron) is obtained as

1 N
Ek = N Z €k with €k = Z €ij,ks (1109)
=1 7

and is affected by a statistical uncertainty

EN i 2 — E? (1.110)
= € — . .
R\ P A
The Monte Carlo depth-dose distribution Dyc(z) is a stepwise constant function,

Dyc(z) = Dy £ 30pi for zp_1 < z < zp, (1.111)

with ! {

Dk = 7Ek, Opy = ———O0Fk- (1112)

Ak — k-1 Xk — k-1

Notice that the bin average and standard deviation have to be divided by the bin
width to obtain the final Monte Carlo distribution. Defined in this way, Dmc(2) is
an unbiased estimator of the average dose in each bin. The limitation here is that
we are approximating the continuous distribution D(z) as a histogram with finite bar
widths. In principle, we could obtain a closer approximation by using narrower bins.
However, care has to be taken in selecting the bin widths since statistical uncertainties

may completely hide the information in narrow bins.

A few words regarding programming details are in order. To evaluate the average
deposited energy and its standard deviation for each bin, eqs. (1.109) and (1.110), we
must score the shower contributions e; ; and their squares €7 . There are cases in which a
senseless literal application of this recipe may take a large fraction of the simulation time.
Consider, for instance, the simulation of the 3D dose distribution in the phantom, which
may involve several thousand volume bins. For each bin, the energies e;;; deposited by
the individual particles of a shower must be accumulated in a partial counter to obtain
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the shower contribution e;; and, after completion of the whole shower, the value €,
and its square must be added to the accumulated counters. As only a small fraction
of the bins receive energy from a single shower, it is not practical to treat all bin
counters on an equal footing. The fastest method is to transfer partial scores to the
accumulated counters only when the partial counter is going to receive a contribution
from a new shower. This can be easily implemented in a computer program as follows.
For each quantity of interest, say (), we define three real counters, Q, Q2 and QP, and
an integer label LQ; all these quantities are initially set to zero. The partial scores ¢;; of
the particles of a shower are accumulated in the partial counter QP, whereas the global
shower contribution ¢; and its square are accumulated in Q and Q2, respectively. Each
shower is assigned a label, for instance its order number 7, which is stored in LQ the
first time that the shower contributes to QP. In the course of the simulation, the value
of QP is transferred to the global counters Q and Q2 only when it is necessary to store a
contribution g;; from a new shower. Explicitly, the FORTRAN code for scoring ) is
IF(:.NE.LQ) THEN
Q=Q+QP
Q2=Q2+QP**2
WP=qi;
LQ=:
ELSE
GP=QP+g¢;;
ENDIF
At the end of the simulation, the residual contents of QP must be transferred to the
global counters.

For some quantities (e.g. the mean number of scattering events per track, the depth-
dose function, ...) almost all the simulated tracks contribute to the score and the
inherent statistical uncertainties of the simulation results are comparatively small. Other
quantities (e.g. angle and energy distributions of the particles transmitted through a
thick foil) have considerable statistical uncertainties (i.e. large variances) because only
a small fraction of the simulated tracks contribute to the partial scores.

1.6 Variance reduction

In principle, the statistical error of a quantity may be somewhat reduced (without in-
creasing the computer simulation time) by using variance-reduction techniques. Unfor-
tunately, these optimization techniques are extremely problem-dependent, and general
recipes to minimize the variance cannot be given. On the other hand, the importance
of variance reduction should not be overvalued. In many cases, analogue® simulation
does the work in a reasonable time. Spending manhours by complicating the program,
to get a modest reduction in computing time may not be a good investment. It is

3We use the term “analogue” to refer to detailed, condensed or mixed simulations that do not
incorporate variance-reduction procedures.
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also important to realize that an efficient variance-reduction method usually lowers the
statistical error of a given quantity () at the expense of increasing the uncertainties
of other quantities. Thus, variance-reduction techniques are not recommended when a
global description of the transport process is sought. Here we give a brief description of
those techniques which, with a modest programming effort, can be useful in improving
the solution of some ill-conditioned problems. For the sake of generality, we consider
that secondary particles can be generated in the interactions with the medium. A nice,
and practically oriented, review of variance-reduction methods in radiation transport
has been given by Bielajew and Rogers (1988).

1.6.1 Interaction forcing

Sometimes, a high variance results from an extremely low interaction probability. Con-
sider, for instance, the simulation of the energy spectrum of bremsstrahlung photons
emitted by medium energy (~ 100 keV) electrons in a thin foil of a certain material.
As radiative events are much less probable than elastic and inelastic scattering, the un-
certainty of the simulated photon spectrum will be relatively large. In such cases, an
efficient variance-reduction method is to artificially increase the interaction probability
of the process A of interest. Our practical implementation of interaction forcing consists
of replacing the mean free path Ay of the real process by a shorter one, Asy, i.e. we
force A interactions to occur more frequently than for the real process. We consider
that the PDF for the energy loss, the angular deflections (and the directions of emit-
ted secondary particles, if any) in the forced interactions is the same as for the real
interactions. To sample the length of the free jump to the next interaction, we use the
exponential distribution with the reduced mean free path Ap¢. This is equivalent to
increasing the interaction probability per unit path length of the process A by a factor

Aa

F=
AAf

> 1. (1.113)

To keep the simulation unbiased, we must correct for the introduced distortion as follows:

(i) A weight wlgl) = 1 is associated with each primary particle. Secondary particles
produced in forced interactions have an associated weight wg) = wg)/}—; the
weights of successive generations of forced secondaries are wgk) = wgk_l)/]:. Sec-
ondary particles generated in non-forced interactions (i.e. of types other than A)
are given a weight equal to that of their parent particle.

(ii) A weight wg) = wlgk)/]: is given to the deposited energy (and to any other al-
teration of the medium such as e.g. charge deposition) that results from forced
interactions of a particle with weight wgk). For non-forced interactions wg) = wgk).

(iii) Forced interactions are simulated to determine the energy loss and possible emis-
sion of secondary radiation, but the state variables of the interacting particle are
altered only with probability 1/F. That is, the energy £ and direction of move-
ment d of the projectile are varied only when the value ¢ of a random number falls
below 1/F, otherwise £ and d are kept unchanged.
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Of course, interaction forcing should be applied only to interactions that are dynamically
allowed, i.e. for particles with energy above the corresponding “reaction” threshold.

Let w;; and ¢;; denote the weight and the contribution to the score of the i-th
primary, and let w;; and ¢; (7 > 1) represent the weights and contributions of the
j-th secondary particles generated by the i-th primary. The Monte Carlo estimate of ()
obtained from the N simulated histories is

Q= ﬁzwij%j- (1.114)

Evidently, the estimates () obtained with interaction forcing and from an analogue
simulation are equal (in the statistical sense, i.e. in the limit N — oo, their difference
tends to zero). The standard deviation is given by

2
oQ = % %Z(szj(ﬁj) -Q°|. (1.115)

7

Quantities directly related to the forced interactions will have a reduced statistical error,
due to the increase in number of these interactions. However, for a given simulation
time, other quantities may exhibit standard deviations larger than those of the analogue
simulation, because of the time spent in simulating the forced interactions.

1.6.2 Splitting and Russian roulette

These two techniques, which are normally used in conjunction, are effective in problems
where interest is focused on a localized spatial region. Typical examples are the calcula-
tion of dose functions in deep regions of irradiated objects and, in the case of collimated
radiation beams, the evaluation of radial doses far from the beam axis. The basic idea
of splitting and Russian roulette methods is to favour the flux of radiation towards the
region of interest and inhibit the radiation that leaves that region. These techniques are
also useful in other problems where only a partial description of the transport process
is required. The “region of interest” may then be a limited volume in the space of state
variables (r, F,d). Thus, in studies of radiation backscattering, the region of interest
may be selected as the spatial region of the sample close to the irradiated surface and
the set of particle directions that point towards this surface.

As in the case of interaction forcing, variance reduction is accomplished by modifying
the weights of the particles. It is assumed that primary particles start moving with unit
weight and each secondary particle produced by a primary one is assigned an initial
weight equal to that of the primary. Splitting consists of transforming a particle, with
weight wp and in a certain state, into a number & > 1 of identical particles with weights
w = wy/S in the same initial state. Splitting should be applied when the particle
“approaches” the region of interest. The Russian roulette technique is, in a way, the
reverse process: when a particle tends to move away from the region of interest it is
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“killed” with a certain probability, K < 1, and, if it survives, its weight is increased by
a factor 1/(1 — K). Here, killing means that the particle is just discarded (and does not
contribute to the scores anymore). Evidently, splitting and killing leave the simulation
unbiased. The mean and standard deviation of the calculated quantities are given by
eqs. (1.114) and (1.115). The effectiveness of these methods relies on the adopted values
of the parameters S and K, and on the strategy used to decide when splitting and killing
are to be applied. These details can only be dictated by the user’s experience.

1.6.3 Other methods

Very frequently, an effective “reduction of variance” may be obtained by simply avoiding
unnecessary calculations. This is usually true for simulation codes that incorporate
“general-purpose” geometry packages. In the case of simple (e.g. planar, spherical,
cylindrical) geometries the program may be substantially simplified and this may speed
up the simulation appreciably. In general, the clever use of possible symmetries of the
problem under consideration may lead to spectacular variance reductions. As a last
example, we can quote the so-called “range rejection” method, which simply consists
of absorbing a particle when it (and its possible secondaries) cannot leave (or reach)
the regions of interest. Range rejection is useful e.g. when computing the total energy
deposition of electrons or positrons in a given spatial region. When the residual range of
a particle is less than the distance to the nearest limiting surface of the region of interest,
the particle will deposit all its energy inside or outside the considered region (depending
of its current position) and the simulation of the track can be stopped. Range rejection
is not adequate for photon transport simulation, since the concept of photon range is
not well defined (or, to be more precise, photon path length fluctuations are very large).



