‘H Available online at www.sciencedirect.com

t# SCIENCE@DIHECT°

d

ELSEVIER

Journal of Magnetism and Magnetic Materials 260 (2003) 146—150

/WA Joumnal of

magnetism
and

M materai

www.elsevier.com/locate/jmmm

Thermodynamic potentials for simple magnetic systems

Gustavo Castellano*

Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba, Argentina

Received 29 April 2002; received in revised form 1 July 2002

Abstract

A strong discrepancy of criteria appears in texts on Statistical Mechanics when associating the partition function of
simple magnetic systems with thermodynamical potentials. The aim of this work is to provide an adequate description,
starting from the maximization of entropy. Finally, a discussion about some thermodynamic properties is given.
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1. Introduction

There are many possibilities of expressing the
entropy S of a system in thermodynamic equili-
brium in terms of the corresponding probability
density p. The expression first introduced by Gibbs
[1] provides adequate results for the thermody-
namic properties of most systems in equilibrium,
and has therefore been used almost universally.
For a classical system of N particles described by
generalized coordinates and momenta ¢ and p, this
expression takes the well-known form

S=—k / pIn(CNp) d*p d*Vq.

The constant C¥ is introduced in order to obtain
the correct units. For quantum systems, the
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relationship between entropy and the probability
density operator g becomes

S = —kTr(p1np).

When dealing with simple magnetic systems,
the ¢ operator acts on spin coordinates; if the
eigenfunctions are used for constructing the
operators in the previous expression, a simple
sum has to be assessed. An example for magnetic
systems is given by the well-known one-dimen-
sional chain of N nuclei, whose spin coordinates
can take the eigenvalues o; (as long as a suitable
basis is chosen). If there is no interaction among
the nuclei, but only with an external magnetic
induction of magnitude B, the system will be
governed by the following Hamiltonian eigen-
values:

N
A =—py_ Ba, (M
i=1
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where p is the magnetic moment for each nucleus.
Thermodynamic properties can be derived from
the corresponding partition function

0-— Zefﬁyf’

where f = 1/kT, k being the Boltzmann constant
and T the temperature of the system; the summa-
tion runs over all the possible states of the system.
For the present discussion, attention will be
focused on the case of spin-% particles. The

partition function will then read
BV
0= (2 cosh %) . (2)

This typical result appears in many text books on
elementary Statistical Mechanics. Since nuclei are
independent, the overall partition function was
expected to read as the product of single summa-
tions g for each spin (Q = ¢"). Usually, the
partition function is associated with some thermo-
dynamic potential ¢ by means of

¢ =—kTn Q. 3)

Although the example chosen appears to be very
simple, no agreement is shown in the literature
about which thermodynamic potential corre-
sponds to Eq. (3). For instance, some authors [2—
4] suggest that ¢ is the Helmholtz free energy, i.e.,
the Legendre transformation in the internal energy
U which changes S by T

¢=U-TS§, 4)

whereas others [5,6] take it as the Gibbs free
energy, which means a further transformation
involving the substitution of the total magnetiza-
tion M by the external field B:

¢=U—TS— BM. (5)

Obviously, the discrepancy is not just a matter
of “names” for the potential in Eq. (3), since the
description of the thermodynamical properties of
our system will not be the same in the two cases.

However, this last association seems to be borne in
mind when looking for the total magnetization of
the system, even when ¢ is referred to as the
Helmholtz potential, since the expression always
used is

_ (99
M=- (@)

which produces the correct result

Nu uB
M=y M
o tanhaer

(6)

On the other hand, most texts state that the
internal energy may be computed as the mean
value of Eq. (1). This may be written as

o(In Q))
U=y - , ™
o )sw
which for the present example gives
_ NuB uB
U= 5 tanh T (®)

In addition, if the association of Eq. (3) with the
Gibbs potential is always borne in mind, an
expression for the entropy can be derived

_ (%
$=- (ar)

obtaining for this system

- ubB 7 NuB ubB
S =kN In (2 cosh 2kT> T tanh T 9)

At this point, an apparent contradiction arises,
since by simply adding U — T'S — BM the Gibbs
potential provided by Eq. (3) is not reobtained.
Although it may be thought that the error is the
acceptance of ¢ as the Gibbs free energy, the
reader may verify that this and even more contra-
dictions arise if ¢ from Eq. (3) is taken as the
Helmholtz free energy.

Unfortunately, text books on Statistical Me-
chanics pay little attention to this controversy,
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disencouraging an adequate comprehension of the
fundamentals of the subject. This is not a minor
issue, since the identification of the partition
function with a thermodynamic potential must
hold not only for the case of non-interacting spins.
In the next section, some basic steps are reviewed
in order to achieve the correct associations with
thermodynamical properties.

2. Maximization of entropy and connection with
thermodynamics

In order to avoid misinterpretations, the expres-
sions for the probability distribution of the system
chosen will be rederived by means of extremizing
the entropy function, adequately imposing the
corresponding constraints.

Since the nuclei in our system are independent,
attention will be focused on one single spin. The
joint probability for the whole system will be
obtained by simply multiplying the probabilities
for all separate nuclei. If the eigenvectors of the
spin operator are taken as the basis for describing
spin states, P(i) represents the probability that our
spin be with quantum number g, (= +3).

The normalization condition for these prob-
abilities provides the first constraint that must be
used

> PG =1.

The mean value of the interaction Hamiltonian of
Eq. (1) might also be chosen as a constraint. Or
equivalently, since the external magnetic field
remains constant, the total magnetization M must
be regarded as a mean value. In the present case,
the individual magnetization M; will be taken as
the second constraint

M;=p o).

Now attention will be focused on the internal
energy of our system. At first sight, it looks natural
to have the internal energy as —BM, i.e., to accept
the association of Eq. (7) as valid. As mentioned
above, many texts take this association as obvious,
although it is in disagreement with first principles.
In order to avoid misleading ideas, it is worth
starting from the combined first and second laws

of thermodynamics,
dU=TdS+dW +{dN, (10)

where d W must represent the external work done
on the system, { being the chemical potential (in
this expression we assume there are no further
thermodynamical parameters to describe our
system). The external work of an external field B
which produces a variation dM on a system of
total magnetization M is given by BdM—the
energy for creating the field may be excluded from
our system, since it has nothing to do with the
thermodynamic properties in which we are inter-
ested (a very good explanation is detailed in
Appendix B of Ref. [2]). Although agreement
about this point is very well accepted by all the
literature (see e.g., Ref. [7]), dW is not always
adequately written when analyzing thermody-
namic properties of a magnetic system. However,
once the system has clearly been defined—in our
example, the set of nuclei—the expression for d W
is not arbitrary at all. (It is worth noting that the
induction field includes in fact “internal” effects,
since it accounts both for the external magnetic
field H and the field due to magnetization of the
system under consideration. The expression ex-
ternal induction field refers to the exclusion of this
magnetization term. Referring to the constitutive
relation between induction and magnetic fields, the
external induction is pyH, p, being the magnetic
permeability of vacuum, and not H as often
considered. In addition, if dW is taken as H dM,
inconsistencies in units may arise). The Euler
relation for a magnetic system thus reads

U=TS+ BM +{N. (11)

When a system is under the action of an external
field which is held constant, it is useful to
introduce the enthalpy, defined as the difference
of the internal energy and a term which accounts
for the coupling with the outside world. In the case
of magnetic systems, it usually referred to as
“magnetic enthalpy”

E=U-BM.
This is precisely the magnitude associated with the

mean value of the Hamiltonian of Eq. (1): no
matter the configuration of the system, the field B
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will remain constant (see e.g., Ref. [8]). Although
the magnetic enthalpy may not always be regarded
as a Legendre transform of the internal energy (the
necessary conditions are detailed in Ref. [2, p.
142]), its physical meaning is clear: it represents the
internal energy of a new system, which also includes
the sources of the field B. Now, if we make the
adequate identification of the mean value given by
Eq. (7), we have E = —BM, and therefore the
internal energy will vanish for all temperatures and
magnitudes of B. We will return to this point later.

Before carrying on, it is worth noting that if any
interaction among the spins is included in the
Hamiltonian of Eq. (1), all the arguments stated
above will hold: the only difference in the analyisis
is that the mean value of this new Hamiltonian will
not look like —BM, and an additional constraint
should appear in the next steps.

The set of probabilities which extremize the
entropy restricted by the constraints mentioned
above can now be obtained through the usual
procedure, using Lagrange multipliers. These
multipliers will be called oy and oy, for the
normalization condition and the individual mag-
netization, respectively; the extremum condition
then reads

5{Z[a0P(i) — kP(i)In P(i) — ocMP(i)a,-]} —0.
Now, since all infinitesimal variations 6 P(i) must
be independent, this condition implies

[og — k — kIn P(i) — apg6:]0P>F) = 0.

Since this equation must hold for any JP(i), the
bracket on the left-hand member must vanish:

g —k —klIn P(i) — ap 0; = 0. (12)
If this equation is multiplied by P(i) and summa-

tion over i is performed, the identification of the
partition function per nucleus as

g= ZeocM,u(f,-/k _ el—oﬂo/k

arises naturally. Eq. (12) thus becomes
—kTng=ayTM; — TS;,

S; being the entropy per nucleus. Following the
usual arguments (see e.g., Ref. [5]), in this
equation, the right member can be associated with
a thermodynamic potential, since the first term is

related to the enthalpy —BM if the identification
oy = —B/T is allowed. Then, for the whole
system this may be written as

—kTlnQ=U—TS — BM, (13)

confirming the identification with the Gibbs
potential, as suggested in Eq. (5), is the correct
one. As stated above, when some kind of interac-
tion among spins is present, U will not vanish, but
Eq. (13) will still be valid.

3. Discussion

Now that the partition function has adequately
been associated with Gibbs free energy, we should
be able to verify some thermodynamic properties
for our system. First, we will return to Eq. (13): the
term U in the right-hand side has been deliberately
introduced here in order to emphasize the fact that
the internal energy vanishes for this system. Is this
a reasonable idea? Unlike other physical situa-
tions, this system is built up by elements which
interact with an external field but without “ab-
sorbing” this interaction energy for themselves. A
comparison may be done with an ideal gas, i.e., a
system of non-interacting point mass particles
within a rigid cylinder with a free piston at one
end: the external field is the pressure which
performs mechanical work on the system when
volume changes occur. The particles absorb this
work, converting it into kinetic energy, which will
not disappear when the external pressure vanishes.
If the reader is not acquainted with this example,
he is invited to carry out the maximization of the
entropy bearing in mind that instead of the
volume, it is the pressure that is held constant,
which again implies the correspondence of the
partition function and the Gibbs free energy. The
usual form of the Hamiltonian for free particles
takes into account the energy which is effectively
absorbed by the particles, which allows a better
comprehension of the association of —kT In Q with
the Gibbs free energy. In our spin system, however,
when the magnetic field disappears, no energy can
be maintained in the nuclei. Thus, the fact that the
internal energy vanishes is indeed a reasonable idea;
however, Eq.(11) may not be considered as a
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“fundamental equation”, since not all partial
derivatives of U make sense and therefore, it is
not possible to draw all thermodynamic properties
of the system from this equation alone [9].

A further comment can be stated about this null
internal energy. From Eq. (9), the heat capacities can
be assessed; they provide an idea about the
capability of our spin system for absorbing energy
by heat transfer. In the case of the heat capacity at
constant field H (or constant external induction B), a
simple derivative produces the well-known result

2
Cy = T(aS) _WB'N 2 ME (14)
B,N

T 4kT? UT

The capability of absorbing heat from a thermal
reservoir when the field is held constant obviously
depends on the source of B, which must provide
energy so that the system changes its magnetiza-
tion when changes of temperature occur. This
would suggest that no energy is necessarily
absorbed by the system when heat interchanges
occur, but it may be transferred to the sources of
B. In fact, this can be checked by simply applying
Eq. (10) for a process in which B and N are
maintained constant; the variation of U with T
must therefore obey the well-known identity

oU oM
—) = B(—) .
(&), v+ (&),

The right-hand member of this equation vanishes,
as can be verified easily by combining Eqgs. (6) and
(14). This precisely confirms the fact that, although
Cy is not zero, the system does not absorb energy
when heat interchanges occur at constant B. On
the other hand, an expression for the heat capacity
Cy at constant magnetization may also be
derived. With M given by Eq. (6), the expression
for S of Eq. (9) may be rewritten in terms of 7', M,
and N, obtaining

kN 4

arctanh 2—M
uN’

Since S is not explicitly dependent on 7, the heat
capacity at constant magnetization will be identi-
cally zero: this coincides with the fact that Cy, =

(0U/0T)y y, enhancing the conclusions drawn
above. An alternative way to see that C,; should
vanish is to recall that heat capacities must be
related by

oM OB
Cy =C T|— —
. it (aT>B,N (aT)M,N

(@M /oT) ;N

77 (am/oB) o

The right-hand member of this expression can be
computed using Egs. (14) and (6), reobtaining a
null value for Cy,.

4. Conclusion

Care has been taken in the derivation of
thermodynamical properties of a non-interacting
spin-% system from basic Statistical Mechanics. A
correct association of the partition function with
Gibbs free energy has been achieved, reobtaining
well-known formulae for the entropy S and the
total magnetization M. On the other hand, the
improper identification of the internal energy U
with the mean value of the interaction Hamilto-
nian has been overcome, replacing it by the
magnetic enthalpy. It has been shown that in fact,
these associations of thermodynamic potentials are
valid also for magnetic systems with non-null
interaction among spins.
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