THE ADJOINT ALGEBRA FOR 2-CATEGORIES

NOELIA BORTOLUSSI AND MARTIN MOMBELLI

ABSTRACT. For any 0-cell B in a 2-category B we introduce the notion
of adjoint algebra Adg. This is an algebra in the center of B. We
prove that, if C is a finite tensor category, this notion applied to the 2-
category ¢ Mod of C-module categories, coincides with the one introduced
by Shimizu [14]. As a consequence of this general approach, we obtain
new results on the adjoint algebra for tensor categories.

INTRODUCTION

In [13], the author introduces the notion of adjoint algebra A¢ and the
space of class functions CF(C) for any finite tensor category C. The adjoint
algebra is defined as the end

Ac = XeX*.
XeC
The object Ac is in fact an algebra in the Drinfeld center Z(C). Both, the
adjoint algebra and the space of class functions, are interesting objects that
generalize the well known adjoint representation and the character algebra
of a finite group. In [14], the author introduces the notion of adjoint algebra
A and the space of class functions CF (M) associated to any left C-module
category M, generalizing the definitions given in [13].

The present paper is born in the search of a way to compute the adjoint
algebra of a finite tensor category graded by a finite group. Let G be a
finite group, and D = ®4eqCy be a G-graded tensor category. In this case
C = (; is a tensor subcategory of D, and for each g € G, C, is an invertible
C-module category. Our goal is to relate the adjoint algebras Ap and Ag.
In principle, we did not have enough intuition nor tools to achieve this. We
suspected that the algebra Ap is related to ©yecAc,, and each algebra Ac,
is related to Ac. Since a direct approach to the computation of Ap was not
successful, we had to make a plan using different tools.

Our starting point is a result obtained in [1]. In loc. cit. the notion of a
group action on a 2-category B is introduced. For a group G acting on B, it
is also introduced a new 2-category B, called the G-equivariantization. As
a main example, if D = $4eqCy is a G-graded tensor category, it is shown
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that the group G acts on the 2-category ¢ Mod of C-module categories and
there is a 2-equivalence of 2-categories

(0.1) (cMod)® ~ pMod.

In this way, we can relate the tensor categories D and C using tools from
the theory of 2-categories. Our plan, to compute the adjoint algebra Ap, is
the following:

o Generalize the notion of adjoint algebra to the realm of 2-categories,
such that when applied to ¢ Mod it coincides with the notion intro-
duced by Shimizu.

e Study how the adjoint algebra defined on 2-categories behaves under
2-equivalences.

e Apply the results obtained in the previous items, and use the biequiv-
alence (0.1) to present some relation between Ap and Ac.

In the present contribution we focused only on the first two steps. The last
step will be developed in a subsequent paper.

The contents of this work are organized as follows. In Section 1, we
discuss some preliminary notions and results on ends and coends in finite
categories. In Section 2 we collect the necessary material on finite tensor
categories and their representations that will be needed. In Section 3 we
recall the definition given in [14] of the adjoint algebra A, associated to
a representation M of a finite tensor category C. In Section 4 we begin
by recalling the basics of the theory of 2-categories, we recall the definition
of pseudonatural transformations, pseudofunctors, and we also recall the
definition of the center of a 2-category B, which is a monoidal category
Z(B). We also introduce the notion of a rigid 2-category; a straightforward
generalization of the notion of rigid monoidal category, this is a 2-category
such that any 1-cell has left and right duals. For any finite tensor category
C, the rigid 2-category of (left) C-module categories, denoted by ¢Mod is
developed thoroughly; in particular we prove that the center Z(¢Mod) is
monoidally equivalent to Z(C). This is a crucial result, since we would like
to relate the adjoint algebra of ¢(Mod and the one introduced by Shimizu.
Finally, in Section 5, for any rigid 2-category B, and any O-cell B € B,
we introduce an algebra Adp in the center Z(B). The definition of this
object and its product seem to be quite natural. There is a price to pay
for this simplicity; the proof that, the adjoint algebras for ¢cMod and for C
are isomorphic, is quite cumbersome. Finally, we show that if 7 : B — B
is a 2-equivalence of 2-categories, this establishes a monoidal equivalence
F : Z(B) — Z(B), and for any 0-cell B there is an isomorphism F(Adp) ~
Adgpy of algebras. We apply this result to the 2-category ¢Mod of C-
module categories to obtain some results on the adjoint algebra for tensor
categories.
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1. PRELIMINARIES

Throughout this paper k will denote an algebraically closed field. All
categories are assumed to be abelian k-linear, all functors are additive k-
linear, and all vector spaces and algebras are assumed to be over k. We
shall also denote by Rex (M, N') the category of right exact functors from
M to N. If M,N are two categories, and F' : M — N is a functor, we
shall denote by F'&, F™ : N — M, its left adjoint, respectively right adjoint
of F, if it exists. If A is an algebra, we shall denote by 4 M (respectively
M 4) the category of finite dimensional left A-modules (respectively right
A-modules).

1.1. Finite categories. A finite category [4] is a category equivalent to a
category 4.M for some finite dimensional algebra A. Equivalently, a category
is said to be finite if it satisfies the following conditions:

it has finitely many isomorphism classes of simple objects;
each simple object X has a projective cover P(X);

all Hom spaces are finite-dimensional;

each object has finite length.

1.2. Ends and coends. For later use, we shall need some basic results on
ends and coends. For reference, the reader can find [8], [6] helpful. Let C,
D be categories. A dinatural transformation d : S = T between functors
S, T :C° x C — D is a collection of morphisms in D

dx : S(X,X) > T(X,X), XeC,
such that for any morphism f: X — Y inC
(1.1)  T(idx, f)odxoS(f,idx) =T(f,idy) ody o S(idv, f).

An end of S is a pair (E,p) consisting of an object E € D and a dinatural
transformation p : E = S satisfying the following universal property. Here
the object E is considered as a constant functor. For any pair (D,d) con-
sisting of an object D € D and a dinatural transformation d : D = S, there
exists a unique morphism h : D — E in D such that

dx =pxoh forany X €C.

A coend of S is (the dual notion of an end) a pair (C,7) consisting of an
object C' € D and a dinatural transformation 7 : § = C with the following
universal property. For any pair (B,t), where B € D is an object and
t .S = B is a dinatural transformation, there exists a unique morphism
h:C — B such that honyx =tx for any X € C.

The end and coend of the functor S are denoted, respectively, as

XeC
S(X,X) and / S(X,X).
XeC
The next results are well-known. We present the proofs for completness
sake and because we shall need them later.
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Proposition 1.1. Let C,D,C’, D’ be categories. Assume that S,T : C° — D
are functors. Let G : C' — C be an equivalence of categories, and F : D — D'
a functor with left adjoint given by H : D' — D. The following statements
hold.
(i) The objects F([yee S(X, X)), [xee F o S(X, X) are isomorphic.
(i) The objects [y .o S(X,X), [ycer S(G(Y),G(Y)) are isomorphic.
(iii) If S ~ T, then the ends [y _.S(X,X), [vce T(X,X) are isomor-
phic.

Proof. (i). Since (H, F) is an adjunction, there are natural transformations
e:HoF —Idp, c:1dp — F o H such that

(1.2) id piyy = Fley)epyy), 1dmz) =enzH(cz),

for any Z € D'. For any Y € C let ny : [ ..S(X,X) — S(V,Y)
be the dinatural transformations associated to this end. Then F(mwy) :
F([yeeS(X, X)) = F(S(Y,Y)) are dinatural. Let us show that this ob-
ject together with the dinatural transformations F'(my ) satisfy the universal
property of the end.

Let £ € D' be an object together with dinatural transformations &y :
E — F(S(Y,Y)), Y € C. Hence the composition

es(y’y)H(fy) : H(E) — S(Y, Y)

are dinatural. Thus, there exists a map h : H(E) — [y..S(X,X) such
that Ty o h = eg(y,y)H({y) for any Y € C. Define d = F'(h)cg. Using (1.2)
one can see that F(my)d = §y. Whence F( [y, S(X, X)) together with the
dinatural transformations F'(my ) satisfy the universal property of the end.

(ii). Let &x ¢ [yee S(X,X) = S(X,X), ny : [y S(G(Y),G(Y)) =
S(G(Y),G(Y)) be the associated dinatural transformations. Let H : C — C’
be a quasi-inverse of G and « : G o H — Id¢ be a natural isomorphism.
For any X € C define A\x = S(a}l, ax)Nm(x)- Since A is a dinatural trans-
formation, there exists a map h : [, .., S(G(Y),G(Y)) — [0 S(X,X)
such that Ax = &xh. Also, define dy : [y .. S(X,X) = S(G(Y),G(Y))
as dy = §q(y). It follows that d is a dinatural tranformation, therefore
there exists a morphism h : Jxee S(X, X) = [yeer S(G(Y),G(Y)) such
that dy = nyﬁ. We have

Exhh = S(ay, QX)UH(X)E = S(ay', ax)éar(x)) = Ex-

The last equality follows from the dinaturality of £. It follows, from the
universal property of the end, that hh =id. In a similar way, one can prove
that hh = id. Thus h is an isomorphism.

(iii). Let a: S — T be a natural isomorphism. Let

ex: [ S(X,X) 5 S(X,X), iy - / T(X,X)  T(X, X),
XeC XeC
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be the corresponding dinatural transformations. For any X € C define dx =
a(x,x)éx- It follows that d is a dinatural transformation, hence there exists
a morphism h : [y . S(X,X) = [y T(X,X) such that dx =nxoh. Ina

similar way, one can construct a morphis  : Jxee T(X, X) = [yee S(X, X)

such that 04(_; X)X = & <h. Combining both equalities one gets that & xhh =

{x. By the universal property of the end hh =id. In a similar way it can
be proven that hh = id. O

2. FINITE TENSOR CATEGORIES

For basic notions on finite tensor categories we refer to [2], [4]. Let C be a
finite tensor category over k, that is a rigid monoidal category with simple
unit object such that the underlying category is finite.

If C is a tensor category with associativity constraint given by axy,z :
(XY )®Z — X®(Y®Z), we shall denote by C*V, the tensor category
whose underlying abelian category is C, with reverse monoidal product @™ :
CxC—=C, XY =Y®X, and associativity constraints

a%?})CZ : (X®revy)®revz — X®rev (Y®revz)7

rev -1
ax)yy,z = Qzyx>

for any X,Y,Z € C.
2.1. Representations of tensor categories. A left module category over
C is a finite category M together with a k-bilinear bifunctor ® : C x M —

M, exact in each variable, endowed with natural associativity and unit
isomorphisms

MXY,M : (X®Y)®M — X@(Y@M), EM 1M — M.
These isomorphisms are subject to the following conditions:

(21)  mxy zem mxey,zm = (dx®my zn) mx yezu(axy,z®1d u),

(2.2) (id X@lM)mXLM = Tx@id M,
for any X,Y,Z € C, M € M. Here a is the associativity constraint of C.

Sometimes we shall also say that M is a C-module category.

Let M and M’ be a pair of C-module categories. A module functor
is a pair (F,c), where F' : M — M’ is a functor equipped with natural
isomorphisms

exar: F(XSM) — XGF(M),
X €C, M € M, such that for any X, Y € C, M € M:

(2.3) (id x®cy,m)ex yauF (mxy.m) = mx.y,ron) CXev,Mm
(2.4) Crony cim = F(lar).
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There is a composition of module functors: if M” is another C-module
category and (G,d) : M’ — M" is another module functor then the com-
position

(2.5) (GoF,e) ZM—>M”, €X,M:dX,F(M)OG(CX,M)7

is also a module functor.

A natural module transformation between module functors (F,c) and
(G,d) is a natural transformation 6 : ' — G such that for any X € C,
M e M:

(2.6) dX,MeXgM = (id X@GM)CX,M-

Two module functors F,G are equivalent if there exists a natural module
isomorphism 6 : F — G. We denote by Fung(M, M') the category whose
objects are module functors (F,c) from M to M’ and arrows are module
natural transformations.

Two C-modules M and M’ are equivalent if there exist module functors
F: M- M,G: M — M, and natural module isomorphisms Id ¢ —
FoG,Idy — GoF.

A module is indecomposable if it is not equivalent to a direct sum of two
non trivial modules. Recall from [4], that a module M is ezact if for any
projective object P € C the object PQM is projective in M, for all M € M.
It is known that if M is an exact module category, then any module functor
F: M — N is exact. If M is an exact indecomposable module category
over C, the dual category Cj, = End¢(M) is a finite tensor category [4].
The tensor product is the composition of module functors.

A right module category over C is a finite category M equipped with an
exact bifunctor ® : M x C — M and natural isomorphisms

muxy : M@(X®Y) = (MX)RY, ry: Ml — M
such that

(2.7) Mmuysxy,z My xyez(id v®axy,z) = (Mu,x,y®id z) My, xey,z,

(2.8) (ra®id x)mar1,x = id y®lx.

If M, M’ are right C-modules, a module functor from M to M’ is a pair
(T,d) where T : M — M’ is a functor and dysx : T(M®X) — T(M)®X
are natural isomorphisms such that for any X,Y € C, M € M:

(2.9) (dux®@idy)dyzx yT(maxy) = mron,xy dvxey
(2.10) rrony darg = T(rar).
It is also well-known that if F' : M — N is a C-module functor then its

right and left adjoint are also C-module functors, see for example [5, Lemma
2.11].
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2.2. Bimodule categories. Assume that C,D are finite tensor categories.
A (C,D)—bimodule category is an abelian category M with left C-module
category and right D-module category structure equipped with natural iso-
morphisms

{yxmy : (X@M)RY — X@(M®Y),X €C,Y € D,M € M}

satisfying certain axioms. For details the reader is referred to [7].

Assume & is another finite tensor category. Let M be a (D, C)—bimodule
category and N is a (C,&)-bimodule category. Then the Deligne tensor
product MXcN is aleft (D, £)-bimodule category. More details on Deligne’s
tensor product can be found in [7].

The following definition appeared in [3].

Definition 2.1. A (D,C)—bimodule category M is invertible if there exists
a (C,D)-bimodule category A such that

MXEN~D, NXpM=~C,
as bimodule categories.

Proposition 2.2. [7, Thm. 3.20] If M, N are left C-module categories,
there exists an equivalence of categories

(2.11) MP R N~ Fung(M,N). O

2.3. The internal Hom. Let C be a tensor category and M be a left C-
module category. For any pair of objects M, N € M, the internal Hom is
an object Hom(M, N) € C representing the functor Homap(—®M, N) : C —
vect . This means that there are natural isomorphisms, one the inverse of
each other,

¢r.n : Home (X, Hom(M, N)) — Homu (X&M, N),

2.12
(212) Yarn - Homp(X®M, N) — Home (X, Hom(M, N)),

foral M,\N e M, X € C. If N,]\~f eM,and f: N — Nisa morphism,
naturality of ¢ implies that diagramm

o _
Home (X, Hom(M, N)) ——~~ Homu (X®M, N)
lﬁHHorn(M,f)ﬁ aHfal
2,5

Home (X, Hom(M, N)) Hom  (X®M, N)

commutes. That is

(2.13) F63n(8) = 6%, 5 (Hom(M, 1)B).
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IfXeCandh: X —» X then, the naturality of ¢ implies that the diagram

X
PN

Home (X, Hom(M, N)) Hom ((X@M, N)
ou—)a(h@id ]u) \L

Hom(X®M, N)

\Lou—)ah

Home (X, Hom(M, N))

X
PN

commutes. That is
(2.14) O v () (hBid ar) = iy v (arh),

for any o € Homc()N( ,Hom(M, N)). Also, the naturality of ¢ implies that
for any X, X € C, and any morphism v : X — X the diagramm

X

. ¥ _
Hom ((X®M, N) Y . Home(X,Hom(M, N))
l a—a(vRid ) ar—rary i
Uir N

Homn(X®M, N) Home (X, Hom(M, N))

commutes. That is
(2.15) 3w (@(r8id ar)) = ¥ n (@),
For any o € Hom(X®M, N). If X € C, M, N € M, define
coevily : X — Hom(M, X®M), evyfy : Hom(M, N)&M — N,

M X : M Hom(M,N) .
CoOeVx pr = ¢M7X@M(Id X@M)7 eVM.N = <Z5M,N (ldm(M,N))'

Define also fy = ev%M(id @(M,M)@QV%M)’ and

(2.16) compif : Hom(M, M)®Hom(M, M) — Hom(M, M),

It is known, see [4], that Hom (M, M) is an algebra in the category C with
product given by comp%.

For any M € M denote by Rps : C — M the functor Ry/(X) = XQ@M.
This is a C-module functor. Its right adjoint R} : M — C is then R (N) =
Hom(M, N). Since the functor Ry is a module functor, then so is R};. We
denote by

(2.17) ax v, : Hom(M, X®N) - X@Hom(M, N)

the left C-module structure of Rjj.
Let b%(,M,N : Hom(X®M,N) — Hom(M, N)®X* be the isomorphisms
induced by the natural isomorphisms

Home(Z, Hom(X®M, N)) ~ Homy (Z&(XQM), N)
~ Homnm((Z@X)®M, N) ~ Home(Z @ X, Hom(M, N))
~ Hom¢ (Z, Hom(M, N) @ X™),
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for any X,Z € C, M, N € M. Define also
bx.m N : Hom(X®@M, N)®X — Hom(M, N)
as the composition
bxm,n = (id®evx) (b py y®id x).

2.4. The Drinfeld center. Assume that C is a finite tensor category with
associativity constraint given by a. The Drinfeld center of C is the category
Z(C) consisting of pairs (V,0), where V € C, and ox : VX — X®V is a
family of natural isomorphisms such that

(2.18) lyor =rv,0xgy = a)_gly,v(id X®O’y)aX,V7y(Ox®id y)a‘_/}Xy,

for any X,Y € C. If (V,0), (W, T) are objects in the center, a morphism
f:(V,o) = (W,7) is a morphism f: V — W in C such that

(2.19) (dx®f)ox = 7x(f®id x),

for any X € C. The categories Z(C)™" and Z(C"™") are monoidaly equiva-
lent. The functor

(2.20) ZO) = Z(C™), (Vo) (V,o™h)

is a monoidal equivalence.

3. THE CHARACTER ALGEBRA FOR TENSOR CATEGORIES

Let C be a finite tensor category, and let M be an exact indecomposable
left module category over C. We shall recall the definition of the adjoint
algebra and the space of class functions of M introduced by Shimizu [14].

Let pp 0 € — Rex (M), pm(X)(M) = X@M,X € C,M € M, be the
action functor. By [14, Thm. 3.4] the right adjoint of pa is the functor
P : Rex (M) — C, such that for any F € Rex (M)

P = [ Hom(MF(),

The adjoint algebra of the module category M is the algebra in the center
of C, Ay = piy(Id pm) € Z(C). The adjoint algebra of the tensor category
C is the algebra A¢ of the regular module category C.

Assume that 4/ : Ay = Hom(M, M) are the corresponding dinatural
transformations. The half braiding of Ax4 is a_{(‘/‘ CAMRX = XQAnm. Tt
is the unique isomorphism such that the diagram

M ®ld b'e
X®M _ _
31) Au®X Hom(X@M, X&M) @ X
J/bx,M,XgM
i Hom (M, X®M)
. J/aX,]W,J\l
id X®7T%

X @ Apm X®Hom(M, M).
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is commutative. Recall from Section 2.3 the definition of the morphisms
b,a. It was explained in [14, Subection 4.2] that the algebra structure of
A is given as follows. The product and the unit of Axq are

ma s AMQAM — Am,  un i 1 — Apg,

defined to be the unique morphisms such that they satisfy

it © ma = compyf o (mf@mif),

M

3.2
(3.2) TN O UM = coevf/‘M,

for any M € M. For the definition of coev™ and comp™ see Section 2.3.

Definition 3.1. [14, Definition 5.1] The space of class functions of M is
CF(M) := Homz e (Am, Ac)-

4. 2-CATEGORIES

We shall first recall basic notions of the theory of 2-categories. For any
2-category B, the class of 0-cells, will be denoted by B?. The composition
in each hom-category B(A, B), is denoted by juxtaposition fg, while the
symbol o is used to denote the horizontal composition functors

o: B(B,C) x B(A, B) — B(A,C).

For any O-cell A the identity 1-cell is T4 : A — A. For any l-cell X the
identity will be denoted id x or sometimes simply as 1y, when space saving
measures are needed.
A l-cell X € B(A, B) is an equivalence if there exists another 1-cell Y €
B(B, A) such that
XoY ~Ig, YoX ~1I,.

Two O-cells A, B € B are equivalent if there exists a 1-cell equivalence
X € B(A, B).

Assume B is another 2-category. A pseudofunctor (F,a) : B — g, con-
sists of a function F : B® — B°, a family of functors Fap : B(A,B) —
B(F(A), F(B)), for each A,B € B°, and a collection of natural isomor-
phisms

F(A),F(B),F(C)( A,B,C

QA BC O Fpc x FaB) = Faco ,

b4 Ipay — Faa(la),

such that
(4.1) axoy,z(axy oid p(z)) = ax yoz(id p(x) 0 ay,z),
(4.2) ¢poidpx) = argx, 1dpx)oga=axiy,,

for any 0-cells A, B,C and 1-cells X,Y,Z. A pseudofunctor is said to be a
2-functor if a and ¢ are identities.
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Assume that (F,«), (G, ') are pseudofunctors. A pseudonatural trans-
formation x : I — G consists of a family of 1-cells X% : F(A) —» G(A),
A € Obj(B) and isomorphisms 2-cells

Xx 1 G(X) o X — X o F(X),
natural in X € B(A, B), such that for any 1-cells X € B(B,C),Y € B(A, B)

(4.3) (XX oid F(y))(ld G(X) 9] XY)(O/X,Y oid X%) = (id XOC o OJX7y)XXoy,

(44) X]A(idX%O¢A):¢{AOidX?4.

IfF:8—Bisa pseudofunctor, the identity pseudonatural transformation
id : FF — F is defined as

(id )% = Ipeay, (idp)x = id pex),

for any O-cells A, B € BY, and any 1-cell X € B(A, B).
If x, 0 are pseudonatural transformations, a modification w : x = 6 con-
sists of a family of 2-cells wy : X% — 994, such that the diagrams

X
G(X) o XY == x% 0 F(X)
ldG(X) OUJAl leOidF(X)
G(X) 009 2 90 o F(X)

commute for all X € B(A,B). Given pseudofunctors F,G : B — g, we
shall denote PseuNat(F,G) the category where objects are pseudonatural
transformations from F' to G and arrows are modifications.

Two pseudonatural transformations (,7°), (o,0%) are equivalent, and we
denote this by (1,1°) ~ (o,0Y), if there exists an invertible modification
v i (m,1°) = (0,0°).

Assume that B;, ¢ = 1,2 are 2-categories, F; : By — Bs, i = 1,2,3 are
pseudofunctors and (o,0°) : Fy — Fy, (0,6°) : Fy, — Fy are pseudonatural
transformations. The horizontal composition (1,7%) = (,6°)o(c,0°) : F} —
F3 is the pseudonatural transformation given by

(4.5) 74 =0%00% 71x= (id go 0 ox)(0x ©id 40 ),

for any pair of 0-cells A, B and any 1-cell X € By(A4, B).

IfF:B— B yG:B— B are pseudofunctors, we say that a pseudonatu-
ral transformation (0, 0°) : I — G is an equivalence if there exists a pseudo-
natural transformation (¢',6°) : G — F such that (6,6°) o (¢/,0°) ~ id g
and (6/,6°)0(6,6°) ~ id p. In such case, we say that F and G are equivalent
and we denote it by F' ~ G.

We say that two 2-categories B y B’ are biequivalent if there exists pseud-
ofunctors F' : B — B’ and G : B’ — B such that Go F ~Idg, FoG ~ Id .
In such case, we say that F' and G are biequivalences. 1t is well known that
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F : B — B’ is a biequivalence if and only if F4 p are equivalences of cate-
gories for any 0-cells A, B, and F is surjective (up to equivalence) on 0-cells.
A 2-functor F : B — B’ is a 2-equivalence if it is a biequivalence.

Example 4.1. If C is a strict monoidal category, we denote by C the 2-
category with a single 0-cell x and C(*,x) = C. The composition is given by
the monoidal product of C.

The next remak is a generalization of a result in the theory of tensor
categories and it will be used later.

Remark 4.2. If B is a 2-category, let A be a 0-cell and X € B(A, A) a 1-cell.
For any pair of 2-cells f: X — [4 and g : I4 — X we have

idj,of=f=foidy, and gf=(fcidx)(idx og).
Indeed,
gf =(id7, 0g)(foidy,) = (foidx)(id x og).
This implies that if f: I4 — X is an isomorphism 2-cell, then
idyxof=foidy.
4.1. Finite 2-categories. We shall introduce the notion of finite rigid 2-
categories. This definition is an analogue of a finite rigid monoidal category.
A similar definition appears in [9, 10].

Let B be a 2-category and X € B(A, B) a 1-cell. A right dual of X is a
1-cell X* € B(B, A) equipped with 2-cells

evxy : X*oX =14, coevx:Ig— X oX*,
such that the compositions

coevyx oid id xX0evx

X=IgoX XoX*oX Xoly=2X,

id ocoevx evXoid

X*=X"olIp X*oXoX* JpoX* = X*
are the identities. Analogously, one can define the left dual of X as an object
*X € B(B, A) equipped with 2-cells
evxy : Xo*X — I, coevy :Iy —"XoX

satisfying similar axioms. We say that B is rigid if any 1-cell has right and
left duals.

Remark 4.3. A rigid 2-category with a single 0-cell is a strict monoidal rigid
category.

Definition 4.4. A finite 2-category is a rigid 2-category B such that B(A, B)
is a finite category, for any 0O-cells A, B, and 14 € B(A, A) is a simple object
for any 0-cell A.

In the next Lemma we collect some basic results. The proof follows the
same lines as those in the theory of tensor categories, and shall be omitted.
We shall only give an idea of the proof of one statement, since it will be
needed later.
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Lemma 4.5. Let B be a finite 2-category. The following statements hold.
(i) For any 0-cells A, B,C € B, the functor
o:B(A,B) x B(C,A) — B(C,B)
s exact in each vartable.
(ii) For any pair X,Y of composable 1-cells, there are isomorphisms
(XoY)~"Yo*X, (XoY) ~Y*oX".

(iii) If X € B(A, B) is an invertible 1-cell, with inverse Y, and isomor-
phisms a : X oY = Ig and :Y o X — I4. Then X =*Y, with
evaluation and coevaluation given by

coevy = ol ey = B(idy ocaoid x)(idyox © ﬁfl).

Proof. (ii). We shall give the first isomorphism. The second one is con-
structed similarly. Let be evxoy : (XoY)o*(XoY) — I, coevy : [ — *XoX,
coevy : I — *Y oY the corresponding evaluation and coevaluations. The
map ¢: *(X oY) — *Y o*X defined as

(4.6) ¢ = (id *Yox X O eVXoy) (id *y OCO€eVyx O id Yo*(XoY)) (COGVY oid *(XoY))
is an isomorphism.

(iii). Let us prove the rigidity axiom (evy oidy)(idy o coevy) = idy.
Starting from the left hand side

(evy oidy)(idy o coevy) =
= (Boidy)(idy o aoid xoy)(idyox o Bt oidy)(idy oa™t)
= (Boidy)(idyoxoy 0 @)(B ! 0idyoxoy)(idy o a™t)
= (Boidy)(B oidy)(idy o a)(idy o a™t)
=idy.
The first equality is by the definition of evy and coevy, and the second
equality is the consequence of apply the remark 4.2 for a and o~! and

for B and B~!. In a similar way, one can prove the other axiom (id+y o
evy)(coevy oid+y) = id «y. O

The next result relates the duals of pseudonatural equivalences. This
result will be needed later.

Lemma 4.6. Let B,g be finite 2-categories. Let F : B — g, G:B— B
be a pair of 2-functors, and let x : F — G, 7 : G — F be pseudonatural
equivalences, one the inverse of the other. For any 1-cell X € B(A,B),
*(TX) = X*X-

Proof. Since x o7 ~ id, there is an invertible modification w : x o 7 — id.
Thus, we have isomorphisms w4 : X% o 7'2 — 1[4, for any 0O-cell A. Using
Lemma 4.5 (iii) we have that *(73) = x%, with coevaluation and evaluation
given by

-1 . . . -1
coevyo =wy , evyo = B(id g owaoid o )(id 000 © 77),
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With g : Tg o X,04 — I some isomorphism, that we know it exists since
Tox ~id. For any 1-cell X € B(A, B)

x : F(X)o1] — 7% 0 G(X).
The naturality of 7 implies that for any 1-cell Y € B(A, B)
(4.7) T*YoY (.F(CoeVy) oid Tg) =id 7103 o CoeVg(y)
Using (4.3) for 7, equation (4.7) implies that
(4.8)  (7y oidg(y))(id«£(y) o 7v ) (F(coevy) oid TE\) = id ;9 © coevg(y).
Whence
(4.9)  (id«F(yy o 7y )(F(coevy) oid Tg) = (14 oid g(v))(id 70 © coevg(y))-
Using that y is the inverse of 7 we get that
(wB o idg(y))(x o T)y = (id G(Y) @) wA).

From this equation, and the definition of the composition of pseudonatural
transformations (4.5), we obtain that

(4.10) (xx o idTg)(idg(X) szl)(wB o idg(X)) = idx% o 7');1.

Combining (4.9) and (4.10), and using that *(79) = X9, we obtain that

(4.11)
(id« 79 o+ 7(yy © Tv) (id 70 © F(coevy) oid o) =

0070 o coevg(y))

= (1d*T2‘ 0T o id g(y))(id o
= (x+y 0id 19g(v))(id g(ryy o wp' 0id g(y))(wa 0id )(id 0470 © cOEVG(y)).
For any 1-cell Y € B(A, B) we have that *(7y) is equal to

= (id oev Oog(y))(id* 0or F(v) © Ty ©idg(y)orry )(coev]_-(y)OT% oid)

= (id700e r(y) © €V ) (d 0 e (v )ord © €Vg(y) O id 70 )

—~

id r0 0 F(y) © Ty © id ) ((id «, 0 0 coevr(y)oid g TA))coeVTg o id*g(y)o*T%)
(ld*o (v) ©evy 0)(1d* 00% F(Y)o ooer( )oid*ﬂ%)

(X xy O id o TBOg( Yo *Q(Y)o* )(ld G(*Y) o wB oid G(Y)o *g(y)o*T%)(wA o ld)

(id 70070 © coevgy))(coev g oid.g(y)orr ) = Xy

The first equality is the definition of *(7y), the second equality follows from
the formula for evxoy and coevxoy. The third equality follows from (4.11),
and the last equality follows from the rigidity axioms. O
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4.2. The 2-category of C-module categories. Let C be a finite tensor
category. We shall associate to C diverse 2-categories that will be used
throughout. Let ¢Mod be the 2-category of representations of C, that is
defined as follows. Its O-cells are finite left C-module categories, if M, N are
left C-module categories, then the category ¢Mod(M,N) = Fune(M,N).
The 2-category ¢Mod, of indecomposable exact left C-module categories is
defined in a similar way as ¢Mod, with 0-cells being the indecomposable left
exact C-module categories.

Lemma 4.7. Let C be a finite tensor category. The 2-category ¢Mod, is a
finite 2-category.

Proof. For any indecomposable M, the indentity functor Id , is a simple
object. We need to prove the existence of left and right duals. Let M, N be
exact C-module categories and F' : M — N be a C-module functor. Then,
F is exact [4, Prop. 3.11]. Then F* : N'— M is the left adjoint of F, and
the left dual *F' is the right adjoint of F'. The evaluation and coevaluation
are given by the unit and counit of the adjunction. ([l

Let M € ¢Mod,, and M € M. According to Section 2.3 the right adjoint
of the functor Ry; : C - M, Ry (X) = X®M is *Ry; : M — C given by
*Ry(N) = Hom(M, N). In particular, for any X € C, the right adjoint to
RX is RX*.

The next Lemma, although technical, it will be crucial later when we
relate two different notions of adjoint algebras.

Lemma 4.8. Let M be an exact indecomposable left C-module category. Let
MeM, X €C, and let

d:"(RyoRx)— Rx+o™Ryy
be the natural isomorphim defined in Lemma 4.5. Then, for any N € M
SN = by s
Recall from Section 2.8 the definition of b%(,M,N'

Proof. We shall assume that M is strict. We will make use of the notation
of Section 2.3, included the isomorphisms v, ¢. Observe that Ry o Rx =
Ry From the definition of ¢ given in (4.6), we have that J is equal to

(id Rywo Ry, © eVR)@M)(id Ry« ©COEVR,, oid RXO*Rng)(coeVRX o id*Rng).
If N € M, then, using that

(coevRX)Y = id y®coevy, (coevRM)X = coev%M,

(eVRM)N = evf\\JA,Na
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we obtain
. M .
(id Rywor Rar © VR o, )v = Hom(M, evys,, ) ®id x-,
. . . M .
(id ry. o coevg,, oid RXO*RX@M)N = CoeVHom(X®M,N)®X,M®1d X+,
(coevry oid =g, )N = id fom(x@M,N)BCOEV X .

Whence, for any Z € C, and any o € Home(Z, Hom(X®M, N)) we have
that

oyo = (Hom(M, evy@w’]\,)@id X*) (coevﬁﬁim(X@Mw)@XM@id X*)

(Oz®id X®X*) (id Z®CO€V}().
On the other hand, it follows from the definition of b, v Hom(X®@M, N) —
Hom (M, N)®X*, that
(4.12) by v = (VR 0%z n(@)@id x-) (id z8c0evy),
for any Z € C, and any o € Hom¢(Z, Hom(X®M, N)). Thus

oN = b%(,M,N
if and only if
(SNOé = bk,M7Na
if and only if
Hom (M, evng’N)coevHMoim(X@MjN)@)xM(a®id x) =
= wﬁ?§(¢)z(@M,N(a))

for any o € Home(Z, Hom(X®M, N)). Using the naturality of 4, see (2.15),
we get that

(4.13)

(4.14)
M . _ Hom(X®M,N)®X . .
COCVHom(xEM,N)@x,m (OB X) =V o egur,vye xe (1) (0®id x)
_ 20X . -
- M,M(XQM,N)®X®M(Q®1d x@M)-

The first equality follows from the definition of COGV%M. Using the natu-

rality of ¢, see (2.13), we get that

ff]{f (Hoim(M, eV%@M,N)CoeVHMoim(X@M,N)Q@X,M(a®id X)) =
XEN ¢ffliim(X@M,N O XBM (Coevﬁ/f)im(XQM,N)(@X,M (a®id x))
= evﬁ‘{l@MW (a®id xzar)

= SV ) (awid )

= eV

= QS)Z(@M’ N(O‘)'
The second equality follows from (4.14), the third equality follows from the

definition of ev™, and the last one follows from (2.14). This equality implies
(4.13), and the proof is finished. O
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Assume that D is another finite tensor category, and let A/ be an invertible
(D, C)-bimodule category. Define oN : :Mod, — pMod,, the pseudofunctor
described as follows. Let M, M’ be C-module categories. Then ¢V (M) =
Fung (N, M), and if F € Fung(M, M), then

OV (F) : Fune(N, M) — Fune(N, M),
N (F)(H)=FoH,
for any H € Fune(N, M).

Proposition 4.9. The 2-functor 6N : cMod. — pMod, is a 2-equivalence
of 2-categories. ([l

4.3. The center of a 2-category. If BB is a 2-category, the center of B
is the strict monoidal category Z(B) = PseuNat(Id s,1d ), consisting of
pseudonatural transformations of the identity pseudofunctor Id g, see [11].
Explicitly, objects in Z(B) are pairs (V, o), where

V ={Va e B(A,A) 1-cells, A € B},
oc={{ox :VpoX — XoVyu},

where, for any X € B(A, B), ox is a natural isomorphism 2-cell such that
(4.15) O‘[AZidVA,UXoyz(idxoay)(axoidy),
for any 0O-cells A, B,C € B, and any pair of 1-cells X € B(A,B), Y €
B(C,B).

If (V,o), (W, ) are two objects in Z(B), a morphism f : (V,0) — (W, )
in Z(B) is a collection of 2-cells fq : V4 = W4, A € B such that
(4.16) (idx o fa)ox =7x(fpoidx),

for any 1-cell X € B(A,B). The category Z(B) has a monoidal prod-
uct defined as follows. Let (V,o),(W,7) € Z(B) be two objects, then
(V,o)@(W, 1) = (VRW, o®T), where

(4.17) (VeaW)a=VioWa, (0®@7)x = (oxoidw,)(idv, o7x),
for any O-cells A, B € B, and X € B(A, B). The monoidal product at the
level of morphisms is the following. If (V, o), (V',o’), (W, 1), (W', 7") € Z(B)
are objects, and f: (V,o) — (V', o), f': (W, 7) — (W', 7’) are morphisms
in Z(B), then fef : (V,o)@(V',d") = (W, 7)(W', 1') is defined by
(fof)a= fao fi,

for any O-cell A. The unit (1,:) € Z(B) is the object

]—A:IA7 LX:ian
for any O-cells A, B and any 1-cell X € B(A, B).

Remark 4.10. If C is a finite tensor category, the center of the 2-category C,
described in example 4.1, coincides with the Drinfeld center Z(C) of C.
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Proposition 4.11. Let B, B be finite 2- -categories. Any biequivalence F :
B — B induces a monoidal equivalence F : Z(B) — Z(B).

Proof. Assume that (F,a) : B — B, (G,a!) : B — B is a pair of biequiva-
lences, that is, there is a pseudonatural equivalence x : F oG — Id 5. Let
7 :Idz — F oG be the inverse of x. This means that x o7 ~ idq,

and 7o x ~ idreg. In particular, for any pair of O-cells C,D € BY,
X% € B(F(G(C),C), 2 € B(C,F(G(C)) are 1l-cells, and for any 1-cell
Y € B(C, D) we have 2-cells
Xy : Y oxg = xp o F(G(Y)),
Ty F(G(Y)) ot = 1H 0 Y.
Let w: 7o x — id rog be an invertible modification. N
Let be (V,0) € Z(B). Let us define F(V,0) € Z(B) as follows. For any

0-cell C' € BY ~
F(V)e =xg o F(Vg(c)) o 78

If C, D € B are O-cells and Y € B(C, D), then
Flo)y : F(V)poY =Y o F(V)e,
is defined to be the composition

id o(ry)~1
——— xp o F(Vg(p)) o F(G(Y)) 0 7 —

idoF(o Yoid
X o F(VgpyoG(Y))ord — s x9 0 F(G(Y ) 0 V(o) 070

id oa—1ol oid
u) XOD o F(G(Y)) o]:(Vg(C)) OTC L YOXC o F(Vg(c )) 078.

Here we are omitting the subscripts of o as a space saving measure. It
follows from the property of the half-braiding o (4.15) and from (4.3) that
F (o) satisfies (4.15). Thus F defines a functor, and one can prove that G is
a quasi-inverse of F.

Let us define a monoidal structure of the functor F. Let be (V, o), (W, 7) €
Z(B), then define

EWo). Wiy : F(Vi0)RF (W, ) — F((V,0)2(W, 7))

XboF(Vgpy) othoY
id anid
1doacl@,

as follows. For any O-cell C € B°
Eo i X o F(Vg(ey) o 18 o X 0 F(Wo(cy) 0 18 = x&: 0 F(Vgoy 0 W) 0 76
¢o = (id 0 Ay 0y, We(c) © id) (id o Wwe © id).

Here {0 = (g(V,U),(VV,’y)) o The proof that (]? ,€) is monoidal follows from
the fact that w is a modification and « satisfies (4.1). 0

Theorem 4.12. Let C be a finite tensor category. There are monoidal
equivalences Z(¢cMod) ~ Z(¢cMod,) ~ Z(C)™".



THE ADJOINT ALGEBRA FOR 2-CATEGORIES 19

Proof. We shall define a pair of functors ® : Z(¢cMod) — Z(C)**V, ¥ :
Z(C)" — Z(c¢Mod), that will establish an equivalence. First, let us de-
scribe what an object in Z(¢Mod) looks like. If ((Vag),0) € Z(¢cMod), then
for any left C-module category M, (Vi, M) : M — M is a C-module func-
tor, and for any C-module functor (G,d): M = N, 0 : Vyo G — GoVyy
is a family of natural module isomorphisms that satisfies (4.15). For later
use, let us recall that the C-module structure of the functors Vs o G and
G o V) are given by c G(M )VN(dX ) and dx MG(CX 17) respectively, for
anyXGCandMGM

Let us pick ((Vum),0) € Z(¢Mod), and define V := V(1) € C. Here C is
considered as a left C-module via the regular action. Let us prove that V'
belongs to the center Z(C), that is, it posses a half-braiding.

For any X € C, the functor Rx : C — C, Rx(Y) = Y®X is aleft C-module
functor. Thus we can consider the isomorphism (or, )1 : Ve(X) = VX.
Since V¢ is a module functor, it comes with natural isomorphisms

cXY Ve(X®Y) — XeVe(Y),
for any X,Y € C. In particular, we have natural isomorphisms
ch Ve(X) = XV,
for any X € C. For any X € C define
(4.18) a% VX - XV, of = cygl(oRX)Il.

It follows by a straightforward computation that o is a half-brading for V/,
that is (V,a%) € Z(C). Therefore, we define ®((Vpy),0) = (V,a?).
Now, given an object (V,«) € Z(C), we define the functor ¥ : Z(C)"¥ —
Z(cMod) as ¥(V,a) = ((Vum),0%), where for any C-module category M
MM — M, VM(M):V®M,
for any M € M. The module structure of V4 is given by

My s VMXBM) = VB(XBM) — XB(VEM),

\% . _
X = mx,v,m (ax®id M)mv,l)(,Mv
for any X € C, M € M. Here m denotes the associativity constraint of the

module category M.
If (F,d): M — N is a left C-module functor,

F:VyoF = FoVy, of=dy .

For any

o

[ ((Vm), o) = (Ve(1))m, 0% ).
For each C-module M, we must define a natural transformation faq : Va4 —
(Ve(1))m. For any M € M, the functor Ry : C — M, Ry (X) = XM is
a C-module functor. Thus, we can consider the half-brading

O'RM:VMORM%RMOVU
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In particular we have the map
(O'RM)l : VM(M) — Vc(l)@M.

Hence, define (fam)amr = (o0g,, )1 for any M € M. Observe that fa is a
natural C-module isomorphism. Let us prove that f defines a morphism in
Z(¢Mod). We need show that f satisfies equation (4.16), that is

(4.19) (idro fa)mlor)v = (08 )m(fyoidr)um
for any C-module functor (F,d) : M — N and any M € M. The left hand
side of (4.19) is

(idpo frm)m(or) v = F((frm)m)(or)m

= (UF ORM)l
-1
= dy.ayu(ORron )1
= (0¥ ) (fmoid p)ur.
where the first equality is the composition of natural transformations and
the second equality follows from (4.15). The third equality follows from
the fact that o is a natural module transformation. That is, since d_ js :
FoRy — RF(M) is the mdule structure of F, we have (d_ roid v, )opor,, =
ORpn (1 vy 0d— ar) and therefore dy, (1) 1 (0Fory )1 = (0Rp )1 The last
equality is simply the definiton of J%o.
This proves that W& ~ Id z(,roq) - The proof of @W ~ Id z(c) is straight-
fordward.
Let us prove now that the functor ® is monoidal. Let us take two objects
(Va);0), (Wm), ) € Z(cMod). Then

D((Vm),0) @ @((Wpm),7) = (We(1) @ Ve(1), @),
where, according to (4.17), the half-brading of the tensor product of two
objects is
ax = (@) ®idy,q))(idw, 1) ® %)
for all X € C. On the other hand
((Vm), 0) @ (Wa), 7)) = (V@ W)e(1),a7®7)

where, according to (4.18), the half-braiding is
VoW, —
o7 =M (@ )yt

cy(“:’g/OWM = cy(‘iYVc(c;Vg,) forall X,Y €C,
and
(e @Y)r)m = (0r)wyonVa(vr)m),
for any C-module functor F : M — N and any M € M.
The monoidal structure of ® is defined as follows.

CCvaon(Wad ) - P(Va), )@V B(Wm), ) —= S((Var), 9)@(Wm), 7))
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Ve

[ _ —1
CVr o) (Wad) = (Cpyn)

Let us show that (% is a morphism in Z(C). For this, we need to prove
that it fulfills (2.19), that is

1)71)7

(4.20) ((C‘V/i(/jc(l),l)il ®id x)ax = Og(@’y(idx & (C‘I;‘}C(l)

)

for any X € C. The left hand side of (4.20) is

((C{‘//[gc(l);)il ® idX)aX = (idX ® (ngc(lhl)il)(a’yx ®id Vc(l))
(idwe ) ® a%)
= cYéWc(l)(c)Vf@WC(l),l)‘l(cKZi (Vry )1 ' @ id () (id w1y ® €Fq)

(idwe 1) ® (0rx )1 ")

= C;C,Wc(l)(C¥®WC(1)71)_1(0¥3 (Yry )1 ®id v, (1)) (id we) © c)Vf,l)cK&C(M
(@rx e (n) (it a)2) T @ idx)

= CE/(C,WC(l)(CE/(C®WC(1),1)_1(C)M(/,C1 ®id Vc(l))(('YRx)Il ®id Vc(l))ct‘//[gc(1)®x,1
(Or )i (€ 0),0) 7 @ idx)

= C;/(c,wc(l)(c¥®wc(1)71)71(6¥% ®id Vc(l))cl‘//{/jc(x),lVC((’YRX)Il)(URX);Vlc(l)

((C$C(1),1)_1 ® idX)
Ve

= Ve DV (17 ) O r by (H 1)) @1 x)

= a7 (idx @ (e (1)1)7"):

The first equality follows from the definition of a.x, the second and fourth
equalities follow from the axioms of ¢¥¢. The third equality follows from the
fact that for a given ¥ € C and Ry : C — C, op, is a natural module
isomorphism satisfiying (2.6), and the module structures of Vz o Ry and
Ry o V¢ are given by c;/(‘i zey and RY(C? ») for any X, Z € C. Then from
(2.6) we have

(idx ® (ory )7 ) @idy) = ¢y (o0ry )X

for all X,Y € C. The fifth and sixth equalities follow from the naturality of
CY‘fl, and the seventh follows from the definition of a5>".

It is straightforward that ¢® satisfies the axiom required for (®,(®) to be
a monoidal functor.

The proof of the equivalence Z(¢Mod,) ~ Z(C)™" follows mutatis mutan-
dis. ]
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We want to apply Proposition 4.11 to the 2-category of C-modules. Let
C be a finite tensor category and N be an indecomposable exact left C-
module category. Set D = (C3)"™". Then N is an invertible exact (C,D)-
bimodule category. Thus, we can consider the 2-equivalence N cMod, —
pMod, presented in Proposition 4.9. According to Proposition 4.11, this 2-
equivalence induces a monoidal equivalence &V : Z (cMod.) = Z(pMod.).
There is a commutative diagram of monoidal equivalences

(4.21) Z(Cye Z(D)rev
Z(eMod.) —P . 2(pMod,)

Equivalences in the vertical arrows come from Theorem 4.12, and the functor
0:Z(C) — Z(D) is given by §(V,0) : N = N, (V,0)(N) = VRN, for all
N € N. The functor € coincides with the one presented by Shimizu in [14,
Theorem 3.13]. See also [12].

5. THE ADJOINT ALGEBRA FOR FINITE 2-CATEGORIES

Throughout this section B will denote a finite 2-category. For any pair of
0-cells A, B of B we define the 1-cell

(5.1) L(A,B) = / *X o X € B(A, A).
XeB(A,B)

For any X € B(A, B) we shall denote by 7% : £(A,B) < *X o X the
dinatural transformations associated to this end.

Proposition 5.1. Assume that A, B,C are 0-cells. There exists a natural
isomorphism

o L(A,B)o X = X o L(C,B)
such that the diagram

7r<A’B)oidX
[,(A,B)OX—Y———> *YoYoX
(5.2) aﬁl TevXoid*YoYoX
XoL(C,B) ———— Xo0*Xo0*Y oY oX,
id Xow&i’f)

is commutative for any X € B(C,A),Y € B(A,B). With this map the
collection Adp = ((L(A, B) sepo),0B) is an object in the center Z(B) for
any 0-cell B € BY.

Proof. The end erB(A p) Y oY oX is equal to L(A, B) o X with dinatural

(A,B)

transformations m oid x. Since the maps

(evy oid+yoyox)(id x © Wg,i’)l?)) :XoL(C,B) —»"YoYoX
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are dinatural transformations, it follows from the universal property of the
end that, for any X € B(C, A), there exists a map o5 : X o L(C,B) —
L(A, B) o X such that

(5.3) (7T§/A7B) oid x)o% = (evy 0id+yoyox)(id x o W;C;’)lg)).

It follows easily that morphisms E’;} are natural in X. Let us prove that for
any Y € B(A, B)

(5.4) 78 ¢ = (68 oid x)(idy o 7%).

Let E be another O-cell, and Z € B(D, E) be a 1-cell. Then it follows from
(5.3) that

D,B C,B
(ng"? s ox):

. _B . .
0idyox)Tyox = (€Vyox 0id+zozovox )(idyox 0 T, 50«
On the other hand

(PP oidyox) (@2 0id)(id 0 7%) = (7P oidy)ol oid x)(id y 0 75)

(C.B)

= (eVy Oid*ZoZoyox)(idy O7TZO’Y Oidx)(idy OE_)B})

. . . . C,B
= (evy o id*zozoyox)(idy o evy o ld*(Zoy)OZoyox)(ld YoX O W(Zoygx)

Whence
(W(ZD’B) oidyox)Thex = (W(ZD’B) oidyox)(ay oid)(id o 7%).

Then, it follows from the universal property of the end, that equation (5.4) is
satisfied. It remains to prove that for any X the map E§ is an isomorphism.
The idea of the proof of this fact is taken from [5, Lemma 2.10].

For any X € B(C, A) define

ol = (id o evx)(id x 0 7% 0id x)(coevy oid).
One can prove, using the naturality of E)B}, the rigidity axioms and (5.4),
that O')B( is indeed the inverse of EJ;}. O

Remark 5.2. Keep in mind that in diagram (5.2) we are omitting the iso-
morphism *(Y o X) ~*X o *Y.

The particular choice of the dinaturals in the coend (5.1) does not change
the equivalence class of the object (Adg,oB) € Z(B). This is the next
result.

Lemma 5.3. Assume that for any 0-cell A € B°, ’y&?’B) :L(A,B) 5 *XoX

is another choice of dinatural transformations for this end. And let
n% : L(A,B)o X = X o L(C,B)

be the half-braiding associated with these dinatural transformations. Then
((L(A, B) aepo), 08), ((L(A, B) gcpo),nP) are isomorphic as objects in the
center Z(B).
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Proof. Since 7(4B) are dinaturals, there exists a map hy : L(A,B) —
L(A, B) such that the diagram

(5.5) L(A, B)
(A,B)
ha TX
/7<A,B> \
L(A,B) = *XoX

commutes. Let Adp = ((L(A, B) gep0),nP), and set h : Adp — Adp. Let
us check that A is a morphism in the center. We need to verify that, for any
1-cell X € B(A, B)

(5.6) (%) (id x o ha) = (haoid x)(c8)™ .

Let C be antoher 0O-cell, and Y € B(B, C). To prove (5.6), it is sufficient to
prove that

5.7) (WP oidx)(B) i x 0 ha) = (WP oid x)(ha oid x) (o)7L,

Using diagram (5.5), the right hand side of (5.7) is equal to
= (7P oid x)(oR)
= (evX 9 id*yOyO)()(idX o ﬂéﬁ}?))
The second equality follows from diagram (5.2). On the other hand, the left

hand side of (5.7) is equal to

= (evy oid «yoyox)(id x © 'y%"g)h/x)

= (evy 0id-yoyox)(id x o Ty ).

The first equality follows from diagram (5.2), and the second equality follows
from (5.5). O

In what follows, we shall introduce a product for Adg. For any 0-cell
B € B° define m®? : Adp®Adp — Adp, uP? : 1 — Adp as the unique
morphisms in Z(B) such that

B
my

L(A,B)oL(A,B) -,  [(AB)

(5.8) rPlon? | |=®

*XoXo*XoX — > *XolX,
id*XoeVXoidX

B
(5.9) In “ L(A, B)
(A,B)
*X o X,

are commutative diagrams, for any 0O-cell A and any X € B(A, B).
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Proposition 5.4. The object Adp with product m® and unit u® is an
algebra in the center Z(B).

Proof. We must show that

(5.10) mP (uP®id) = id = mP (ideu?),
(5.11) mB(mPxid) = m?P(id @m?P).
For any A € B? and any X € B(A, B) we have that
m BB 0id) = (id-x o evy oid x) (" o 7P (uf oid)
= (id+x oevx oid x)(coevx o 7[';?7B))
_ (AB)
=7y

The first equality follows from (5.8), the second one follows from (5.9). The
last equality is the rigidity axiom. Hence (5.10) follows from the universal
property of the end. To prove (5.11) it is enough to prove that for any
A€ B and any X € B(A, B)

WE?’B)m]j(m]j oid) = W?’B)mﬁ (id o mB).

Using (5.10)

W%’B)mﬁ(mﬁ oid) = (id«x oevx oid X)(ﬂ'g?’B)mE o W&?’B))
= (id+x oevxoid x)(id+x oevx oid x o id*XoX)(W(A’B) o ﬁg?’B) o WE?’B)).

On the other hand
WE(A’B)mﬁ(id om%) = (id-x oevy o idX)(W(A’B) o ﬂg?’B)mﬁ)

= (id«x cevy oid x)(id+xox 0id+x 0 evy o idx)(ﬂ'g?’B) o ﬂ'g?’B) o WE?’B)).
Since both are equal, we get the result. O

Definition 5.5. For any finite 2-category B and any 0O-cell B of B, Adp is
the adjoint algebra of B.

Lemma 5.6. Assume that B,C € BY are equivalent 0-cells. Then, the
adjoint algebras Adp, Adc are isomorphic as algebras in the center Z(B).

Proof. Since B and C' are equivalent 0-cells, there exist 1- cells X € B(B, ()
and Y € B(C, B) with isomorphisms o : X oY — Ic and f:Y o X — Ip.
Using Lemma 4.5 (iii) we get that Y = *X with evaluation and coevaluation
given by

coevy = 71, evy = a(id x o Boidy)(id xoy © oz_l).
Also X =*Y with evaluation and coevaluation given by

coevy = a1, evy = f(idy oaoid x)(idyox o B71).
Using remark 4.2, one can easily verify that
(5.12) *(BHoidyox =idy oaoidy,
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(5.13) idyoyoa=1idyoevy oidy.

For any 0-cell A let

A,B)

w B L(A,B) 5 *W oW, W eB(A,B),

and

¢ LA C) 57 Z0Z, ZeB(AC)
be the associated dinatural transformations to £(A, B) and L(A, C) respec-
tively. The dinaturality of 7 implies, that for any W € B(A, B)

(idew o B  oidw)my ™ = (idew o *(B71) 0 id yoxow)Tymemw

= (id oy o a0id XOW)W%J’)?&W.
Here, we have used (5.12). For any W € B(A, B) define
ow : L(A,C) =" WoW
Sw = (ideyy o Boid)eS).
For any Z € B(A,C) define
vz L(A,B) = *Z o Z

) . A,B
vz = (id+z oa01dZ)7T§,oZ).

It follows by a straightforward computation, that § and ~ are dinatural

transformations. By the universal property of the end, there exist maps

945 £(A,C) = £(A, B),
fa: L(A B)— L(A,C),
such that for any W € B(A, B), Z € B(A,C)
(5.15) miPga=ow, € fa=nz
Let us show that f4 is the inverse of g4. For any W € B(A, B) we have that
WI(/?’B)QAfA = 0w fa

= (idew o Boidw)eS) f4
= (id*w ofoid W)’YXOW

(5.14)

— (id-w o Boidw)(id«(xow) © @ 0 id xow)TUrE

= W%’B)

In the last equation we have used (5.14). This proves that gafa4 = id.
Analogously, one can prove that f4g4 = id. The collection (f4) defines an
isomorphism

f : .AdB — .Adc
Let us show that f is indeed a morphism in Z(B). For this, we must prove
that for any W € B(A, E)

(idw o fa)ol = oG (fr oidw).
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To prove this, it will be enough to see that

(5.16) D) oid ) (0G)  Hidw o fa)ol = (€5 fpoidw)
for any T € B(E, D). Using the definition of f, the right hand side of (5.16)

is equal to 'yé,E’D) oid . Using the definition of o€, the left hand side of

(5.16) is equal to

(eviv 0 id -gorow) (idw o E5an) (idw © fa)oty
= (eVW oid *ToToW)(idW ©) ’)’ToW)Ug/ =T © id w-

The first equality follows from the definition of f, and the second one follows
from the definition of ¢?. Let us prove now that f : Adg — Adc is an
algebra morphism. We need to show that

fam$ =mG(fao fa),

for any 0-cell A. Here m? is the multiplication of Adg. For this, it is enough
to prove that

AC AC

(5.17) £ famfl = €IS (£ 0 ),

for any 1-cell Z € B(A,C). Using the definition of f, the left hand side of
(5.17) is equal to

= ’yzmﬁ = (ld *7 O (Y O id Z)’]T(ZA7B)m§

= (id+zoaoidz)(id+zox 0 evyoz © idyOZ)(Wgﬁi’g) o ﬂ'g/i’g))
= (id+zoa(id x ocevy oidy) oid z)(id  zoxoy © €vz 0id xoyoz)
A,B A,B
(a7 omye7)
The second equality follows from the definition of «, and the third equality
follows from the definition of the product m® (5.8), and the last one follows
from the formula for evy,z. The right hand side of (5.17) is equal to

=(id«zoevzoidz)(§z0&z)(fao fa)
(A,B) (A,B))

=(id«zoevzoidz)(id+zoaocid zorz o oid z)(my ;" 0Ty,

(A,B) (A,B))

= (id*z oaowoid Z)(id*ZoXoY oevy oid XoYoZ)(TryJZ Oy Jy

The first equality follows from the definition given in (5.8) of m®, and the
second equality follows from the definition of f4. Now, that both sides of
(5.17) are equal is a consequence of (5.13). O

At this point, we have to verify that our definition of the adjoint algebra
of the 2-category ¢Mod coincides with the definition presented by Shimizu
n [14]. This is one of the main results of this work and it is stated in the
next result. Recall from Section 3 the definition, due to Shimizu, of the
character algebra A € Z(C) associated to any exact C-module category.
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Theorem 5.7. Let C be a finite tensor category and M be an exact indecom-
posable left C-module category. Let ® : Z(cMod) — Z(C) be the equivalence
presented in Theorem 4.12. Then ®(Adr) ~ Apn as algebra objects in
Z(C).

Proof. Since ®(Adny) = L(C, M)(1), we shall construct an isomorphism
¢: L(C,M)(1) - Apq and prove that it is an algebra morphism in Z(C).

Using Lemma 5.6, since any module category is equivalent to a strict
one, we can assume that M is strict. Recall from Section 2.3 the C-module
functor Ry : C — M, Ry (X) = X®M, X € C, and its right adjoint
R3} + M — C given by the internal hom *Ry = R} (N) = Hom(M, N),
M, N e M.

This induces an equivalence R : M — Fune(C, M), R(M) = Ry for
any M € M. Its quasi-inverse functor is H : Fune(C, M) - M, H(F) =
F(1). For any module functor (F,p) € Fung(C, M), define the natural
isomorphisms

a:RoH —1d,

(ar)x = (pxa)~ ",
for any X € C. Since M is strict, for any M € M, the functor Rj; has
module structure given by the identity. In particular
(5.18) ap,, =id.

We shall denote by ﬂg\[’M) : fFEFunc(N wmy FoF — *FolF the dinat-

ural transformations of the end L£(N, M). We also consider the dinatural
transformations

Nm - *RMORM%*RMORM.
MeM

Using Proposition 1.1 (ii), there exists an isomorphism

h:/ *Fol — >|<RMORM
FeFune (N, M) MeM

such that the following diagram commutes

* h *
fFGFunC(C,M) FoF fMEM Ry o Ry
(5.19) TF%C’M)l lnH(F)
*FoF ¢———— *Rpayo Rpay.

*((ap)~Hoar
Taking F' = Ry, for any M € M, and using (5.19), (5.18) we get that

Cc,M
(5.20) mrh =g,

Define the functor E : End¢(C) — C, E(F') = F(1). This functor is an equiv-
alence of categories. Since for any M € M we have that E(*Rys o Ry) =
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Hom(M, M), Proposition 1.1 (i) implies that there exists an isomorphism

ﬁ:/ Hom(M, M) —>E(/ *Rar o Rur),
Mem Mem

such that

(5.21) E(na)h = w3,

Recall from Section 3 the definition of the dinatural transformations 7M.
Define ¢ £(C, M)(1) =  fpeneie.nn FOF) (1)~ fyycq Hom(M, M),

as ¢ = (h)"LE(h). Using (5.20) and (5.21) we get that for any M € M

(5.22) e = B(rie) = (nig )1

Let us prove that ¢ is a morphism in the center Z(C). We need to show
that for any X € C

(5.23) oM(p2id x) = (id x®¢)a%.

Here oM is the half-braiding of the algebra A, as defined in Section 3.
Recall from the proof of Theorem 4.12 that

(I)((ﬁ(N?M)N)?U) = (E(CvM)Cl)?aa) S 2(6)7

where a“ is the half-braiding of £(C, M)(1), and it is defined by equation
(4.18), which in this case is

% L(C, M)(1)2X — XRL(C, M)(1),

LM -
af = CX(,1 )(URX)l .

where ¢“(©M) is the module structure of the module functor £(C, M), and
o is the half-braiding in Z(cMod) of the object L(N, M)
Using the universal property of the end, equation (5.23) is equivalent to

(5.24) (id x@mf)ox! (90id x) = (id x@my7) (id x©¢)a%,

for any X € C,M € M. Using (3.1), one gets that the left hand side of
(5.24) is equal to

= ax, b x ar xmn (s © id x)(¢®id x)

Cc,.M .
= aX,M,MbX,M,X@M((W%X@\iI)l ®id x).
Claim 5.1. For any X € M, M € M the following equations hold.
(5.25) axarr(miy )y = (idx@ ()1 e,

Proof of Claim. The functor *RyroRps : C — C is a C-module functor. Since
both *Rys, Ry are module functors, the module structure of the composition
is, according to (2.5), given by dxy : *Ryo Ry (X®Y) = X®RpyoRy(Y),
where

dxy = Ax MY®M:
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The natural transformation TI'E;:];[/VO : fFeFunc(N M) *FoF — *RyoRyis a

natural module transformation, this means that it satisfies (2.6), which in
this case is

CM . cM L(C,.M
dX’Y(Trg%M ))X®Y = (1dX®(7T1(QM ))Y)CXSY )
Taking Y =1 we obtain (5.25). O
Using (5.22), the right hand side of (5.24) is equal to
. M £(C,M _
= (ldx®(7T§aM ))1)CX(,1 N(ory)1

C,M -1
= axara (s ) x(0ry )T

The second equality follows from (5.25). Since ax as,a is an isomorphism,
equation (5.24) is equivalent to

c,M . c,M
(5.26) bxarxan (T o 1 ®idx)(ory )1 = (m )
Recall that the half-braiding ogr, is defined using diagram 5.2. In this

particular case, this diagram is

c,M) s
WE%M )oldRX

L(C, M) o Ry “Rus o Rug o Ry

(5.27) ”Rxl Tevaoid*RMRMRX

RxoL(C,M) ———— RxX o*Rxo*Ry 0 Ry o Ry,
ld RX Oﬁg’/\:})%
M X
for any X € C, M € M. Recall that, in this diagram the isomorphism
*(Ryr o Rx) — Rx+ o *Ryy is omitted. This isomorphism is described in
Lemma 4.8. Diagram (5.27) evaluated in 1 implies that

) cM
(eVRx ) Hom(n, x@M) (bﬁ(,M,XQM@ld x) (WR)@M o

1®@id x)(ory )1 = (T3, ')x

This implies equation (5.26). Let us prove now that ¢ : ®(Ady) — Apng is
an algebra map. Let us denote by

mM : Adp@Ady — Adpg

and m : Ap®Apr — Apg the corresponding multiplication morphisms. The
product of ®(Adx,) is given by

B(Ad )2 (Adpg) ¢ B(Adp@Adry) -

T~

P (Adm)

Recall from the proof of Theorem 4.12 the definition of ¢®. The map ¢ is
an algebra morphism if and only if

(5.28) m(¢0) = 6 (mM) (cpert 1) -
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Let M € M. Applying 73} to the left hand side of (5.28) one gets

Tim(¢®e¢) = compyf o (mife@mi)(¢20)

Cc,M Cc,M
= comp}f (mpy 1@ (xls ).

The second equality follows from (5.22). Now, applying 74/ to the right
hand side of (5.28) one gets

L(C,M —1 c,M L(C,M
o @ (m™M) (a0 wa) = () (mgha (e

As a direct consequence of Lemma 5.6 and Theorem 5.7, we have the
following result.

Corollary 5.8. Assume that M and N are equivalent ezact C-module cat-
egories. Then, the algebras A, An are isomorphic. O

Theorem 5.9. Assume that B,g are finite 2-categories. Let F : B — B
be a 2-equivalence, and let F : Z(B) — Z(B) be the associated monoidal
equivalence given in Proposition 4.11. For any O-cell B € B° there is an
isomorphism

as algebras in the category Z(B).
Proof. Let G : B — B be the quasi-inverse of F. Since 0-cells B, G(F(B)) are
equivalent, then, by Lemma 5.6 the algebras Adpg, Adgr(p)) are isomorphic.

We shall prove that there is an algebra isomorphism F (Adg(r(py)) = Adr(p)
Let 7 : Id — FogG, x : FoG — Id be a pair of pseudonatural equivalences,
one the inverse of the other. Hence x o7 ~idyq, and 7o x ~ id zog. For

any pair of 0-cells C, D € B°, X% € B(F(G(C),C), o € B(C, F(G(C)) are
1-cells, and for any 1-cell Y € B(C, D)
Xy 1Y oxg = xp o F(G(Y)),
Ty F(G(Y)) ot = 1h 0 Y.
In particular, for any 0-cell C € B we have that X% o TCQ ~ J. Thus we can
assume that *(72) = x%.
For any O-cell C' € BY define the functors
H: B(G(C),G(F(B))) = B(C. F(B)), H: B(C,F(B)) — B(G(C), B),
H(X) = X% 0 F(X) 018, H(Z) = G(2).
These functors are equivalences, one the quasi-inverse of the other. Define
also the natural isomorphism

a:?—lﬁ—)ld,

az =1id Lo oT
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for any Z € B(C, F(B)). Let C € B° be a 0-cell, then, using the definition
of F given in the proof of Proposition 4.11, we have that

F(Adgz(py))c = x& 0 F(LG(C),G(F(B)))) o 7

:/ H(X) o H(X).
XeB(9(C),G(F(B)))
Here we used that o is biexact and applied Proposition 1.1 (i). Also
(Ad}—(B))C = / _ *YOY
YeB(C,F(B))
Let
7 D (Adgp))e — Y oY
and

Ax :/ H(X) o H(X) = *X 0 X
XeB(G(C),6(F(B)))
be the associated dinatural transformations. As a space saving measure we

shall write Ty = %g(B)’C).

Since the functor H : B(G(C), G(F(B))) — B(C, F(B)) is an equivalence
of categories, using (the proof of) Proposition 1.1 (ii), we get that there is
an isomorphism

he : F(Adgrpy)c — (Adrm)c
such that

(5.29) (*(az") o az)(idye, o F(Ag ) 0id o) = 7z b,

for any Z € B(C,F(B)). Let us prove that h : ]?(Adg(}-(B))) — Adrp

defines an algebra map in the center Z(B). Let o and & be the half-braidings
of Adgr(p)) and Adr(p) respectively. To prove that h is a morphism in the
center, we need to show that equation

(5.30) (GE) "1 (id 5 0 hC) = (WP oid 2)F((cP) )4

is satisfied for any 1-cell Z € B(C, D). Recall that the definition of .7?(0*1) is
given in the proof of Proposition 4.11. To prove equation (5.30) it is enough
to prove that

(5.31)  (Fy oid 2)(G2) " (id z 0 hY) = (Ry oid 2)(hP oid z)F(c™ 1) .

for any 1-cell Y € B(D, F(B)). Using (5.2), we obtain that the left hand
side of (5.31) is equal to

= (evz 0 id «yoyoz)(id 7 0 Fyoz)(id z o h®)

= (eVZ o id*yOYoz)(idZ o *(T;(}Z) o TYoz)(id o .F(/\g(y)og(z)) o id).
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The second equality follows from (5.29). Next, as a space saving measure,
we shall denote B¢ = erB(g(C),g(f(B))) *H(X)oH(X). Using (5.29) we get
that the right hand side of (5.31) is equal to

= ("(ay") o ay 0id 2))(id g o F(Azyy) 0 id g oz) F((07) 1)z

= ("(ry) o1y 0id 2)(id o © F(Azy) 0 id 10,02) (id 0 o 7(15,) © 72)

(id o }—(Ug—(ly)) oid)(xz ° id]:(EC)OTg)

= ("(ry") oy 0id 2)(id 9 o 7(g(2))07 (6 (2)) © T2)

(id o © Frgey)) © i rg(z)y000)(id 0 Flogly) 0id)(xz 0 id (i yors)

= ("(ry") o7y 0id 2)(id 0 o+ 7(g(2))0 7 (6(2)) © T2)

(id o ]:((/\Q(Y) oid )U(E(ly)) oid)(xz oid ]—‘(Ec)org)

= (*(ry") oy 0id 2)(id 0 72)(id © F(evg(z) oid )(id o F(Agryeg(z)) 0 id)
(xz ©1d £(gayor)

= (*(ry") o1y oid z)(id o 72)(id 0, © F(G(evz))(xz o id-r(g(z)) © id)

(id zoy0, © F(Ag(v)og(2)) 0 id 1)
The second equality follows from the definition of F (071), and the fifth
equality follows from (5.2). The naturality of x implies that for any 1-cell
Z € B(C,D)

(id N F(G(evg)))xzorz =evzoid NE
Using (4.3) this equation implies that
(5.32)
(id 9, © F(G(ev2)))(xz 0 id - pgz))) = (evz oid g )(id 7 © X7 7)
= (evzo idx%)(idz o*(17)71).

Note that in the second equality we have used Lemma 4.6. Now, continuing
with the right hand side of (5.31), and using (5.32) we get that it is equal
to

= (*(7';1) oty oidz)(id o7z)(evz oid))(id z o *(7’21) oid)
(id zoy0, © F(Ag(v)og(z)) ©1d 10 ).
Using (4.3) for 1y.z we see that both sides are equal, and h defines a mor-
phism in the center. Let us prove now, that h defines an algebra morphism.
Let m : Adrp)®@Adrp) — Adrp) be the multiplication map. Also, if
m : Adg(rp)®AdgF)) — Adg(Fp)) is the product of the adjoint alge-
bra, then the product for ]?(.Adg(]:(B))) is

id o, o F(me) oid o,
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for any O-cell C € B°. Hence, we need to show that

(5.33) h€(id o, 0 F(me) 0id 19) = mc(hS 0 hY),
for any O-cell C € B°. For this, it is enough to prove that
(5.34) 7zh€(id o, 0 F(me) 0id 1) = Tzme(hC o hC),

for any 1-cell Z € B(C, D). Using (5.29), we get that the left hand side of
(5.34) is equal to

= (*(a}l) oayz)(id N ]:()\ﬁ(z)mc) oid Tg)

= (*(0521) o OéZ) (idX% o ./_"((ld *G(Z) o eVg(Z) o ldg(z))()\g(z) o )\g(z))) o idTg)
= (*(0521) o Oéz) (ld o f(ld “G(Z) o eVg(Z) oid g(Z))f(Ag(Z) o AQ(Z))) oid )
The second equality follows from the definition of the product of the adjoint

algebra given in (5.8). Also, using (5.8) we get that the right hand side of
(5.34) is equal to

= (id+z o evy 0id z)(Fzh® o 7zh")
= (id«zoevgo idz)(*(agl) oayzo *(a}l) o aZ)(id o F(Ag(z) © Ag(z))) eid).

The second equality follows from (5.29). It follows from (5.32) that both
sides are equal. O

Applying Theorem 5.9 to the 2-category of representations of a tensor
category, and using Theorem 5.7, we get the next result.

Corollary 5.10. Let C, D be finite tensor categories. Assume that N is an
invertible (D, C)-bimodule category, and M be an indecomposable left exact
C-module. There is an isomorphism of algebras

Q(AM) = AFunc(N,M)'
Here 0 : Z(C) — Z(D) is the monoidal presented in equivalence (4.21). O
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