THE CHARACTER ALGEBRA FOR MODULE
CATEGORIES OVER HOPF ALGEBRAS

NOELIA BORTOLUSSI AND MARTIN MOMBELLI

ABSTRACT. Given a finite dimensional Hopf algebra H and an exact
indecomposable module category M over Rep(H ), we explicitly compute
the adjoint algebra A, as an object in the category of Yetter-Drinfeld
modules over H, and the space of class functions CF(M) associated
to M, as introduced by K. Shimizu [14]. We use our construction to
describe these algebras when H is a group algebra and a dual group
algebra. This result allows us to compute the adjoint algebra for certain
group-theoretical fusion categories.

INTRODUCTION

In the paper [13], the author introduces the notion of adjoint algebra A
and the space of class functions CF(C) for an arbitrary finite tensor category
C. The adjoint algebra is defined as the end [ yee X®X™. The dual object
AZ is a crucial ingredient in Lyubashenko’s theory of the modular group
action in non semisimple tensor categories [8], [9].

Both, the adjoint algebra and the space of class functions, are interest-
ing objects that generalize the well known adjoint representation and the
character algebra of a finite group. In [13] many results concerning table of
characters, conjugacy classes, and orthogonality relations of characters in
finite group theory have been generalized to the setting of fusion categories.
Also, in [15] the adjoint algebra was used to develop a theory of integrals
for finite tensor categories.

Assume M is an arbitrary module categories over a finite tensor category
C. In [14], the author introduces the notion of adjoint algebra A, and the
space of class functions CF(M) associated to M, generalizing the definitions
given in [13]. The main task of this paper is the explicit computation of
those objects in the particular case C is the representation category of a

finite dimensional Hopf algebra.

Assume that C is a finite tensor category, and M an exact left C-module

category with action functor ® : C x M — M. Then, we can consider the
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functor py : € = Rex (M), pm(X)(M) = XM, X € C, M € M. Here
Rex (M) denotes the category of right exact endofunctors of M. The right
adjoint of the action functor is p%% : Rex (M) — C, explicitly described as

J(F) = /M  Hom(M, F(A)),

for any F' € Rex (M) [14, Thm. 3.4]. Here for any M € M, Hom(M, —)
is the right adjoint of the functor C — M, X — X®M. It is called the
internal Hom of the module category M. The adjoint algebra is defined
as Ay = p%(Id p¢). This object has a half-braiding oap(X) : Ay @ X —
X®Ap defined as the unique morphism in C such that the diagram

Tm(XBM)eid v

Apm @ X End(X®M) ® X
om(X) ~
X @ Aw T X Hom (M, M) —=—~ Hom(X®M, M)

is commutative. Here ma(M) : Ay — Hom(M, M) is the dinatural trans-
formation of the end Ay Turns out that (Axg, on) is a commutative al-
gebra in the Drinfeld center Z(C). Although this description of the half-
braiding of A, is rather clear, for us it was complicated to use it to make
calculations in particular examples. However, there is another way of de-
scribing this structure.

If B is a C-bimodule category, one can consider the relative center Z¢(B).
When C is considered as a bimodule over itself, the relative center coincides
with the Drinfeld center. The correspondence B — Z¢(B) is in fact part of
a 2-functor

Ze : cBimod — Aby,

where ¢Bimod is the 2-category of finite C-bimodule categories, bimodule
functors and bimodule natural transformations, and Aby is the 2-category
of finite abelian k-linear categories. Both categories, Rex (M) and C are
C-bimodule categories. Turns out that p has a C-bimodule structure [14,
Section 3.4]. Applying the 2-functor Z; one obtains a functor Z¢(p%) :
Ze(Rex (M)) ~ Ciy — Z(C). Hence (A, onm) = Ze(piy)(Id aa).

Assume H is a finite dimensional Hopf algebra. If M is an exact inde-
composable module category over Rep(H ), we describe explicitly the adjoint
algebra (A, oa) and the space of class functions CF(M). For this pur-
pose, we need to explain all ingredients in the construction of those objects.

Our description of both algebras relies heavily on the explicit description of
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module categories over Hopf algebras. In Section 3 we embark on this task.
Module categories over Rep(H) are categories x M of finite dimensional left
K-modules, where K are certain H-comodule algebras. We also recall how
to describe module functor categories, and that there is a monoidal equiv-
alence Rep(H)* ,( ~ [t M. This equivalence will be used when explaining
the functor Z¢(p'y). Another ingredient is the internal Hom. In this section
we also describe, in a precise way, the internal Hom of the module cate-
gory M. In Section 4, after recalling the definitions of [14], for an object
P e g/\/l K, representing a module functor in Fp € EndRep(H)(KM), we

explictly give the structure of the functor

Fp— Hom(M, Fp(M)).
MeM
For this we compute, in an explicit way, the end [,,_, Hom(M, Fp(M))
as an object in the category #YD of Yetter-Drinfeld modules over H. In
Section 5, we illustrate this description in the particular cases when H is a
group algebra or its dual. As a direct consequence, we compute the adjoint
algebra and the space of class functions for certain group-theoretical fusion

categories.

1. PRELIMINARIES

Let k be an algebraically closed field. All algebras are assumed to be over
k. If A is an algebra, we shall denote by 4 M (respectively M 4) the category
of finite dimensional left A-modules (respectively right A-modules). If A, B
are two algebras, we shall denote by M 4 the category of finite dimensional
(B, A)-modules. From now on, all categories are assumed to be abelian k-

linear, and all functors are k-linear.

1.1. Hopf algebras. For a Hopf algebra H, we shall denote by A : H —
H®H the comultiplication, S : H — H the antipode, and ¢ : H — k the
counit. We shall use Sweedler’s notation: A(h) = h1)®h), h € H. The
category g M has a canonical structure of tensor category with monoidal
product given by ®;. We shall denote this tensor category by Rep(H).

For a finite dimensional Hopf algebra H, we shall denote by #YD the
category of finite-dimensional Yetter-Drinfeld modules. An object V € 2y D
is a left H-module - : H®,V — V', and a left H-comodule \ : V — H®,V
such that

(1.1) Al -v) = hayvS(he)®he) - V),



4 BORTOLUSSI AND MOMBELLI

forany h € Hyo € V.IfV € £YD, themap ox : V@, X — X®,V, given by
ox(v®x) = v(_1) - T®V(g) is a half-braiding for V, and this correspondence
establishes a monoidal equivalence YD ~ Z(Rep(H)).

1.2. Finite categories. A category C is finite [4] if

e it has finitely many simple objects;
e ecach simple object X has a projective cover P(X);
e the Hom spaces are finite-dimensional;

e cach object has finite length.

Equivalently, a category is finite if it is equivalent to a category s M for
some finite dimensional algebra A.

If M, N are two finite categories, and F': M — N is a functor, we shall
denote by F'* F™ : N' — M, its left adjoint, respectively right adjoint of
F, if it exists. We shall also denote by Rex (M, N) the category of right
exact functors from M to V.

1.3. Ends and coends. We briefly recall the notion of end and coend. The
reader is referred to [10]. Let C, D be categories, and let S, T : CP x C —
D be functors. A dinatural transformation & : S = T is a collection of

morphisms in D
ExS(X,X)—->T(X,X), Xec,
such that for any morphism f: X — Y in C
(1.2) T(idx,f)oéxoS(f,idx)=T(f,idy)o& o S(idy, f).

An end of S is a pair (E,p) consisting of an object E € D and a dinatural
transformation p : F = S satisfying the following universal property. For
any pair (D, ¢) consisting of an object D € D and a dinatural transformation
q: D = S, there exists a unique morphism h : D — FE in D such that
gx = px o h for any X € C. A coend of S is the dual notion of an end,
this means that it is a pair (C,7) consisting of an object C' € D and a
dinatural transformation 7 : S = C' with the following universal property.
For any pair (B,t), where B € D is an object and ¢ : S <> B is a dinatural
transformation, there exists a unique morphism h : C' — B such that h o
mx = tx for any X € C.
The end and coend of the functor S are denoted, respectively, as

S(X,X) and /XGCS(X,X).

XeC



THE CHARACTER ALGEBRA FOR HOPF ALGEBRAS 5
2. REPRESENTATIONS OF TENSOR CATEGORIES

For basic notions on finite tensor categories we refer to [2], [4]. Let C be
a finite tensor category over k. A (left) module over C is a finite category
M together with a k-bilinear bifunctor ® : C x M — M, exact in each
variable, endowed with natural associativity and unit isomorphisms

mxyy: (X QY@M — XR(YRM), {y:18M — M.
These isomorphisms are subject to the following conditions:

(21)  mxyzem Mxev,zyu = (id x®@my z ) mx yezu(oxy,z®id a),

(2.2) <1d X@lM)mXYLM = Tx®id M,
for any X,Y,Z € C,M € M. Here « is the associativity constraint of C.

Sometimes we shall also say that M is a C-module or a C-module category.

Let M and M’ be a pair of C-modules. A module functor is a pair (F,c),
where F': M — M’ is a functor equipped with natural isomorphisms
exm F(XQM) - XQF (M),
X €C, M € M, such that for any X,Y € C, M € M:

(2.3) (id x®cy,m)ex yau F(mxym) = mxy,ron) Cxay,m

There is a composition of module functors: if M” is another C-module
and (G,d) : M’ — M" is another module functor then the composition

(2.5) (GoFe): M — M", exm = dx,pory © G(ex,m),

is also a module functor.

A natural module transformation between module functors (F,c) and
(G,d) is a natural transformation 6 : F' — G such that for any X € C,
M e M:

(26) dX,MeX@M = (idX®HM)cX,M.

Two module functors F,G are equivalent if there exists a natural module
isomorphism 0 : F' — G. We denote by Fung(M, M') the category whose
objects are module functors (F, ¢) from M to M’ and arrows module natural

transformations.
Two C-modules M and M’ are equivalent if there exist module functors

F-M— M, G: M — M, and natural module isomorphisms Id r¢ —
FoG,Idy — GoF.
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A module is indecomposable if it is not equivalent to a direct sum of
two non trivial modules. Recall from [4], that a module M is ezact if for
any projective object P € C the object PQM is projective in M, for all
M e M. If M is an exact indecomposable module category over C, the dual
category Ch, = End¢(M) is a finite tensor category [4]. The tensor product
is the composition of module functors.

A right module category over C is a finite category M equipped with an
exact bifunctor ® : M x C — M and natural isomorphisms

myxy : M(XQY) - (MX)QY, ry: Ml — M
such that

2.7)  Mmysxyz Muxyez(idy®axyz) = (Myxy®id z) M, xey,z,

(28) (TM®1d X)mM,l,X =id M@lX

If M, M’ are right C-modules, a module functor from M to M’ is a pair
(T,d) where T': M — M’ is a functor and dyx : T(M®X) — T(M)®@X
are natural isomorphisms such that for any X,Y € C, M € M:
(2.9) (dyx®idy)dygxyT (maxy) = mron,x,y du,xeys
(210) (M) dM,l = T(TM)

Assume that M, N are categories, F' : M — N is a functor with right

adjoint G : N'— M. We shall denote by € : FoG — Idy, n:Id yy — GoF,
the counit and unit of the adjunction. The next result will be needed later.

Lemma 2.1. [5, Lemma 2.11] The following holds.
(i) If M, N are left C-module categories and (F,c) : M — N is a
module functor then G has a module functor structure given by
exn = Gid x®en)G(ex o)) xaan),
forany X € C, N e N.
(ii) If M, N are right C-module categories and (F,d) : M — N is a
module functor then G has a module functor structure given by
h]_v,lx = G(en®id x)G(daw),x)Nanyzx
forany X € C, N € N. O
2.1. Bimodule categories. Assume D is another finite tensor category. A

(C, D)—bimodule category is a category M with left C-module category and

right D-module category structure together with natural isomorphisms

(2.11) Ty (XBM)BY — XB(MEY),
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X el Y €D, M e M, satistying

(2.12) (XY)BM)B®Z —— (XQY)R(MRZ)
ml®id \L
(XB(YBM))®Z il

XR((YeM)®Z) e XR(YR(MR2)),

(2.13) (XBM)B(YRZ) — = XB(MB(YRZ)) ,

m’

®
((X@MJ)/ RY)RZ idom"
~eid l

®

(XBMBY))@Z — XB(MBY)BZ),

(2.14) 1eM)e1 s (M®1)
reid 4 l
M®1 M
id 1®7r M \L
M 18M,
I

where m! and m” are the associativity isomorphisms of the left, respectively
right, module category. If M, N are (C, D)—bimodule categories, a bimodule
functor is a triple (F,c¢,d) : M — N, where (F,c) is a C-module functor,
(F,d) is a D-module functor and equation

(2.15)  yx,po)y (exu®idy)dxgyy = (d x®@dary )ex pay F (vx,00y),

is fulfilled for any X € C, Y € D, M € M.

It is known that M is a (C,D)—bimodule category if and only if it is
a left C X D°P-module category, and a bimodule functor is the same as a
C X D°P-module functor. See for example [7].

If M, N are left C-module categories, then Rex (M, N) is a C-bimodule
category as follows. If X € C, F € Rex (M, N), M € M, then

(2.16) (XBF)(M) = XBF(M), (FEX)(M) = F(X®M).
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2.2. The internal Hom. Let C be a tensor category and M be a left C-
module category. For any pair of objects M, N € M, the internal Hom is an
object Hom(M, N) € C representing the functor Hompy (=@M, N) : C —
vect . This means that there are natural isomorphisms, one the inverse of
each other,

¢z - Home(X, Hom(M, N)) — Homp (X®M, N),
Uarn : Hompy(X®M, N) — Home (X, Hom(M, N)),
for all M, N € M, X € C. Sometimes we shall denote the internal Hom of
the module category M by Hom,, to emphasize that it is related to this

(2.17)

module category.
For any X € C, M, N € M define

coevyly, : X — Hom(M, X®M), evy!y : Hom(M, N)@M — N,

M X . M Hom(M,N)
COCVx pp = wM,X@M(ld X&M), eV N = Z\/})% (ld Hom(M,N))-

Define also fy; = evif ;(id tom (a1, ®eviy 5,), and
compy : Hom(M, M)®Hom (M, M) — Hom (M, M),

Hom (M, M)®Hom (M, M
CompM _wMOM Jetom( )(fM)‘

It is known, see [4], that Hom (M, M) is an algebra in the category C with
product given by compi}}.

2.3. The relative center. Let C be a tensor category and M a C-bimodule
category. The relative center of M is the category of C-bimodule functors
from C to M. We denote the relative center of M by Z:(M) . Explicitly,
objects of Z¢(M) are pairs (M, o), where M is an object of M and

ox : MRX = XM
is a family of natural isomorphisms such that

(2.18) le%MOX@)y = (Id x®oy ) yxmy (ox@id y)miy, vy,
where yx vy 1 (XQM)®Y — XR(M®Y') are the associativity constraints
of the left and right actions on M, see (2.11). The isomorphism ¢ is called
the half-braiding for M.

As explained in [14, Section 3.6], the relative center can be thought of
as a 2-functor

Ze : eBimod — Aby,

where ¢Bimod is the 2-category whose 0-cells are C-bimodule categories,
1-cells are bimodule functors and 2-cells are bimodule natural transfor-
mations. Also Aby is the 2-category of finite k-linear abelian categories.
If M, N are C-bimodule categories, then Z¢(M) is the relative center. If
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(F,c,d) : M — N is a bimodule functor, then Z¢(F) : Zc(M) — Z¢(N) is
the functor Z¢(F)(M,o0) = (F(M),0), where ox : F(M)®@X — X®F(M)

is defined as

(2.19) ox = exuF(ox)dy x,

for any X € C.
The following example is [14, Example 3.11].

Example 2.2. If M, N are exact C-module categories, then Rex (M, N)
is a C-bimodule category, see (2.16). In this case there exists an equivalence

Ze(Rex (M, N)) ~ Fune (M, N).

Example 2.3. When C is considered as a C-bimodule category, then Z¢(C) =
Z(C) is the usual center of the category C.

Remark 24. If (X,0) € Z(C) and M is a left C-module category, then
the functor L(x,) : M — M given by Lx (M) = X®M is a C-module
functor. The module structure is given by

a7 XB(YBM) - YR(X®M),

(X,O’) _ o —1
Cym = my,x,m(oy ®id M)mX,Y,Mv

forany X, Y € C, M € M.

Definition 2.5. For any exact indecomposable left C-module category M,
we shall denote by

Fam: 2(C) = Chn (Vio) >V,
the forgetful functor. In particular F¢ : Z¢(C) — C is the usual forgetful

functor.

2.4. Morita invariance of the Drinfeld center. Let M be an exact in-
decomposable module category over C. Using results of P. Schauenburg [12],
K. Shimizu proved in [14, Section 3.7] that there exists a braided monoidal
equivalence
Orm - Z2(C) = Z(Chy)-

For later uses, we shall recall the definition of this equivalence. Let (V,0) €
Z(C). Then Opq(V,0) : M — M is the functor defined as 0 (V,0)(M) =
V@M, for any M € M. The module structure of the functor G, (V, o) is

exr i Om(V,0)(XQM) =VR(XM) - X@(VRM),
given by the composition

—~1 —
My x, M ox aid mXx,v,M

VR(XOM) —— (VRX)M —— (XQV)@M ——— XQ(VRM).
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Then 0,,(V, o) becomes a C-module functor. It remains to explain how the
functor Or((V, o) is an object in the center of C},. For any (F,d) € C}, we
have to define a half-braiding 7(rq) : Om(V,0) o (F,d) = (F,d) o Op(V, 0).
This is the module natural transformation defined by

(2.20) (e s : VEF(M) — F(VEM),  (Tra)m = dyy,
for any M € M.

3. MODULE CATEGORIES OVER HOPF ALGEBRAS

Throughout this section H will denote a finite dimensional Hopf algebra.
We shall present families of module categories over Rep(H ), and compute
explicitly its internal Hom and their module functor categories.

IfAN: K - HRK is a left H-comodule algebra then the category of
finite-dimensional left K-modules xM is a module category over Rep(H)
with action ® : Rep(H) X ykM — gM, XQM = X®M, for all X €
Rep(H), M € gM. The left K-module structure on X®M is given by A,
that is, if k € K, x € X, m € M then

k- (x@m) = A(k) (e@m) = k1 - 2k - m.

Theorem 3.1. [1, Prop.1.20] If K is right H-simple then xM is an exact
indecomposable module category over Rep(H). Moreover, if M is an ezact
indecomposable module category over Rep(H), there exists a right H-simple

left H-comodule algebra K, with trivial coinvariants, such that M ~ g M.
O

Remark 3.2. If K, S are isomorphic H-comodule algebras, then the cate-
gories gk M, g M are equivalent as Rep(H )-module categories. The converse

is not always true.

3.1. The internal Hom. We shall explicitly compute the internal Hom of
module categories over Rep(H).

If M, N are left K-modules, then the space Hom g (H®y M, N) has a left
H-action given by

(h-a)(t®m) = a(them),

for any h,t € H, « € Homg(H®xM, N), m € M. We can identify the space
Homg (H®y M, N) with the subspace of H*®y Homy (M, N) consisting of
elements ) . fi®T; € H*®, Homy (M, N) such that

(3.1) Z<fl, nh > Ti(key-m) =Y _ < fi,h > k-T(m),

i
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for any h € H, k € K, m € M. An element ) . f;®T; is seen as a map
from H®yM to N, sending h@m to > . < fi, h > T;(m). We shall freely use
this identification from now on. Condition (3.1) says that this morphism is
a K-module map.

For any K-module M, the space Homy (H®y M, M) has an algebra struc-
ture as follows. If >, fi®T;, >, g;®U; are elements in Homy (H®@xM, M),
the product is defined by

i J .3
The proof of the next result is straightforward.

Lemma 3.3. With the product described in (3.2), Homy(H®yxM, M) be-

comes an H-module algebra. U

Lemma 3.4. Let M, N € xM, and Hom(M, N) the internal Hom of the
module category xM. There is an isomorphism of H-modules

Hom (M, N) ~ Homg (H®x M, N).
When M = N this isomorphism is an H-module algebra isomoprhism.

Proof. Let X € Rep(H). The maps
¢ : Hompy (X, Homg (H®xM, N)) — Homg (X®xM, N),

Q/J : HOIHK(X(X)kM, N) — HOIIIH(X, HOIHK(H(XJkM, N)),

defined by ¢(a)(z@m) = a(zx)(1@m), ¥(B)(z)(h@m) = [(h - x®@m), for
any h € H, x € X, m € M, are well-defined maps, one the inverse of each
other. It follows straightforward that, when M = N, this isomorphism is an
algebra map. O

3.2. Module functors. Given two H-comodule algebras K, S, we shall
explicitly describe the category of Rep(H )-module functors between the
associated module categories.

Under these hypothesis, we shall denote by # Mg the category of finite-
dimensional (S, K')-bimodules that are also left H-comodules, with comod-
ule structure a morphism of (S, K)-bimodules.

Proposition 3.5. Asumme K, S are right H-simple left H-comodule alge-
bras, and g M, sM the corresponding Rep(H)-module categories. There are

equivalences

Rex (x M, sM) ~ s Mk, FUDRep(H)(KM,SM) ~ I M.
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Proof. We shall only explain the definition of the equivalences. For the com-
plete proof see [1, Prop.1.23]. The first equivalence is a consequence of a
Theorem of Watts, see [16]. The functor ® : My — Rex(xM, sM),
®(B)(M) = Bk M, is an equivalence of categories.

If P € gMg, define Fp : y M — gM the functor given by Fp(M) =
P®g M. The correspondence P — Fp is an equivalence of categories.

If Pe iMg, X € Rep(H), M € M the functor Fp has a module

structure as follows
cxm PO (X@M) = XQk(PRgM),

cx m (PRT @mM) = p(_1y -+ T @ p(oy@m,
for any p € Pio € X,;m € M. Here the map A : P — H®P, \(p) =
P(-1)®P(0), is the left H-coaction of P. O

The next result is a direct consequence of Proposition 3.5.

Corollary 3.6. Let K be a right H-simple left H-comodule algebra. There
15 a monotdal equivalence
Rep(H)' =~ A M.
0

Assume K, S are H-comodule algebras. The category s M i has a Rep(H)-
bimodule structure as follows. If P € ¢Mf , X € Rep(H), then

X@P = X@uP, POX = Pog(X@nK).
The (S, K)-action on the spaces X®@P, PRX are
s- (x®p) -k = s_1) - 2@5(0) - p - k,
s - (p@(x@l)) - k = s - p@(z®Ik),
for any s € S,k,l € K,p € P,x € X. The natural isomorphisms relating
both actions are given by
(3.3)

Vx.py : (XBP)®Y — X®(PRY), vx py ((2@p)®(yok)) = 1@ (pRy2k),
for any XY € Rep(H), P € sMg,z € X,y €Y,pe P, k € K. It follows
by a straightforward computation that the maps vyx py satisfy (2.12), (2.13)
and (2.14).

Recall that Rex (x M, M) has a Rep(H )-bimodule category structure,
see (2.16). The proof of the next lemma follows straightforward.

Lemma 3.7. The equivalence Rex (x M, sM) ~ s My presented in Propo-

sition 3.5 is an equivalence of Rep(H )-bimodule categories. O
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3.3. The center of dual tensor categories. In Section 2.4, for any ex-
act C-module category M we presented an equivalence of braided tensor
categories Ox : Z(C) — Z(Cxy)- In this section, we shall explicitly give this
equivalence in the case C = Rep(H) and M = xM for a right H-simple
left H-comodule algebra K. For this, we shall use the monoidal equivalences
Z(Rep(H)) ~ §YD, and Rep(H)* \, ~ M. The last one presented in
Corollary 3.6.

Set O =0, 0 : BYD — Z(HEMg). It V € ZYD then 0, (V) = Vg K.
The K-bimodule and left H-comodule structure are given by

k- (v®t) - s = k(,l) . U®k‘(0)t8,

A(v®1) = vt 1)@V @),
for any v € V, t, k, s € K. The half braiding of the object V&K is given
by
op: (Ve K)@kP — Pog(VarK),
op (vtRp) = (L p)y@S™ (¢ p)(-p) - v®1
for any P € My, v e V,pe P, t € K. This formula comes from (2.20).

4. THE CHARACTER ALGEBRA FOR REPRESENTATIONS OF Rep(H)

Given a finite dimensional Hopf algebra H, and M a representation of
the tensor category Rep(H). We aim to compute the adjoint algebra A,
and the corresponding space of class functions as introduced by K. Shimizu
[13], [14].

4.1. The adjoint algebra and the space of class functions. Let C be
a finite tensor category, and let M be an exact indecomposable left module
category over C. We shall further assume that M is strict. First, we shall
recall the definition of the algebra Ay € Z(C).

The action functor prs : C — Rex (M) is

pm(X)(M)=XeM, XeC,Me M.

It was proven in [14, Thm. 3.4] that the right adjoint of pa4 is the functor
P s Rex (M) — C, such that for any F € Rex (M)

p(P) = [ Hom(M.F(M)).
MeM
The counit and unit of the adjunction (pa, piy), will be denoted by

€1 PpMO Py %IdRex(M)’ n:Ide = ply o pm.
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According to Lemma 2.1 the functor p'fy has a structure of C-bimodule

functor as follows. The left and right module structure of p are

Ex 1 PMXBF) = X®piy(F),

-1 ra /s —

<§é(F) = IOM(ldX®6F)T}X@p§a(F)7

Expt Pm(FRX) = pif (F)®X,

T -1 ra =
(£X,F) :PM(€F®1dX)77p§a(F)®X7
for any X € C, F' € Rex(M). This description appears in [14, Equation
A9].

Since the functor pi : Rex (M) — C is a C-bimodule functor, we can

consider the functor Z¢(p%) : Ende(M) — Z(C). Here Z¢ is the 2-functor
described in Section 2.3.

(4.1)

(4.2)

Definition 4.1. [14, Subsection 4.2] The adjoint algebra of the module
category M is the algebra in the center of C, An := Z(p7)(Id () € Z(C).
The adjoint algebra of the tensor category C is the algebra Ae of the regular
module category C.

It was explained in [14, Subection 4.2] that the algebra structure of
Apq is given as follows. Let ma : Ay = Hom(—, —) denote the dinatural
transformation of the end Ax . The product and the unit of Ay, are

mm :AM®AM—>AM, Um - 1_>AM7
defined to be the unique morphisms such that they satisfy
(43 (M) o mpg = compyf o (mp(M)@mar(M)),
' Tam(M) o upg = coevyyy,

for any M € M. For the definition of coev™ and comp™ see Section
2.2.

Definition 4.2. [14, Definition 5.1] The space of class functions of M is
CF(M) = Homc(]:c(.AM), 1) = Homg(c)<AM,Ac).

The following result will be useful when computing the adjoint algebra
in particular examples. The first three statements are contained in [13], [14].

Lemma 4.3. Let M be an exact indecomposable C-module category. The
following statements hold.
(i) If I : C — Z(C) is a right adjoint to the forgetful functor F : Z(C) —
C, then Ac ~ I(1).
(ii) There exists an isomorphism Acy, =~ Opm(Am) as algebra objects in
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(m) CF(C;‘M) ~ Endg(c)(.AM).
(iv) FPdim (Ax) = FPdim (C).

Proof. Recall that O, : Z(C) — Z(C},) is the braided equivalence presented
in Section 2.4.

It is proven in [14, Corollary 3.15] that the functor Oy o Z(p’Y) is the
right adjoint of the forgetful functor F¢; . Taking M = C, this implies part
(i), and taking arbitrary M follows part (ii).

(iii). This is [14, Theorem 5.12].

(iv). Let F' : Z(C) — C be the forgetful functor, and I : C — Z(C) its
right adjoint. It was proven in [2, Proposition 7.16.5 | that FPdim (/(1)) =
FPdim (C). Hence FPdim (A¢) = FPdim (C), for any finite tensor category
C. Applying this result to C}, we obtain that

FPdim (Ax) = FPdim (Ac; ) = FPdim (C},) = FPdim (C).
The first equality follows from part (ii), and the last one is [4, Corollary
3.43). O

4.2. The adjoint algebra for module categories over Hopf algebras.
Let H be a finite dimensional Hopf algebra. Let K be a finite-dimensional
left H-comodule algebra. The category xM is a left Rep(H)-module cat-
egory. See Section 3. We aim to compute Ax = A, ¢ as an algebra in
the category YD of Yetter-Drinfeld modules over H. For this, we shall
explicitly give a description of the functor Z(p%).

Identifying Rex (kM) = g My, we shall denote by px : Rep(H) —
kM, the action functor. Explicitly, if X € Rep(H) then

The left and right K-action on X®y K are given by:
s- (z@k) -t = 5(=1) - T®S(0)kt,
forany x € X, s,t,k € K.
Definition 4.4. For any P € £ My, define S (H, P) as the space of left
K-linear morphisms o € Homg (H®y K, P) such that for any k € K,h € H
(4.4) a(h®k) = a(h®l) - k.
The space SK(H, P) has a left H-module structure - : H@ySE(H, P) —

SE(H, P) and a left H-comodule structure \ : S¥(H, P) — HepS® (H, P),
defined by:

(4.5) (h-a)(z®k) = a(zh®k),
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(4.6) \: SE(H,P) —» HopS®(H, P), Ma)=a"'®d’,

for any o € SK(H, P), h,x € H,k € K. Here for any h € H, k € K
(4.7) a~'®@a’(h®k) = S(ha))a(he®1)nheE@a(he®1)o) k.

When P = K, we shall denote S(H,K) := SK(H, K). It follows by a
straightforward computation that, (4.5), (4.6) are well defined maps, and
they define an H-action and a H-coaction.

Lemma 4.5. The space SK(H, P) is an object in the category Y D.

Proof. We must prove compatibility condition (1.1), that is
(4.8) Nz - a) = zaya " S(z3) Q@) - o,
for any # € H and for all « € S¥(H, P). Take ¢ € H*, h,o € H and k € K.
Evaluating the right hand side of (4.8) in ¢pQh®k gives
(pxya"S(z)) (2 - ”)(hok) =
= (6, 2)){b(3), (fc D)) °(h®’f)
= (¢0) 2))(b@), S(x@))(be), o~ )a’(h
:<q§(1),x(1)><¢(3), (¥®))
(9@), S((hx @) )al((he@) @ @)1 (hae)@)al(hae) @ @) -k
= (6, 21)S(22)) S (h) e h2) () ®1) (- hE 7@ S (26)))
alh@)r@@1)e) -k
= (¢, S(hqy)a(h@z®1)_1yh@)) alh@z®l)g) -k
= (¢, S(h) (@ - @) (hey@1) (—1yhs)) (z - @) (hxy®1) o) - k
= <¢, (x-«) 1> (z-a)’(h®k).
U

Lemma 4.6. The space S(H, K) is identified with the subspace of elements
> [i®k; € H*®@pK such that for anyt € K, h e H

(4.9) S < futienh > kitgy =Y _ < fi.h > th;.

Proof. We explained in Section 3.1 that the space Homg(H®yK, K) can
be identified with elements ), f;®T; € H*® End(K) such that they verify
(3.1). An element ), i®T; € H*®y End(K), with {f;}; linearly indepen-
dent, belongs to S(H, K) if it satisfies (4.4). This means that T;(k) = T;(1)k,
for all 7, and all £ € K. Thus, we can identify T; with the left multiplication
map by the element T;(1). Under this identification (3.1) is equivalent to
(4.9). O
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Remark 4.7. If K C H is a left coideal subalgebra, then elements of the
space (H/KTH)*®yZ(K) are inside of S(H, K). Here Z(K) is the center of
K. This observation follows from the fact that (H/K™H)* can be identified
with elements f € H* such that < f,kh >=< ¢,k >< f,h >, for any
ke K,he H.

Theorem 4.8. Let K be a finite dimensional left H-comodule algebra and
PefMy. Then M = g M is a left Rep(H)-module category. There is an
1somorphism of H-modules
SK(H, P) ~ / Hom (M, PoxM).
MeMm
When P = K, this isomorphism is an algebra map.

Proof. We shall use the description of the internal Hom of the module cat-
egory xM given in Lemma 3.4. First, we shall prove that S¥(H,P) =
Jiren Hom(M, P&y M) as objects in Rep(H). Observe that if M, M', N, N’
are objectsin kM, and f: M — M’ g: N — N’ are K-module morphisms,
then the functor Hom : M° x M — Rep(H) is defined on morphisms by

Hom(f, g) : Homg (H®xM', N) — Homg (H®, M, N'),
a—goao (idy®f).
For any M € xM define 7t; : SK(H, P) — Homyg (H® M, P2x M), by
mr(@)(hom) = a(h@l)@km,
for any h € H, m € M. Equation (4.4) implies that 71/ (a) is a K-module
morphism. It follows straightforward that 71, is an H-module map and that

it is dinatural.
Assume that (E,d) is a pair, where E € Rep(H), and

d: E - Hom(—, PQk—)

is a dinatural transformation. Dinaturality, in this case, implies that for any
pair of K-modules M, N, and a K-module map f: M — N, we have

(4.10) (id p&f) o du(e) = dn(e)(id n®f),

for any e € E. In particular, if N is any K-module, and n € N, define
fn: K — N, f.(k) = k-n. Hence f, is a K-module map, whence, equation
(4.10) implies that (id p®f,) o dx(e) = dy(e)(id g®f,). Evaluating this
equality in the element h®1l € H®y K we have that

(4.11) di(e)(h®@l)@n = dy(e)(h®n),

for any h € H. This implies, taking N = K, that the element dg(e) €
SE(H, P), that is, dx(e) satisfies (4.4).
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Define ¢ : E — SX(H, P) as ¢ = di. Then, equation (4.11) implies that
dy = 7k o ¢ for any K-module N. This proves that the object S¥(H, P) to-
gether with the dinatural transformations 7% satisfies the universal property
of the end. Thus S¥(H, P) = [,,_,,Hom(M, P@xM).

When P = K, it is not difficult to verify that the product of the adjoint
algebra defined in terms of the dinatural transformation, see (4.3), coincides
with the product described in (3.2). 0

So far, we have described the structure of the end [, _, Hom(M, PRxM)
as an object in Rep(H). It remains to describe the structure as an object in
the category of Yetter-Drinfeld modules over H. The next two results will
be initial steps towards this objective.

Define the functor pg : xk My — Rep(H), px(P) = S¥(H, P) for any
Pe Mg It PQ € kMgand f: P— @ is a morphism of K-bimodules,
then

ﬁK(f)SK(va)%SK(HaQ% ﬁK(f)<Oé):fOOé
Proposition 4.9. The functor px : kMx — Rep(H) is the right adjoint
of the functor px. The unit and counit of the adjunction (pk, pr) are given
by
N IdRep(r) = Pr © pr, € pr © pr — Id g,
nx(z)(h®k) = h -2k, epla®k) = a(1Rk),
for any X € Rep(H),P € kMg, v € X,he H, a € SK(H,P),k € K.
Proof. For any X € Rep(H),P € xkMgk, x € X,k € K, h € H define
¢x.p : Hompy (X, S®(H, P)) — Homk ) (X®: K, P),
ox.p(a)(x@k) = a(z)(19k),
Yx,p : Hom g ) (X @, K, P) — Homp (X, S*(H, P)),
Vx,p(B)(x)(h®k) = B(h - 2@k).

It follows by a straightforward computation that the maps ¢x p, ¥ x p are

(4.12)

(4.13)

natural morphisms, and are inverses of each other. The unit and counit of

the adjunction are given by

Nx = Vxxeuk (id xeux), € = Gsxmpy,p(id sk (g p))-

g

The next result is a particular case of Example 2.2. Since we need the
explicit equivalence, we shall write the proof.

Lemma 4.10. There is an equivalence of categories Zgrepm)(kMgk) =~

H
H M.
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Proof. Let (M,0) € Zgepu)(kMi). This means that M € xMp, and
the half-braiding is given by ox : Mg (X®@kK) — X®x M, for any X €
Rep(H). Define A : M — HRyM, \(m) = og(m®1y®1f) for any m € M.
This establishes a functor

®: Zrep(n) (kMi) = M, ®(M,0) = (M, ).
If (M,)\) € EMg, define 0% : Mg (X®@kK) — X®, M, the map
oy (MRzk) = m(_1) - x@m ) - k,

for any X € Rep(H), m € M, k € K. It follows by a simple computa-
tion that o% is a well-defined isomorphism, it is a K-bimodule map and
it satisfies (2.18). This defines a functor ¥ : TMg — Zrepm)(kMk),
U(M,\) = (M, o). O

For any P € £ My recall the structure of Yetter-Drinfeld module over
H of SK(H, P) given by (4.5), (4.6).

Theorem 4.11. For any P € Z Mgy there is an isomorphism S¥(H, P) ~
Z(pr)(P) as objects in BYD.

Proof. If P € EMy, then Z(pg)(P,0*) = (SX(H, P), o), where, accord-
ing to (2.19), the half braiding for px(P) = S¥(H, P) is the morphism
ol SK(H, P)@y X — X®pS®(H, P), given by the composition

(€% p) " pr(o%)

SE(H, P)@p X SE(H, Pog(X@pK)) —2

El
— SK(H, X®,P) =5 X®xSX(H, P),

for any X € Rep(H). Recall that ¢* is the half braiding associated to P
explained in Lemma 4.10. To compute o, we need to compute the bimodule
structure of the functor px. Both structures are given by equations (4.1),
(4.2).

Using the formula for the unit and counit of the adjunction (pg, pr)

given in Proposition 4.9 we obtain that

(&x.p) " (z@a) (h@k) = p (id xQep)nx e, sk (1, p) (T@) (hOK)
= (id x®ep)nx g, 55 (1,p)(2@) (h@k)
= (id x®ep)(hq) - 2@ - a®k)
= hq) - 2®hg) - a(10k)
= h( - ®@a(h2)®k),
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and

(€5 ) (@) (hEK) = (ep@id xo,i0)sx 1,700 (002) (BK)
= (ep®id xg, k) (ha) - a@1®h(2) - TRFk)

= (ha) - @)(1®1)®h() - 1@k

a(hy®1)@h() - *QKk,

for any « € SK(H,P),z € X, he H, k € K.

Now, the H-coaction of Z(pg)(P, o) associated with the half braiding

ol is

N SE(H, P) — HepSH(H, P), M(a)=oh(a®1y).
Let us denote A(a) = a~!'®a’. Using the formula for 0%, we know that

(Ehp) lop(a®ly) = pr(oyy) (€ p) ' (a®1y). Evaluating this equality in
h®k € HRrK we obtain that

(E.p) " op(a®1y) (h®k) = haya ' ®@a’ (he)®Fk),
is equal to

(UH)fHP(a‘X)lH)(h@k) U?{(fHP) Ya®1y)(hok)
o (a(hay®1)®hz) k)
= alh@y@1)-nhe@a(hay@1)e) - k.

Thus
(414)  hoa '@’ (hey®k) = alhn@1) nhe®alho@1)e -k,
for any o € SK(H, P), h@k € H®, K. Hence
a”'@a’(h@k) = a~'@a’ (e (ha))hi @)
= S(h(l))h(g)a_1®040(h(3)®k‘)
= S(h)alhe®1)-nhe@alhe®1)e) - k.
The last equality follows from (4.14). This formula coincides with (4.7). O

As a consequence of Theorems 4.8 and 4.11 we obtain the next result.

Corollary 4.12. Let K be a finite dimensional right H-simple left H-
comodule with trivial coinvariants. There exists an isomorphism of algebras

S(H,K) >~ .AK,

in the category 1Y D. O
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Example 4.13 (Case K = H). We denote by H,,; the algebra in the
category YD whose underlying algebra is H, with H-coaction given by
the coproduct and H-action given by the adjoint action, that is h>x =
hayxS(h)), h,x € H. Since H is an H-comodule algebra with the coprod-
uct, we can consider SY(H,H). The map ¢ : S(H,H) — Hug, ¢(a) =
a(1®1) is an isomorphism of algebras in #YD. Indeed, it is an H-module
map. Take o € S(H, H), h,t € H, then

a(h®t) = a(hi®@heS(hs)t) = h(l)&(1®3(h2)t)

(4.15) = hya(121)S(ho)t.

The second equality because « is an H-module map, and the last equality
follows from (4.4). Then

o(h- ) a)(1®l) = a(h®1)

= (h-
= hya(1®1)S(hy) = h> ¢(a).

It follows by a straightforward computation that, ¢ is an algebra and an
H-comodule map. Using (4.15), it follows that the map ¢ : H,qg — S(H, H),
P(x)(hot) = hyxS(ho)t, x,h,t € H, is the inverse of ¢.

Example 4.14 (Case K = k). We denote by H}, the following algebra in
the category £YD. The underlying algebra is H*. The H-action and H-
coaction are - : H@yH}y — H};o N+ Hiy — HeeHy, M f) = f-)®f (o)

where

(h- (@) = f(=h), <g,fc1> fo)=S00)f9w)
for any h,x € H, g € H*. It follows that S(H,k) = H},.

5. SOME EXPLICIT CALCULATIONS

In this section we shall explicitly compute the adjoint algebra for the
representation categories of group algebras and their duals. We shall use
the identification of S(H, K) with elements in H*®, K such that they sat-
isfy (4.9). First we recall the classification of exact indecomposable module
categories over group algebras and their duals.

5.1. Module categories over the tensor categories Rep(k®), Rep(kG).
Assume G is a finite group. We shall recall the classification of exact inde-
composable module categories over Rep(k“) and Rep(kG). For this, we shall
give families of simple left H-comodule algebras, where H = k% kG.
Assume F' C G is a subgroup and ¢ € Z%(F,k*) a 2-cocycle. We denote
by k, F the twisted group algebra. We can choose 9 (in a cohomology class)
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such that

V9w T =1 () =Y f) =1,

for any f,g € F. In such case we shall say that ¢ is normalized.

The twisted group algebra k, F" is a left kG-comodule algebra as follows.
Elements in ky F' are linear combinations of ef, f € F'. The product and left
kG-coaction are

eren =V(f,h) em,  Aey) = f@ey,

for any f,h € F.If V is a simple kyF-module, we can form the following
algebra. The endomorphism algebra End(V') is a right kF-module, with
action given by
(T f)w)=f"-T(f ),

forany f € F,o € V,T € End(V). Define K(F,,V) = End(V)®krkG. Let
S C G be a set of representative elements of cosets F\G.

Any element in K(F,¢,V) is of the form T®s, for some s € S, T €
End(V'). Here Z denotes the class of the element z € kG®y End(V) in the
quotient kG®yr End (V). The product in IC(F, ), V') is defined as follows:

(T@[L’)(U@y) = 596,3/ ToU®u,

for any T, U € End(V), 2,y € S. The unit is ) |__;Id ®s. The vector space
K(F,,V) has a structure of right kG-module that makes it into a module
algebra. The right action is:

(T®z)-g=Tezg, ge€aq.

With this action IC(F, v, V) is a right kG-module algebra, hence it is a left
k%-comodule algebra, with coaction

A K(F, 0, V) = KC@uK(F, 0, V), Mk) = k1) ®k),

such that for any g € G, < k(_1),9 > ko) =k - g.

The next result is part of the folklore of representations of tensor cate-
gories. See, for example, [4, Proposition 4.1, Lemma 4.3]. It also follow from
Theorem 3.1.

Theorem 5.1. Let G be a finite group.

(i) If M is an exact indecomposable module category over Rep(kG),
there exists a subgroup F' C G, a normalized 2-cocycle 1 € Z*(F,k*)
such that M >~y pM as module categories.

(ii) If M is an exact indecomposable module category over Rep(k%),
there exists a subgroup F C G, a normalized 2-cocyclep € Z*(F,k*),
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and a simple kyF-module V' such that M ~ xpy )M as module
categories. Il

Remark 5.2. The equivalence class of the module category x(py,v)M does
not depend on the choice of the simple k, F-module V. The twisted group
algebra k,F is an algebra in the category Rep(k“). One can prove that,
regardless the choice of V, the module category i (ry,1)M is equivalent to

Rep(kG)ka.

Remark 5.3. Let F' = {1} be the trivial subgroup of G, ¥ =1 and V =k
with the trivial action. Denote K = IC(F,v,V). It is not difficult to see
that K ~ k% as left k%-comodule algebras. Hence K110 M ~ Rep(k%) as
Rep(k%)-module categories.

5.2. Case H = kG. Let F' C G be a subgroup, and a normalized 2-cocycle
Y € Z3(F, k). Let K =k F be the twisted group algebra. We shall denote
by {ef}ser the canonical basis of kyF'. The product in this algebra is then
ere; = U(f,)eyp, for any f,l € F.
Let S C G be a set of representatives of right cosets F\G such that
1€ S. Defineb: FFx F—k* as
(17 D)

bl f) =

="

Also, for any [ € F, set C; = {(g,f) € F X F: g 'fg=1}. For any s € S,
[ € F define

Al = Z b(g, f) 5gs®€f € kG@kK.
(gvf)ecl
Using the identification explained in Subsection 3.1, the element a,; can be

seen as an element in Hom(kG®y K, K'), where
(5.1) asi(a®en) = 0o O(f, FLETO(FLFY R) egigp-n,
ife=fteG,teS, hekF.

Lemma 5.4. The set B = {ay, € ﬂ{G@kka :s € 8,1 € F}is a basis of
S(kG,kyF).

Proof. Clearly B is a set of linearly independent elements. Let z be an
arbitrary element of k®yk, F. Thus z = > v fer bu.f 0a®ey, for certain
scalars &, 5 € k. If z € S(kG,kyF), equation (4.9) implies that

Y. Gublyeser= Y &ubuly)ees

z€G,fEF z€G,fEF



24 BORTOLUSSI AND MOMBELLI

for any y € G, € F. This implies that
S Gus(f)en =Y & vl f)ey

fer fer

This equality implies, by looking at the coefficient of e;¢, that

Cy.r = a1 (1, f),
for any [, f € F, y € G. Whence

Z Sx,f 5ac®6f = Z ggsaf 598®6f

z€G,fEF seS,g,fEF
= Z Ss,gflfg b(g, f) 6gs®€f
s€S,g,feF
= Z Z fs,l b(ga f) 5gs®€f = Z gs,l&s,l-
seS,IeF (g,f)eC seS|leF
Thus z is a linear combination of elements of B. O

The proof of the next result follows by a straightforward computation.

Lemma 5.5. The kG-coaction of S(kG,kyF), given in (4.7), is determined
by
Magy) = s gs®ay 4,
for any g € F, s € S. The kG-action on S(kG,kyF), given in (4.5), is
determined by
T sg = b(h_lv h_lgh> A p=1gh,
if v = ft and st™'f~1 = hr, where f,h € F, t,r € S. O

For any subgroup F' C G and a normalized 2-cocycle ¢ € Z?(F,k*),
define Cy (G, F') as the subspace of Homy (k[S x F'], k) generated by functions
¢ : S x F — k such that

(5.2) b(x, s gsz™ ) é(s,9) = b(h™', h™ gh) ¢(r, k" gh),

for any x € G such that sz = hr, r € S, h € F. Observe that if F = G,
1 =1 then Cy(G, F) is the space of class functions on G.

Proposition 5.6. Let F' C G be a subgroup, and ¢ € Z*(F,k*) a normal-
ized 2-cocycle. There exists a linear isomorphism CF (i, pM) ~ Cy(G,F).

Proof. As before, denote S C G a set of representatives of elements of F\G.
Let be ¢ € CF(x,rpM). This means that ¢ : S(kG, ky,F) — S(kG,kG) is a
morphism of kG-Yetter-Drinfeld modules. Elements of the basis described
in Lemma 5.4 for S(kG,kG) are of the form o, , € k9®ykG, for any g € G.
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Using Lemma 5.5, since ¢ is a kG-comodule map, we observe that

¢(as,g> = ¢s,g A1 s—1gs,

forany s € S, g € F. Here ¢, 4 € k. This implies that ¢ is determined by the
scalars ¢, 4. It remains to prove that these scalars satisfy (5.2). Take z € G,
and write it as x = ft, where f € F, t € S. Assume that st~ f~1 = hr,
where h € F, r € S. Since ¢ is a kG-module map, then

QS(’I : as,g) - b(h_lv h_lgh) ¢(ar,h*19h)

= b(h_la h_lgh) ¢r,h*19h Q1 r=1p=1ghr

=" ¢(a8,g) = ¢s,g Ty s-1gs = ¢s,g b($a xs_lgsx_l)al,xsflgsxfl'
This implies that b(h™, h™ gh)d, p-14 = b(z, x5 gsz™)ds 4. O

5.3. Case H = k®. Let FF C G be a subgroup, and ¢ € Z2(F,k*) be a
normalized 2-cocycle. Let also V' be a simple k, F-module. Recall the def-
inition of the left k“-comodule algebra K(F, 1, V') presented in Subsection
5.1. Again, let S C G be a set of representatives of right cosets F\G such
that 1 € S. The following technical result will be needed later.

Lemma 5.7. Let f € F. The vector space consisting of T € End(V') such
that

(5.3) UoT =To(U-f),
for any U € End(V'), is 1-dimensional.

Proof. Since the group F' is finite, the linear operator f- : V' — V is diag-
onalizable. Let {v;};=1., be a basis of V' such that f-v;, = ¢;v;, ¢; € k*
for any i = 1...n. Let T € End(V) be a linear transformation such that
it satisfies (5.3). For any j,k = 1...n define U;;, : V — V the operator
Ujr(vi) = 0;,vg, for any i = 1...n. Assume that T'(v;) = >, ¢;;v;. On one
hand, for any ¢ = 1...n we have that

(Uj,k e} T) (Uz) = ti,jvk-
And, on the other hand we have

To (U f)(vi) = qiqy "6, Ztm vy
)

Whence, equation (5.3) implies that if i # j, then ¢; ; = 0, and if i = j then
qiqk_ltk’k = t;;. This implies the Lemma. O
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For any f € F denote by Ty € End(V) the unique (up to scalar) non
zero linear operator such that it fulfils condition (5.3) of Lemma 5.7. For

any (f,s) € F' xS, denote a(s,) € kG K(F,v,V) by
Q(fs) = s_lfs®Tf®s.
When f =1, we can choose Ty = Id y .

Proposition 5.8. The linearly independent set {a s : (f,s) € F x S} is
a basis for S(kY K(F,,V)).

Proof. 1t follows straightforward that for any (f,s) € F' x S the element
ay,s) satisfies cond