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Abstract. Given a finite dimensional Hopf algebra H and an exact
indecomposable module categoryM over Rep(H), we explicitly compute
the adjoint algebra AM as an object in the category of Yetter-Drinfeld
modules over H, and the space of class functions CF(M) associated
to M, as introduced by K. Shimizu [14]. We use our construction to
describe these algebras when H is a group algebra and a dual group
algebra. This result allows us to compute the adjoint algebra for certain
group-theoretical fusion categories.

Introduction

In the paper [13], the author introduces the notion of adjoint algebra AC
and the space of class functions CF(C) for an arbitrary finite tensor category

C. The adjoint algebra is defined as the end
∫
X∈C X⊗X

∗. The dual object

A∗C is a crucial ingredient in Lyubashenko’s theory of the modular group

action in non semisimple tensor categories [8], [9].

Both, the adjoint algebra and the space of class functions, are interest-

ing objects that generalize the well known adjoint representation and the

character algebra of a finite group. In [13] many results concerning table of

characters, conjugacy classes, and orthogonality relations of characters in

finite group theory have been generalized to the setting of fusion categories.

Also, in [15] the adjoint algebra was used to develop a theory of integrals

for finite tensor categories.

AssumeM is an arbitrary module categories over a finite tensor category

C. In [14], the author introduces the notion of adjoint algebra AM and the

space of class functions CF(M) associated toM, generalizing the definitions

given in [13]. The main task of this paper is the explicit computation of

those objects in the particular case C is the representation category of a

finite dimensional Hopf algebra.

Assume that C is a finite tensor category, andM an exact left C-module

category with action functor ⊗ : C ×M →M. Then, we can consider the
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functor ρM : C → Rex (M), ρM(X)(M) = X⊗M , X ∈ C, M ∈ M. Here

Rex (M) denotes the category of right exact endofunctors ofM. The right

adjoint of the action functor is ρra
M : Rex (M)→ C, explicitly described as

ρra
M(F ) =

∫
M∈M

Hom(M,F (M)),

for any F ∈ Rex (M) [14, Thm. 3.4]. Here for any M ∈ M, Hom(M,−)

is the right adjoint of the functor C → M, X 7→ X⊗M . It is called the

internal Hom of the module category M. The adjoint algebra is defined

as AM = ρra
M(IdM). This object has a half-braiding σM(X) : AM ⊗ X →

X⊗AM defined as the unique morphism in C such that the diagram

AM ⊗X
πM(X⊗M)⊗id V //

σM(X)

��

End(X⊗M)⊗X

'

��
X ⊗AM

id X⊗πM// X ⊗ Hom(M,M)
' // Hom(X⊗M,M)

is commutative. Here πM(M) : AM → Hom(M,M) is the dinatural trans-

formation of the end AM. Turns out that (AM, σM) is a commutative al-

gebra in the Drinfeld center Z(C). Although this description of the half-

braiding of AM is rather clear, for us it was complicated to use it to make

calculations in particular examples. However, there is another way of de-

scribing this structure.

If B is a C-bimodule category, one can consider the relative center ZC(B).

When C is considered as a bimodule over itself, the relative center coincides

with the Drinfeld center. The correspondence B 7→ ZC(B) is in fact part of

a 2-functor

ZC : CBimod → Ab k,

where CBimod is the 2-category of finite C-bimodule categories, bimodule

functors and bimodule natural transformations, and Ab k is the 2-category

of finite abelian k-linear categories. Both categories, Rex (M) and C are

C-bimodule categories. Turns out that ρra
M has a C-bimodule structure [14,

Section 3.4]. Applying the 2-functor ZC one obtains a functor ZC(ρra
M) :

ZC(Rex (M)) ' C∗M → Z(C). Hence (AM, σM) = ZC(ρra
M)(IdM).

Assume H is a finite dimensional Hopf algebra. If M is an exact inde-

composable module category over Rep(H), we describe explicitly the adjoint

algebra (AM, σM) and the space of class functions CF(M). For this pur-

pose, we need to explain all ingredients in the construction of those objects.

Our description of both algebras relies heavily on the explicit description of
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module categories over Hopf algebras. In Section 3 we embark on this task.

Module categories over Rep(H) are categories KM of finite dimensional left

K-modules, where K are certain H-comodule algebras. We also recall how

to describe module functor categories, and that there is a monoidal equiv-

alence Rep(H)∗
KM '

H
KMK . This equivalence will be used when explaining

the functor ZC(ρra
M). Another ingredient is the internal Hom. In this section

we also describe, in a precise way, the internal Hom of the module cate-

gory KM. In Section 4, after recalling the definitions of [14], for an object

P ∈ H
KMK , representing a module functor in FP ∈ EndRep(H)(KM), we

explictly give the structure of the functor

FP 7→
∫
M∈M

Hom(M,FP (M)).

For this we compute, in an explicit way, the end
∫
M∈MHom(M,FP (M))

as an object in the category H
HYD of Yetter-Drinfeld modules over H. In

Section 5, we illustrate this description in the particular cases when H is a

group algebra or its dual. As a direct consequence, we compute the adjoint

algebra and the space of class functions for certain group-theoretical fusion

categories.

1. Preliminaries

Let k be an algebraically closed field. All algebras are assumed to be over

k. If A is an algebra, we shall denote by AM (respectivelyMA) the category

of finite dimensional left A-modules (respectively right A-modules). If A,B

are two algebras, we shall denote by BMA the category of finite dimensional

(B,A)-modules. From now on, all categories are assumed to be abelian k-

linear, and all functors are k-linear.

1.1. Hopf algebras. For a Hopf algebra H, we shall denote by ∆ : H →
H⊗kH the comultiplication, S : H → H the antipode, and ε : H → k the

counit. We shall use Sweedler’s notation: ∆(h) = h(1)⊗h(2), h ∈ H. The

category HM has a canonical structure of tensor category with monoidal

product given by ⊗k. We shall denote this tensor category by Rep(H).

For a finite dimensional Hopf algebra H, we shall denote by H
HYD the

category of finite-dimensional Yetter-Drinfeld modules. An object V ∈ H
HYD

is a left H-module · : H⊗kV → V , and a left H-comodule λ : V → H⊗kV

such that

(1.1) λ(h · v) = h(1)v(−1)S(h(3))⊗h(2) · v(0),
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for any h ∈ H, v ∈ V . If V ∈ H
HYD, the map σX : V⊗kX → X⊗kV , given by

σX(v⊗x) = v(−1) · x⊗v(0) is a half-braiding for V , and this correspondence

establishes a monoidal equivalence H
HYD ' Z(Rep(H)).

1.2. Finite categories. A category C is finite [4] if

• it has finitely many simple objects;

• each simple object X has a projective cover P (X);

• the Hom spaces are finite-dimensional;

• each object has finite length.

Equivalently, a category is finite if it is equivalent to a category AM for

some finite dimensional algebra A.

IfM,N are two finite categories, and F :M→N is a functor, we shall

denote by F la, F ra : N → M, its left adjoint, respectively right adjoint of

F , if it exists. We shall also denote by Rex (M,N ) the category of right

exact functors from M to N .

1.3. Ends and coends. We briefly recall the notion of end and coend. The

reader is referred to [10]. Let C, D be categories, and let S, T : Cop × C →
D be functors. A dinatural transformation ξ : S

..−→ T is a collection of

morphisms in D

ξX : S(X,X)→ T (X,X), X ∈ C,

such that for any morphism f : X → Y in C

(1.2) T (idX , f) ◦ ξX ◦ S(f, idX) = T (f, id Y ) ◦ ξY ◦ S(id Y , f).

An end of S is a pair (E, p) consisting of an object E ∈ D and a dinatural

transformation p : E
..−→ S satisfying the following universal property. For

any pair (D, q) consisting of an objectD ∈ D and a dinatural transformation

q : D
..−→ S, there exists a unique morphism h : D → E in D such that

qX = pX ◦ h for any X ∈ C. A coend of S is the dual notion of an end,

this means that it is a pair (C, π) consisting of an object C ∈ D and a

dinatural transformation π : S
..−→ C with the following universal property.

For any pair (B, t), where B ∈ D is an object and t : S
..−→ B is a dinatural

transformation, there exists a unique morphism h : C → B such that h ◦
πX = tX for any X ∈ C.

The end and coend of the functor S are denoted, respectively, as∫
X∈C

S(X,X) and

∫ X∈C
S(X,X).
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2. Representations of tensor categories

For basic notions on finite tensor categories we refer to [2], [4]. Let C be

a finite tensor category over k. A (left) module over C is a finite category

M together with a k-bilinear bifunctor ⊗ : C ×M → M, exact in each

variable, endowed with natural associativity and unit isomorphisms

mX,Y,M : (X ⊗ Y )⊗M → X⊗(Y⊗M), `M : 1⊗M →M.

These isomorphisms are subject to the following conditions:

(2.1) mX,Y,Z⊗M mX⊗Y,Z,M = (idX⊗mY,Z,M) mX,Y⊗Z,M(αX,Y,Z⊗idM),

(2.2) (idX⊗lM)mX,1,M = rX⊗idM ,

for any X, Y, Z ∈ C,M ∈ M. Here α is the associativity constraint of C.
Sometimes we shall also say that M is a C-module or a C-module category.

LetM andM′ be a pair of C-modules. A module functor is a pair (F, c),

where F :M→M′ is a functor equipped with natural isomorphisms

cX,M : F (X⊗M)→ X⊗F (M),

X ∈ C, M ∈M, such that for any X, Y ∈ C, M ∈M:

(idX⊗cY,M)cX,Y⊗MF (mX,Y,M) = mX,Y,F (M) cX⊗Y,M(2.3)

`F (M) c1,M = F (`M).(2.4)

There is a composition of module functors: if M′′ is another C-module

and (G, d) :M′ →M′′ is another module functor then the composition

(2.5) (G ◦ F, e) :M→M′′, eX,M = dX,F (M) ◦G(cX,M),

is also a module functor.

A natural module transformation between module functors (F, c) and

(G, d) is a natural transformation θ : F → G such that for any X ∈ C,
M ∈M:

dX,MθX⊗M = (idX⊗θM)cX,M .(2.6)

Two module functors F,G are equivalent if there exists a natural module

isomorphism θ : F → G. We denote by FunC(M,M′) the category whose

objects are module functors (F, c) fromM toM′ and arrows module natural

transformations.

Two C-modulesM andM′ are equivalent if there exist module functors

F : M → M′, G : M′ → M, and natural module isomorphisms IdM′ →
F ◦G, IdM → G ◦ F .
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A module is indecomposable if it is not equivalent to a direct sum of

two non trivial modules. Recall from [4], that a module M is exact if for

any projective object P ∈ C the object P⊗M is projective in M, for all

M ∈M. IfM is an exact indecomposable module category over C, the dual

category C∗M = EndC(M) is a finite tensor category [4]. The tensor product

is the composition of module functors.

A right module category over C is a finite categoryM equipped with an

exact bifunctor ⊗ :M×C →M and natural isomorphisms

m̃M,X,Y : M⊗(X⊗Y )→ (M⊗X)⊗Y, rM : M⊗1→M

such that

(2.7) m̃M⊗X,Y,Z m̃M,X,Y⊗Z(idM⊗aX,Y,Z) = (m̃M,X,Y⊗id Z) m̃M,X⊗Y,Z ,

(2.8) (rM⊗idX)m̃M,1,X = idM⊗lX .

IfM,M′ are right C-modules, a module functor fromM toM′ is a pair

(T, d) where T :M→M′ is a functor and dM,X : T (M⊗X) → T (M)⊗X
are natural isomorphisms such that for any X, Y ∈ C, M ∈M:

(dM,X⊗id Y )dM⊗X,Y T (mM,X,Y ) = mT (M),X,Y dM,X⊗Y ,(2.9)

rT (M) dM,1 = T (rM).(2.10)

Assume that M,N are categories, F : M→ N is a functor with right

adjoint G : N →M. We shall denote by ε : F ◦G→ IdN , η : IdM → G◦F ,

the counit and unit of the adjunction. The next result will be needed later.

Lemma 2.1. [5, Lemma 2.11] The following holds.

(i) If M,N are left C-module categories and (F, c) : M → N is a

module functor then G has a module functor structure given by

e−1
X,N = G(idX⊗εN)G(cX,G(N))ηX⊗G(N),

for any X ∈ C, N ∈ N .

(ii) If M,N are right C-module categories and (F, d) : M → N is a

module functor then G has a module functor structure given by

h−1
N,X = G(εN⊗idX)G(dG(N),X)ηG(N)⊗X ,

for any X ∈ C, N ∈ N . �

2.1. Bimodule categories. Assume D is another finite tensor category. A

(C,D)−bimodule category is a categoryM with left C-module category and

right D-module category structure together with natural isomorphisms

γX,M,Y : (X⊗M)⊗Y → X⊗(M⊗Y ),(2.11)
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X ∈ C, Y ∈ D,M ∈M, satisfying

((X⊗Y )⊗M)⊗Z

ml⊗id
��

γ // (X⊗Y )⊗(M⊗Z)

ml

��

(X⊗(Y⊗M))⊗Z
γ

��
X⊗((Y⊗M)⊗Z)

id⊗γ
// X⊗(Y⊗(M⊗Z)),

(2.12)

(X⊗M)⊗(Y⊗Z)

mr

��

γ // X⊗(M⊗(Y⊗Z))

id⊗mr

��

((X⊗M)⊗Y )⊗Z

γ⊗id
��

(X⊗(M⊗Y ))⊗Z γ
// X⊗((M⊗Y )⊗Z),

,(2.13)

(1⊗M)⊗1
γ1,M,1 //

lM⊗id 1
��

1⊗(M⊗1)

rM

��

M⊗1

id 1⊗rM
��
M 1⊗M,

lM

oo

(2.14)

where ml and mr are the associativity isomorphisms of the left, respectively

right, module category. IfM,N are (C,D)−bimodule categories, a bimodule

functor is a triple (F, c, d) : M → N , where (F, c) is a C-module functor,

(F, d) is a D-module functor and equation

(2.15) γX,F (M),Y (cX,M⊗id Y )dX⊗M,Y = (idX⊗dM,Y )cX,M⊗Y F (γX,M,Y ),

is fulfilled for any X ∈ C, Y ∈ D, M ∈M.

It is known that M is a (C,D)−bimodule category if and only if it is

a left C � Dop-module category, and a bimodule functor is the same as a

C �Dop-module functor. See for example [7].

IfM,N are left C-module categories, then Rex (M,N ) is a C-bimodule

category as follows. If X ∈ C, F ∈ Rex (M,N ), M ∈M, then

(2.16) (X⊗F )(M) = X⊗F (M), (F⊗X)(M) = F (X⊗M).
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2.2. The internal Hom. Let C be a tensor category and M be a left C-
module category. For any pair of objects M,N ∈M, the internal Hom is an

object Hom(M,N) ∈ C representing the functor HomM(−⊗M,N) : C →
vect k. This means that there are natural isomorphisms, one the inverse of

each other,

φXM,N : HomC(X,Hom(M,N))→ HomM(X⊗M,N),

ψXM,N : HomM(X⊗M,N)→ HomC(X,Hom(M,N)),
(2.17)

for all M,N ∈ M, X ∈ C. Sometimes we shall denote the internal Hom of

the module category M by HomM to emphasize that it is related to this

module category.

For any X ∈ C, M,N ∈M define

coevMX,M : X → Hom(M,X⊗M), evMM,N : Hom(M,N)⊗M → N,

coevMX,M = ψXM,X⊗M(idX⊗M), evMM,N = φ
Hom(M,N)
M,N (id Hom(M,N)).

Define also fM = evMM,M(id Hom(M,M)⊗evMM,M), and

compMM : Hom(M,M)⊗Hom(M,M)→ Hom(M,M),

compMM = ψ
Hom(M,M)⊗Hom(M,M)
M,M (fM).

It is known, see [4], that Hom(M,M) is an algebra in the category C with

product given by compMM .

2.3. The relative center. Let C be a tensor category andM a C-bimodule

category. The relative center of M is the category of C-bimodule functors

from C to M. We denote the relative center of M by ZC(M) . Explicitly,

objects of ZC(M) are pairs (M,σ), where M is an object of M and

σX : M⊗X ∼−→ X⊗M

is a family of natural isomorphisms such that

(2.18) ml
X,Y,MσX⊗Y = (idX⊗σY )γX,M,Y (σX⊗id Y )mr

M,X,Y ,

where γX,M,Y : (X⊗M)⊗Y → X⊗(M⊗Y ) are the associativity constraints

of the left and right actions on M, see (2.11). The isomorphism σ is called

the half-braiding for M .

As explained in [14, Section 3.6], the relative center can be thought of

as a 2-functor

ZC : CBimod→ Ab k,

where CBimod is the 2-category whose 0-cells are C-bimodule categories,

1-cells are bimodule functors and 2-cells are bimodule natural transfor-

mations. Also Ab k is the 2-category of finite k-linear abelian categories.

If M,N are C-bimodule categories, then ZC(M) is the relative center. If
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(F, c, d) :M→N is a bimodule functor, then ZC(F ) : ZC(M)→ ZC(N ) is

the functor ZC(F )(M,σ) = (F (M), σ̃), where σ̃X : F (M)⊗X → X⊗F (M)

is defined as

(2.19) σ̃X = cX,MF (σX)d−1
M,X ,

for any X ∈ C.
The following example is [14, Example 3.11].

Example 2.2. If M,N are exact C-module categories, then Rex (M,N )

is a C-bimodule category, see (2.16). In this case there exists an equivalence

ZC(Rex (M,N )) ' FunC(M,N ).

Example 2.3. When C is considered as a C-bimodule category, then ZC(C) =

Z(C) is the usual center of the category C.

Remark 2.4. If (X, σ) ∈ Z(C) and M is a left C-module category, then

the functor L(X,σ) : M → M given by L(X,σ)(M) = X⊗M is a C-module

functor. The module structure is given by

c
(X,σ)
Y,M : X⊗(Y⊗M)→ Y⊗(X⊗M),

c
(X,σ)
Y,M = mY,X,M(σY⊗idM)m−1

X,Y,M ,

for any X, Y ∈ C, M ∈M.

Definition 2.5. For any exact indecomposable left C-module categoryM,

we shall denote by

FM : Z(C∗M)→ C∗M, (V, σ) 7→ V,

the forgetful functor. In particular FC : ZC(C) → C is the usual forgetful

functor.

2.4. Morita invariance of the Drinfeld center. LetM be an exact in-

decomposable module category over C. Using results of P. Schauenburg [12],

K. Shimizu proved in [14, Section 3.7] that there exists a braided monoidal

equivalence

θM : Z(C)→ Z(C∗M).

For later uses, we shall recall the definition of this equivalence. Let (V, σ) ∈
Z(C). Then θM(V, σ) : M →M is the functor defined as θM(V, σ)(M) =

V⊗M , for any M ∈M. The module structure of the functor θM(V, σ) is

cX,M : θM(V, σ)(X⊗M) = V⊗(X⊗M)→ X⊗(V⊗M),

given by the composition

V⊗(X⊗M)
m−1
V,X,M−−−−→ (V⊗X)⊗M σX⊗id−−−−→ (X⊗V )⊗M

mX,V,M−−−−→ X⊗(V⊗M).
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Then θM(V, σ) becomes a C-module functor. It remains to explain how the

functor θM(V, σ) is an object in the center of C∗M. For any (F, d) ∈ C∗M we

have to define a half-braiding τ(F,d) : θM(V, σ) ◦ (F, d) → (F, d) ◦ θM(V, σ).

This is the module natural transformation defined by

(2.20) (τ(F,d))M : V⊗F (M)→ F (V⊗M), (τ(F,d))M = d−1
V,M ,

for any M ∈M.

3. Module categories over Hopf algebras

Throughout this section H will denote a finite dimensional Hopf algebra.

We shall present families of module categories over Rep(H), and compute

explicitly its internal Hom and their module functor categories.

If λ : K → H⊗kK is a left H-comodule algebra then the category of

finite-dimensional left K-modules KM is a module category over Rep(H)

with action ⊗ : Rep(H) × KM → KM, X⊗M = X⊗kM , for all X ∈
Rep(H),M ∈ KM. The left K-module structure on X⊗kM is given by λ,

that is, if k ∈ K, x ∈ X,m ∈M then

k · (x⊗m) = λ(k)(x⊗m) = k(−1) · x⊗k(0) ·m.

Theorem 3.1. [1, Prop.1.20] If K is right H-simple then KM is an exact

indecomposable module category over Rep(H). Moreover, if M is an exact

indecomposable module category over Rep(H), there exists a right H-simple

left H-comodule algebra K, with trivial coinvariants, such that M ' KM.

�

Remark 3.2. If K,S are isomorphic H-comodule algebras, then the cate-

gories KM, SM are equivalent as Rep(H)-module categories. The converse

is not always true.

3.1. The internal Hom. We shall explicitly compute the internal Hom of

module categories over Rep(H).

If M,N are left K-modules, then the space HomK(H⊗kM,N) has a left

H-action given by

(h · α)(t⊗m) = α(th⊗m),

for any h, t ∈ H, α ∈ HomK(H⊗kM,N), m ∈M . We can identify the space

HomK(H⊗kM,N) with the subspace of H∗⊗k Homk(M,N) consisting of

elements
∑

i fi⊗Ti ∈ H∗⊗k Homk(M,N) such that

(3.1)
∑
i

< fi, k(−1)h > Ti(k(0) ·m) =
∑
i

< fi, h > k · Ti(m),
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for any h ∈ H, k ∈ K, m ∈ M . An element
∑

i fi⊗Ti is seen as a map

from H⊗kM to N , sending h⊗m to
∑

i < fi, h > Ti(m). We shall freely use

this identification from now on. Condition (3.1) says that this morphism is

a K-module map.

For any K-module M , the space HomK(H⊗kM,M) has an algebra struc-

ture as follows. If
∑

i fi⊗Ti,
∑

j gj⊗Uj are elements in HomK(H⊗kM,M),

the product is defined by

(3.2)
(∑

i

fi⊗Ti
)(∑

j

gj⊗Uj
)

=
∑
i,j

figj⊗Ti ◦ Uj.

The proof of the next result is straightforward.

Lemma 3.3. With the product described in (3.2), HomK(H⊗kM,M) be-

comes an H-module algebra. �

Lemma 3.4. Let M,N ∈ KM, and Hom(M,N) the internal Hom of the

module category KM. There is an isomorphism of H-modules

Hom(M,N) ' HomK(H⊗kM,N).

When M = N this isomorphism is an H-module algebra isomoprhism.

Proof. Let X ∈ Rep(H). The maps

φ : HomH(X,HomK(H⊗kM,N))→ HomK(X⊗kM,N),

ψ : HomK(X⊗kM,N)→ HomH(X,HomK(H⊗kM,N)),

defined by φ(α)(x⊗m) = α(x)(1⊗m), ψ(β)(x)(h⊗m) = β(h · x⊗m), for

any h ∈ H, x ∈ X, m ∈ M , are well-defined maps, one the inverse of each

other. It follows straightforward that, when M = N , this isomorphism is an

algebra map. �

3.2. Module functors. Given two H-comodule algebras K,S, we shall

explicitly describe the category of Rep(H)-module functors between the

associated module categories.

Under these hypothesis, we shall denote by H
SMK the category of finite-

dimensional (S,K)-bimodules that are also left H-comodules, with comod-

ule structure a morphism of (S,K)-bimodules.

Proposition 3.5. Asumme K,S are right H-simple left H-comodule alge-

bras, and KM, SM the corresponding Rep(H)-module categories. There are

equivalences

Rex (KM, SM) ' SMK , FunRep(H)(KM, SM) ' H
SMK .
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Proof. We shall only explain the definition of the equivalences. For the com-

plete proof see [1, Prop.1.23]. The first equivalence is a consequence of a

Theorem of Watts, see [16]. The functor Φ : SMK → Rex (KM, SM),

Φ(B)(M) = B⊗KM , is an equivalence of categories.

If P ∈ SMK , define FP : KM → SM the functor given by FP (M) =

P⊗KM . The correspondence P 7→ FP is an equivalence of categories.

If P ∈ H
SMK , X ∈ Rep(H), M ∈ KM the functor FP has a module

structure as follows

cX,M : P⊗K(X⊗kM)→ X⊗k(P⊗KM),

cX,M(p⊗x⊗m) = p(−1) · x⊗ p(0)⊗m,
for any p ∈ P, x ∈ X,m ∈ M. Here the map λ : P → H⊗P , λ(p) =

p(−1)⊗p(0), is the left H-coaction of P . �

The next result is a direct consequence of Proposition 3.5.

Corollary 3.6. Let K be a right H-simple left H-comodule algebra. There

is a monoidal equivalence

Rep(H)∗
KM '

H
KMK .

�

AssumeK,S areH-comodule algebras. The category SMK has a Rep(H)-

bimodule structure as follows. If P ∈ SMK , X ∈ Rep(H), then

X⊗P = X⊗kP, P⊗X = P⊗K(X⊗kK).

The (S,K)-action on the spaces X⊗P, P⊗X are

s · (x⊗p) · k = s(−1) · x⊗s(0) · p · k,

s · (p⊗(x⊗l)) · k = s · p⊗(x⊗lk),

for any s ∈ S, k, l ∈ K, p ∈ P, x ∈ X. The natural isomorphisms relating

both actions are given by

(3.3)

γX,P,Y : (X⊗P )⊗Y → X⊗(P⊗Y ), γX,P,Y ((x⊗p)⊗(y⊗k)) = x⊗(p⊗y⊗k),

for any X, Y ∈ Rep(H), P ∈ SMK , x ∈ X, y ∈ Y, p ∈ P , k ∈ K. It follows

by a straightforward computation that the maps γX,P,Y satisfy (2.12), (2.13)

and (2.14).

Recall that Rex (KM, SM) has a Rep(H)-bimodule category structure,

see (2.16). The proof of the next lemma follows straightforward.

Lemma 3.7. The equivalence Rex (KM, SM) ' SMK presented in Propo-

sition 3.5 is an equivalence of Rep(H)-bimodule categories. �
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3.3. The center of dual tensor categories. In Section 2.4, for any ex-

act C-module category M we presented an equivalence of braided tensor

categories θM : Z(C)→ Z(C∗M). In this section, we shall explicitly give this

equivalence in the case C = Rep(H) and M = KM for a right H-simple

left H-comodule algebra K. For this, we shall use the monoidal equivalences

Z(Rep(H)) ' H
HYD, and Rep(H)∗

KM '
H
KMK . The last one presented in

Corollary 3.6.

Set θK = θ
KM : HHYD → Z(HKMK). If V ∈ H

HYD then θK(V ) = V⊗kK.

The K-bimodule and left H-comodule structure are given by

k · (v⊗t) · s = k(−1) · v⊗k(0)ts,

λ(v⊗t) = v(−1)t(−1)⊗v(0)⊗t(0),

for any v ∈ V , t, k, s ∈ K. The half braiding of the object V⊗kK is given

by

σVP : (V⊗kK)⊗KP → P⊗K(V⊗kK),

σVP (v⊗t⊗p) = (t · p)(0)⊗S−1((t · p)(−1)) · v⊗1

for any P ∈ H
KMK , v ∈ V, p ∈ P , t ∈ K. This formula comes from (2.20).

4. The character algebra for representations of Rep(H)

Given a finite dimensional Hopf algebra H, and M a representation of

the tensor category Rep(H). We aim to compute the adjoint algebra AM
and the corresponding space of class functions as introduced by K. Shimizu

[13], [14].

4.1. The adjoint algebra and the space of class functions. Let C be

a finite tensor category, and letM be an exact indecomposable left module

category over C. We shall further assume that M is strict. First, we shall

recall the definition of the algebra AM ∈ Z(C).
The action functor ρM : C → Rex (M) is

ρM(X)(M) = X⊗M, X ∈ C,M ∈M.

It was proven in [14, Thm. 3.4] that the right adjoint of ρM is the functor

ρra
M : Rex (M)→ C, such that for any F ∈ Rex (M)

ρra
M(F ) =

∫
M∈M

Hom(M,F (M)).

The counit and unit of the adjunction (ρM, ρ
ra
M), will be denoted by

ε : ρM ◦ ρra
M → Id Rex (M)

, η : Id C → ρra
M ◦ ρM.



14 BORTOLUSSI AND MOMBELLI

According to Lemma 2.1 the functor ρra
M has a structure of C-bimodule

functor as follows. The left and right module structure of ρra
M are

ξlX,F : ρra
M(X⊗F )→ X⊗ρra

M(F ),(
ξlX,F

)−1
= ρra

M(idX⊗εF )ηX⊗ρraM(F ),
(4.1)

ξrX,F : ρra
M(F⊗X)→ ρra

M(F )⊗X,(
ξrX,F

)−1
= ρra

M(εF⊗idX)ηρraM(F )⊗X ,
(4.2)

for any X ∈ C, F ∈ Rex (M). This description appears in [14, Equation

A.9].

Since the functor ρra
M : Rex (M) → C is a C-bimodule functor, we can

consider the functor ZC(ρra
M) : EndC(M)→ Z(C). Here ZC is the 2-functor

described in Section 2.3.

Definition 4.1. [14, Subsection 4.2] The adjoint algebra of the module

categoryM is the algebra in the center of C, AM := Z(ρra
M)(IdM) ∈ Z(C).

The adjoint algebra of the tensor category C is the algebra AC of the regular

module category C.

It was explained in [14, Subection 4.2] that the algebra structure of

AM is given as follows. Let πM : AM
..−→ Hom(−,−) denote the dinatural

transformation of the end AM. The product and the unit of AM are

mM : AM⊗AM → AM, uM : 1→ AM,

defined to be the unique morphisms such that they satisfy

πM(M) ◦mM = compMM ◦ (πM(M)⊗πM(M)),

πM(M) ◦ uM = coevM1,M ,
(4.3)

for any M ∈ M. For the definition of coevM and compM see Section

2.2.

Definition 4.2. [14, Definition 5.1] The space of class functions of M is

CF(M) := HomC(FC(AM),1) = HomZ(C)(AM,AC).

The following result will be useful when computing the adjoint algebra

in particular examples. The first three statements are contained in [13], [14].

Lemma 4.3. Let M be an exact indecomposable C-module category. The

following statements hold.

(i) If I : C → Z(C) is a right adjoint to the forgetful functor F : Z(C)→
C, then AC ' I(1).

(ii) There exists an isomorphism AC∗M ' θM(AM) as algebra objects in

Z(C∗M).
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(iii) CF(C∗M) ' EndZ(C)(AM).

(iv) FPdim (AM) = FPdim (C).

Proof. Recall that θM : Z(C)→ Z(C∗M) is the braided equivalence presented

in Section 2.4.

It is proven in [14, Corollary 3.15] that the functor θM ◦ Z(ρra
M) is the

right adjoint of the forgetful functor FC∗M . TakingM = C, this implies part

(i), and taking arbitrary M follows part (ii).

(iii). This is [14, Theorem 5.12].

(iv). Let F : Z(C) → C be the forgetful functor, and I : C → Z(C) its

right adjoint. It was proven in [2, Proposition 7.16.5 ] that FPdim (I(1)) =

FPdim (C). Hence FPdim (AC) = FPdim (C), for any finite tensor category

C. Applying this result to C∗M we obtain that

FPdim (AM) = FPdim (AC∗M) = FPdim (C∗M) = FPdim (C).

The first equality follows from part (ii), and the last one is [4, Corollary

3.43]. �

4.2. The adjoint algebra for module categories over Hopf algebras.

Let H be a finite dimensional Hopf algebra. Let K be a finite-dimensional

left H-comodule algebra. The category KM is a left Rep(H)-module cat-

egory. See Section 3. We aim to compute AK = A
KM as an algebra in

the category H
HYD of Yetter-Drinfeld modules over H. For this, we shall

explicitly give a description of the functor Z(ρra
M).

Identifying Rex (KM) = KMK , we shall denote by ρK : Rep(H) →
KMK , the action functor. Explicitly, if X ∈ Rep(H) then

ρK(X) = X⊗kK.

The left and right K-action on X⊗kK are given by:

s · (x⊗k) · t = s(−1) · x⊗s(0)kt,

for any x ∈ X, s, t, k ∈ K.

Definition 4.4. For any P ∈ H
KMK , define SK(H,P ) as the space of left

K-linear morphisms α ∈ HomK(H⊗kK,P ) such that for any k ∈ K,h ∈ H

(4.4) α(h⊗k) = α(h⊗1) · k.

The space SK(H,P ) has a left H-module structure · : H⊗kS
K(H,P )→

SK(H,P ) and a left H-comodule structure λ : SK(H,P )→ H⊗kS
K(H,P ),

defined by:

(4.5) (h · α)(x⊗k) = α(xh⊗k),
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(4.6) λ : SK(H,P )→ H⊗kS
K(H,P ), λ(α) = α−1⊗α0,

for any α ∈ SK(H,P ), h, x ∈ H, k ∈ K. Here for any h ∈ H, k ∈ K

(4.7) α−1⊗α0(h⊗k) = S(h(1))α(h(2)⊗1)(−1)h(3)⊗α(h(2)⊗1)(0) · k.

When P = K, we shall denote S(H,K) := SK(H,K). It follows by a

straightforward computation that, (4.5), (4.6) are well defined maps, and

they define an H-action and a H-coaction.

Lemma 4.5. The space SK(H,P ) is an object in the category H
HYD.

Proof. We must prove compatibility condition (1.1), that is

(4.8) λ(x · α) = x(1)α
−1S(x(3))⊗x(2) · α0,

for any x ∈ H and for all α ∈ SK(H,P ). Take φ ∈ H∗, h, x ∈ H and k ∈ K.

Evaluating the right hand side of (4.8) in φ⊗h⊗k gives〈
φ,x(1)α

−1S(x(3))
〉

(x(2) · α0)(h⊗k) =

=
〈
φ(1), x(1)

〉〈
φ(3), S(x(3))

〉〈
φ(2), α

−1
〉
x(2) · α0(h⊗k)

=
〈
φ(1), x(1)

〉〈
φ(3), S(x(3))

〉〈
φ(2), α

−1
〉
α0(hx(2)⊗k)

=
〈
φ(1), x(1)

〉〈
φ(3), S(x(3))

〉〈
φ(2), S((hx(2))(1))α((hx(2))(2)⊗1)(−1)(hx(2))(3)

〉
α((hx(2))(2)⊗1)(0) · k

=
〈
φ, x(1)S(x(2))S(h(1))α(h(2)x(3)⊗1)(−1)h(3)x(4)S(x(5))

〉
α(h(2)x(3)⊗1)(0) · k

=
〈
φ, S(h(1))α(h(2)x⊗1)(−1)h(3)

〉
α(h(2)x⊗1)(0) · k

=
〈
φ, S(h(1))(x · α)(h(2)⊗1)(−1)h(3)

〉
(x · α)(h(2)⊗1)(0) · k

=
〈
φ, (x · α)−1

〉
(x · α)0(h⊗k).

�

Lemma 4.6. The space S(H,K) is identified with the subspace of elements∑
i fi⊗ki ∈ H∗⊗kK such that for any t ∈ K, h ∈ H

(4.9)
∑
i

< fi, t(−1)h > kit(0) =
∑
i

< fi, h > tki.

Proof. We explained in Section 3.1 that the space HomK(H⊗kK,K) can

be identified with elements
∑

i fi⊗Ti ∈ H∗⊗k End(K) such that they verify

(3.1). An element
∑

i fi⊗Ti ∈ H∗⊗k End(K), with {fi}i linearly indepen-

dent, belongs to S(H,K) if it satisfies (4.4). This means that Ti(k) = Ti(1)k,

for all i, and all k ∈ K. Thus, we can identify Ti with the left multiplication

map by the element Ti(1). Under this identification (3.1) is equivalent to

(4.9). �
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Remark 4.7. If K ⊆ H is a left coideal subalgebra, then elements of the

space (H/K+H)∗⊗kZ(K) are inside of S(H,K). Here Z(K) is the center of

K. This observation follows from the fact that (H/K+H)∗ can be identified

with elements f ∈ H∗ such that < f, kh >=< ε, k >< f, h >, for any

k ∈ K, h ∈ H.

Theorem 4.8. Let K be a finite dimensional left H-comodule algebra and

P ∈ H
KMK. Then M = KM is a left Rep(H)-module category. There is an

isomorphism of H-modules

SK(H,P ) '
∫
M∈M

Hom(M,P⊗KM).

When P = K, this isomorphism is an algebra map.

Proof. We shall use the description of the internal Hom of the module cat-

egory KM given in Lemma 3.4. First, we shall prove that SK(H,P ) =∫
M∈MHom(M,P⊗KM) as objects in Rep(H). Observe that if M,M ′, N,N ′

are objects in KM, and f : M →M ′, g : N → N ′ are K-module morphisms,

then the functor Hom :Mop ×M→ Rep(H) is defined on morphisms by

Hom(f, g) : HomK(H⊗kM
′, N)→ HomK(H⊗kM,N ′),

α 7→ g ◦ α ◦ (idH⊗f).

For any M ∈ KM define πPM : SK(H,P )→ HomK(H⊗kM,P⊗KM), by

πPM(α)(h⊗m) = α(h⊗1)⊗Km,

for any h ∈ H, m ∈ M . Equation (4.4) implies that πPM(α) is a K-module

morphism. It follows straightforward that πPM is an H-module map and that

it is dinatural.

Assume that (E, d) is a pair, where E ∈ Rep(H), and

d : E
..−→ Hom(−, P⊗K−)

is a dinatural transformation. Dinaturality, in this case, implies that for any

pair of K-modules M,N , and a K-module map f : M → N , we have

(4.10) (id P⊗f) ◦ dM(e) = dN(e)(idH⊗f),

for any e ∈ E. In particular, if N is any K-module, and n ∈ N , define

fn : K → N , fn(k) = k · n. Hence fn is a K-module map, whence, equation

(4.10) implies that (id P⊗fn) ◦ dK(e) = dN(e)(idH⊗fn). Evaluating this

equality in the element h⊗1 ∈ H⊗kK we have that

(4.11) dK(e)(h⊗1)⊗n = dN(e)(h⊗n),

for any h ∈ H. This implies, taking N = K, that the element dK(e) ∈
SK(H,P ), that is, dK(e) satisfies (4.4).
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Define φ : E → SK(H,P ) as φ = dK . Then, equation (4.11) implies that

dN = πPN ◦φ for any K-module N . This proves that the object SK(H,P ) to-

gether with the dinatural transformations πP satisfies the universal property

of the end. Thus SK(H,P ) =
∫
M∈MHom(M,P⊗KM).

When P = K, it is not difficult to verify that the product of the adjoint

algebra defined in terms of the dinatural transformation, see (4.3), coincides

with the product described in (3.2). �

So far, we have described the structure of the end
∫
M∈MHom(M,P⊗KM)

as an object in Rep(H). It remains to describe the structure as an object in

the category of Yetter-Drinfeld modules over H. The next two results will

be initial steps towards this objective.

Define the functor ρ̄K : KMK → Rep(H), ρ̄K(P ) = SK(H,P ) for any

P ∈ KMK . If P,Q ∈ KMK and f : P → Q is a morphism of K-bimodules,

then

ρ̄K(f) : SK(H,P )→ SK(H,Q), ρ̄K(f)(α) = f ◦ α.

Proposition 4.9. The functor ρ̄K : KMK → Rep(H) is the right adjoint

of the functor ρK. The unit and counit of the adjunction (ρK , ρ̄K) are given

by

η : Id Rep(H) → ρ̄K ◦ ρK , ε : ρK ◦ ρ̄K → Id
KMK

,

ηX(x)(h⊗k) = h · x⊗k, εP (α⊗k) = α(1⊗k),

for any X ∈ Rep(H), P ∈ KMK, x ∈ X, h ∈ H, α ∈ SK(H,P ), k ∈ K.

Proof. For any X ∈ Rep(H), P ∈ KMK , x ∈ X, k ∈ K, h ∈ H define

φX,P : HomH(X,SK(H,P ))→ Hom(K,K)(X⊗kK,P ),

φX,P (α)(x⊗k) = α(x)(1⊗k),
(4.12)

ψX,P : Hom(K,K)(X⊗kK,P )→ HomH(X,SK(H,P )),

ψX,P (β)(x)(h⊗k) = β(h · x⊗k).
(4.13)

It follows by a straightforward computation that the maps φX,P , ψX,P are

natural morphisms, and are inverses of each other. The unit and counit of

the adjunction are given by

ηX = ψX,X⊗kK(idX⊗kK), εP = φSK(H,P ),P (id SK(H,P )).

�

The next result is a particular case of Example 2.2. Since we need the

explicit equivalence, we shall write the proof.

Lemma 4.10. There is an equivalence of categories ZRep(H)(KMK) '
H
KMK.
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Proof. Let (M,σ) ∈ ZRep(H)(KMK). This means that M ∈ KMK , and

the half-braiding is given by σX : M⊗K(X⊗kK) → X⊗kM , for any X ∈
Rep(H). Define λ : M → H⊗kM , λ(m) = σH(m⊗1H⊗1K) for any m ∈M .

This establishes a functor

Φ : ZRep(H)(KMK)→ H
KMK , Φ(M,σ) = (M,λ).

If (M,λ) ∈ H
KMK , define σλX : M⊗K(X⊗kK)→ X⊗kM , the map

σλX(m⊗x⊗k) = m(−1) · x⊗m(0) · k,

for any X ∈ Rep(H), m ∈ M , k ∈ K. It follows by a simple computa-

tion that σλX is a well-defined isomorphism, it is a K-bimodule map and

it satisfies (2.18). This defines a functor Ψ : H
KMK → ZRep(H)(KMK),

Ψ(M,λ) = (M,σλ). �

For any P ∈ H
KMK recall the structure of Yetter-Drinfeld module over

H of SK(H,P ) given by (4.5), (4.6).

Theorem 4.11. For any P ∈ H
KMK there is an isomorphism SK(H,P ) '

Z(ρ̄K)(P ) as objects in H
HYD.

Proof. If P ∈ H
KMK , then Z(ρ̄K)(P, σλ) = (SK(H,P ), σP ), where, accord-

ing to (2.19), the half braiding for ρ̄K(P ) = SK(H,P ) is the morphism

σPX : SK(H,P )⊗kX → X⊗kS
K(H,P ), given by the composition

SK(H,P )⊗kX
(ξrX,P )−1

−−−−−→ SK(H,P⊗K(X⊗kK))
ρ̄K(σλX)
−−−−→

→ SK(H,X⊗kP )
ξlX,P−−→ X⊗kS

K(H,P ),

for any X ∈ Rep(H). Recall that σλ is the half braiding associated to P

explained in Lemma 4.10. To compute σP , we need to compute the bimodule

structure of the functor ρ̄K . Both structures are given by equations (4.1),

(4.2).

Using the formula for the unit and counit of the adjunction (ρK , ρ̄K)

given in Proposition 4.9 we obtain that

(ξlX,P )−1(x⊗α)(h⊗k) = ρ̄K(idX⊗εP )ηX⊗kSK(H,P )(x⊗α)(h⊗k)

= (idX⊗εP )ηX⊗kSK(H,P )(x⊗α)(h⊗k)

= (idX⊗εP )(h(1) · x⊗h(2) · α⊗k)

= h(1) · x⊗h(2) · α(1⊗k)

= h(1) · x⊗α(h(2)⊗k),
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and

(ξrX,P )−1(α⊗x)(h⊗k) = (εP⊗idX⊗kK)ηSK(H,P )⊗kX(α⊗x)(h⊗k)

= (εP⊗idX⊗kK)(h(1) · α⊗1⊗h(2) · x⊗k)

= (h(1) · α)(1⊗1)⊗h(2) · x⊗k

= α(h(1)⊗1)⊗h(2) · x⊗k,

for any α ∈ SK(H,P ), x ∈ X, h ∈ H, k ∈ K.

Now, the H-coaction of Z(ρ̄K)(P, σλ) associated with the half braiding

σP is

λP : SK(H,P )→ H⊗kS
K(H,P ), λP (α) = σPH(α⊗1H).

Let us denote λP (α) = α−1⊗α0. Using the formula for σPX , we know that

(ξlH,P )−1σPH(α⊗1H) = ρ̄K(σλH)(ξrH,P )−1(α⊗1H). Evaluating this equality in

h⊗k ∈ H⊗kK we obtain that

(ξlH,P )−1σPH(α⊗1H)(h⊗k) = h(1)α
−1⊗α0(h(2)⊗k),

is equal to

ρ̄K(σλH)ξrH,P (α⊗1H)(h⊗k) = σλH(ξrH,P )−1(α⊗1H)(h⊗k)

= σλH(α(h(1)⊗1)⊗h(2)⊗k)

= α(h(1)⊗1)(−1)h(2)⊗α(h(1)⊗1)(0) · k.

Thus

(4.14) h(1)α
−1⊗α0(h(2)⊗k) = α(h(1)⊗1)(−1)h(2)⊗α(h(1)⊗1)(0) · k,

for any α ∈ SK(H,P ), h⊗k ∈ H⊗kK. Hence

α−1⊗α0(h⊗k) = α−1⊗α0(εH(h(1))h(2)⊗k)

= S(h(1))h(2)α
−1⊗α0(h(3)⊗k)

= S(h(1))α(h(2)⊗1)(−1)h(3)⊗α(h(2)⊗1)(0) · k.

The last equality follows from (4.14). This formula coincides with (4.7). �

As a consequence of Theorems 4.8 and 4.11 we obtain the next result.

Corollary 4.12. Let K be a finite dimensional right H-simple left H-

comodule with trivial coinvariants. There exists an isomorphism of algebras

S(H,K) ' AK ,

in the category H
HYD. �
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Example 4.13 (Case K = H). We denote by Had the algebra in the

category H
HYD whose underlying algebra is H, with H-coaction given by

the coproduct and H-action given by the adjoint action, that is h . x =

h(1)xS(h(2)), h, x ∈ H. Since H is an H-comodule algebra with the coprod-

uct, we can consider SH(H,H). The map φ : S(H,H) → Had, φ(α) =

α(1⊗1) is an isomorphism of algebras in H
HYD. Indeed, it is an H-module

map. Take α ∈ S(H,H), h, t ∈ H, then

α(h⊗t) = α(h1⊗h2S(h3)t) = h(1)α(1⊗S(h2)t)

= h(1)α(1⊗1)S(h2)t.
(4.15)

The second equality because α is an H-module map, and the last equality

follows from (4.4). Then

φ(h · α) = (h · α)(1⊗1) = α(h⊗1)

= h(1)α(1⊗1)S(h2) = h . φ(α).

It follows by a straightforward computation that, φ is an algebra and an

H-comodule map. Using (4.15), it follows that the map ψ : Had → S(H,H),

ψ(x)(h⊗t) = h(1)xS(h2)t, x, h, t ∈ H, is the inverse of φ.

Example 4.14 (Case K = k). We denote by H∗ad the following algebra in

the category H
HYD. The underlying algebra is H∗. The H-action and H-

coaction are · : H⊗kH
∗
ad → H∗ad, λ : H∗ad → H⊗kH

∗
ad, λ(f) = f (−1)⊗f (0),

where

(h · f)(x) = f(xh), < g, f (−1) > f (0) = S(g(1))fg(2),

for any h, x ∈ H, g ∈ H∗. It follows that S(H,k) = H∗ad.

5. Some explicit calculations

In this section we shall explicitly compute the adjoint algebra for the

representation categories of group algebras and their duals. We shall use

the identification of S(H,K) with elements in H∗⊗kK such that they sat-

isfy (4.9). First we recall the classification of exact indecomposable module

categories over group algebras and their duals.

5.1. Module categories over the tensor categories Rep(kG), Rep(kG).

Assume G is a finite group. We shall recall the classification of exact inde-

composable module categories over Rep(kG) and Rep(kG). For this, we shall

give families of simple left H-comodule algebras, where H = kG,kG.

Assume F ⊆ G is a subgroup and ψ ∈ Z2(F, k×) a 2-cocycle. We denote

by kψF the twisted group algebra. We can choose ψ (in a cohomology class)
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such that

ψ(f, g)ψ(g−1, f−1) = 1, ψ(f, 1) = ψ(1, f) = 1,

for any f, g ∈ F . In such case we shall say that ψ is normalized.

The twisted group algebra kψF is a left kG-comodule algebra as follows.

Elements in kψF are linear combinations of ef , f ∈ F . The product and left

kG-coaction are

efeh = ψ(f, h) efh, λ(ef ) = f⊗ef ,

for any f, h ∈ F . If V is a simple kψF -module, we can form the following

algebra. The endomorphism algebra End(V ) is a right kF -module, with

action given by

(T · f)(v) = f−1 · T (f · v),

for any f ∈ F, v ∈ V, T ∈ End(V ). Define K(F, ψ, V ) = End(V )⊗kFkG. Let

S ⊆ G be a set of representative elements of cosets F\G.

Any element in K(F, ψ, V ) is of the form T⊗s, for some s ∈ S, T ∈
End(V ). Here z denotes the class of the element z ∈ kG⊗k End(V ) in the

quotient kG⊗kF End(V ). The product in K(F, ψ, V ) is defined as follows:

(T⊗x)(U⊗y) = δx,y T ◦ U⊗x,

for any T, U ∈ End(V ), x, y ∈ S. The unit is
∑

s∈S Id⊗s. The vector space

K(F, ψ, V ) has a structure of right kG-module that makes it into a module

algebra. The right action is:

(T⊗x) · g = T⊗xg, g ∈ G.

With this action K(F, ψ, V ) is a right kG-module algebra, hence it is a left

kG-comodule algebra, with coaction

λ : K(F, ψ, V )→ kG⊗kK(F, ψ, V ), λ(k) = k(−1)⊗k(0),

such that for any g ∈ G, < k(−1), g > k(0) = k · g.

The next result is part of the folklore of representations of tensor cate-

gories. See, for example, [4, Proposition 4.1, Lemma 4.3]. It also follow from

Theorem 3.1.

Theorem 5.1. Let G be a finite group.

(i) If M is an exact indecomposable module category over Rep(kG),

there exists a subgroup F ⊆ G, a normalized 2-cocycle ψ ∈ Z2(F, k×)

such that M' kψFM as module categories.

(ii) If M is an exact indecomposable module category over Rep(kG),

there exists a subgroup F ⊆ G, a normalized 2-cocycle ψ ∈ Z2(F, k×),
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and a simple kψF -module V such that M ' K(F,ψ,V )M as module

categories. �

Remark 5.2. The equivalence class of the module category K(F,ψ,V )M does

not depend on the choice of the simple kψF -module V . The twisted group

algebra kψF is an algebra in the category Rep(kG). One can prove that,

regardless the choice of V , the module category K(F,ψ,V )M is equivalent to

Rep(kG)kψF .

Remark 5.3. Let F = {1} be the trivial subgroup of G, ψ = 1 and V = k
with the trivial action. Denote K = K(F, ψ, V ). It is not difficult to see

that K ' kG as left kG-comodule algebras. Hence K({1},1,k)M' Rep(kG) as

Rep(kG)-module categories.

5.2. Case H = kG. Let F ⊂ G be a subgroup, and a normalized 2-cocycle

ψ ∈ Z2(F, k×). Let K = kψF be the twisted group algebra. We shall denote

by {ef}f∈F the canonical basis of kψF . The product in this algebra is then

efel = ψ(f, l)efl, for any f, l ∈ F .

Let S ⊆ G be a set of representatives of right cosets F\G such that

1 ∈ S. Define b : F × F → k× as

b(l, f) =
ψ(l, l−1fl)

ψ(f, l)
.

Also, for any l ∈ F , set Cl = {(g, f) ∈ F × F : g−1fg = l}. For any s ∈ S,

l ∈ F define

αs,l =
∑

(g,f)∈Cl

b(g, f) δgs⊗ef ∈ kG⊗kK.

Using the identification explained in Subsection 3.1, the element αs,l can be

seen as an element in Hom(kG⊗kK,K), where

(5.1) αs,l(x⊗eh) = δs,t b(f, flf
−1)ψ(flf−1, h) eflf−1h,

if x = ft ∈ G, t ∈ S, h ∈ F .

Lemma 5.4. The set B = {αs,l ∈ kG⊗kkψF : s ∈ S, l ∈ F} is a basis of

S(kG,kψF ).

Proof. Clearly B is a set of linearly independent elements. Let z be an

arbitrary element of kG⊗kkψF . Thus z =
∑

x∈G,f∈F ξx,f δx⊗ef , for certain

scalars ξx,f ∈ k. If z ∈ S(kG,kψF ), equation (4.9) implies that∑
x∈G,f∈F

ξx,fδx(ly)efel =
∑

x∈G,f∈F

ξx,fδx(y)elef
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for any y ∈ G, l ∈ F . This implies that∑
f∈F

ξly,f ψ(f, l) efl =
∑
f∈F

ξy,f ψ(l, f) elf .

This equality implies, by looking at the coefficient of elf , that

ξly,f = ξy,l−1fl b(l, f),

for any l, f ∈ F , y ∈ G. Whence

z =
∑

x∈G,f∈F

ξx,f δx⊗ef =
∑

s∈S,g,f∈F

ξgs,f δgs⊗ef

=
∑

s∈S,g,f∈F

ξs,g−1fg b(g, f) δgs⊗ef

=
∑

s∈S,l∈F

∑
(g,f)∈Cl

ξs,l b(g, f) δgs⊗ef =
∑

s∈S,l∈F

ξs,lαs,l.

Thus z is a linear combination of elements of B. �

The proof of the next result follows by a straightforward computation.

Lemma 5.5. The kG-coaction of S(kG,kψF ), given in (4.7), is determined

by

λ(αs,g) = s−1gs⊗αs,g,

for any g ∈ F , s ∈ S. The kG-action on S(kG,kψF ), given in (4.5), is

determined by

x · αs,g = b(h−1, h−1gh)αr,h−1gh,

if x = ft and st−1f−1 = hr, where f, h ∈ F , t, r ∈ S. �

For any subgroup F ⊂ G and a normalized 2-cocycle ψ ∈ Z2(F, k×),

define Cψ(G,F ) as the subspace of Homk(k[S×F ], k) generated by functions

φ : S × F → k such that

(5.2) b(x, xs−1gsx−1)φ(s, g) = b(h−1, h−1gh)φ(r, h−1gh),

for any x ∈ G such that sx−1 = hr, r ∈ S, h ∈ F . Observe that if F = G,

ψ = 1 then Cψ(G,F ) is the space of class functions on G.

Proposition 5.6. Let F ⊂ G be a subgroup, and ψ ∈ Z2(F, k×) a normal-

ized 2-cocycle. There exists a linear isomorphism CF(kψFM) ' Cψ(G,F).

Proof. As before, denote S ⊆ G a set of representatives of elements of F\G.

Let be φ ∈ CF(kψFM). This means that φ : S(kG,kψF )→ S(kG,kG) is a

morphism of kG-Yetter-Drinfeld modules. Elements of the basis described

in Lemma 5.4 for S(kG,kG) are of the form α1,g ∈ kG⊗kkG, for any g ∈ G.
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Using Lemma 5.5, since φ is a kG-comodule map, we observe that

φ(αs,g) = φs,g α1,s−1gs,

for any s ∈ S, g ∈ F . Here φs,g ∈ k. This implies that φ is determined by the

scalars φs,g. It remains to prove that these scalars satisfy (5.2). Take x ∈ G,

and write it as x = ft, where f ∈ F , t ∈ S. Assume that st−1f−1 = hr,

where h ∈ F , r ∈ S. Since φ is a kG-module map, then

φ(x · αs,g) = b(h−1, h−1gh)φ(αr,h−1gh)

= b(h−1, h−1gh)φr,h−1gh α1,r−1h−1ghr

= x · φ(αs,g) = φs,g x · α1,s−1gs = φs,g b(x, xs
−1gsx−1)α1,xs−1gsx−1 .

This implies that b(h−1, h−1gh)φr,h−1gh = b(x, xs−1gsx−1)φs,g. �

5.3. Case H = kG. Let F ⊂ G be a subgroup, and ψ ∈ Z2(F, k×) be a

normalized 2-cocycle. Let also V be a simple kψF -module. Recall the def-

inition of the left kG-comodule algebra K(F, ψ, V ) presented in Subsection

5.1. Again, let S ⊆ G be a set of representatives of right cosets F\G such

that 1 ∈ S. The following technical result will be needed later.

Lemma 5.7. Let f ∈ F . The vector space consisting of T ∈ End(V ) such

that

(5.3) U ◦ T = T ◦ (U · f),

for any U ∈ End(V ), is 1-dimensional.

Proof. Since the group F is finite, the linear operator f · : V → V is diag-

onalizable. Let {vi}i=1...n be a basis of V such that f · vi = qi vi, qi ∈ k×

for any i = 1 . . . n. Let T ∈ End(V ) be a linear transformation such that

it satisfies (5.3). For any j, k = 1 . . . n define Uj,k : V → V the operator

Uj,k(vi) = δj,ivk, for any i = 1 . . . n. Assume that T (vi) =
∑

l ti,l vl. On one

hand, for any i = 1 . . . n we have that

(Uj,k ◦ T )(vi) = ti,jvk.

And, on the other hand we have

T ◦ (Uj,k · f)(vi) = qiq
−1
k δj,i

∑
l

tk,l vl.

Whence, equation (5.3) implies that if i 6= j, then ti,j = 0, and if i = j then

qiq
−1
k tk,k = ti,i. This implies the Lemma. �
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For any f ∈ F denote by Tf ∈ End(V ) the unique (up to scalar) non

zero linear operator such that it fulfils condition (5.3) of Lemma 5.7. For

any (f, s) ∈ F × S, denote α(f,s) ∈ kG⊗kK(F, ψ, V ) by

α(f,s) = s−1fs⊗Tf⊗s.

When f = 1, we can choose Tf = Id V .

Proposition 5.8. The linearly independent set {α(f,s) : (f, s) ∈ F × S} is

a basis for S(kG,K(F, ψ, V )).

Proof. It follows straightforward that for any (f, s) ∈ F × S the element

α(f,s) satisfies condition (4.9). It follows from Lemma 4.3 (iv) that

dim(S(kG,K(F, ψ, V ))) = dim(kG) =| G | .

Since the set {α(f,s) : (f, s) ∈ F × S} has cardinal equal to | G |, then it

must be a basis. �

For any (f, s) ∈ F×S define I(f, s) = {(h, a) ∈ G×G : aha−1 = s−1fs}.

Lemma 5.9. The kG-coaction of S(kG,K(F, ψ, V )), given in (4.7), is de-

termined by

λ(α(f,s)) =
∑

(a,h)∈I(f,s)

δa⊗h⊗Tf⊗sa

for any (f, s) ∈ F ×S. The kG-action on S(kG,K(F, ψ, V )), given in (4.5),

is determined by

δg · α(f,s) =

{
0 if g 6= s−1fs

α(f,s) if g = s−1fs.

�

Proposition 5.10. Let F ⊂ G be a subgroup, and ψ ∈ Z2(F, k×) be a

normalized 2-cocycle. Let V be a simple kψF -module. There exists a linear

isomorphism CF(K(F,ψ,V)M) ' kS.

Proof. Recall that the comodule algebra representing the regular module

category Rep(kG) is the algebra K({1}, 1, k), see Remark 5.3. Let φ ∈
CF(K(F,ψ,V)M). Thus φ : S(kG,K(F, ψ, V )) → S(kG,K({1}, 1,k)) is a kG-

module and kG-comodule morphism.

Elements in the basis of S(kG,K({1}, 1,k)) are α(1,g), for any g ∈ G.

Hence

φ(α(f,s)) = φ(δsfs−1 · α(f,s)) = δsfs−1 · φ(α(f,s))

=

{
0 if f 6= 1

φ(α(f,s)) if f = 1.



THE CHARACTER ALGEBRA FOR HOPF ALGEBRAS 27

for any f ∈ F , s ∈ S. We deduce that φ is determined in values of α(1,s) for

any s ∈ S. Assume that

φ(α(1,s)) =
∑
g∈G

φs,g α(1,g),

for certain φs,g ∈ k. Since I(1, s) = {(1, a) ∈ G×G}, and φ is a kG-comodule

map, we have that φsa,g = φs,ga−1 for any s ∈ S, g, a ∈ G. Here we are

abusing of the notation, since sa denotes the element t ∈ S that represents

the class in which sa belongs. Whence scalars φs,g are determined by a

function f : F\G→ k, as follows

φs,g = f(sg−1),

for any s ∈ S, g ∈ G. �

5.4. The adjoint algebra for tensor categories C(G, 1, F, ψ). Let G

be a finite group and ω ∈ Z3(G,k×) be a 3-cocycle. The category C(G,ω)

stands for the category of finite dimensional G-graded vector spaces, with

associativity constraint defined by

aX,Y,Z((x⊗y)⊗z) = ω(g, h, f)x⊗(y⊗z),

for any G-graded vector space X, Y, Z, and any homogeneous elements x ∈
Xg, y ∈ Yh, z ∈ Zf . Note that if ω = 1, then there is a monoidal equivalence

C(G,ω) ' Rep(kG).

If F ⊆ G is a subgroup, and ψ ∈ Z2(F, k×) is a 2-cocycle such that

dψ ω = 1, then the twisted group algebra kψF is an algebra in C(G,ω). The

category C(G,ω, F, ψ) is the category kψFC(G,ω)kψF of kψF -bimodules in

C(G,ω). These categories are called group-theoretical fusion categories.

We shall describe the adjoint algebra AD, and the space of class functions

CF(D) when D = C(G, 1, F, ψ). We shall keep the notation of Section 5.2.

It follows from Corollary 3.6 that there is a monoidal equivalence

C(G, 1, F, ψ) ' Rep(G)∗
kψFM

Using this equivalence and Lemma 4.3 (ii), it follows that AC(G,1,F,ψ) is

isomorphic to θkψF (AkψF ). Here AkψF is the adjoint algebra corresponding

to the Rep(G)-module category kψFM.

Using the explicit description of the functor θkψF given in Subsection

3.3, we obtain that AC(G,1,F,ψ) is isomorphic to S(kG,kψF )⊗kkψF . Recall

that S(kG,kψF ) has a basis consisting of elements αs,l ∈ kG⊗kkψF , s ∈
S, l ∈ F. The vector space S(kG,kψF )⊗kkψF is an object in the category

Z(kψFC(G,ω)kψF ) as follows. The left kG-coaction is given by

λ : S(kG,kψF )⊗kkψF → kG⊗kS(kG,kψF )⊗kkψF,
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λ(αs,f⊗eh) = s−1fsh⊗αs,f⊗eh,

for any f, h ∈ F , s ∈ S. The kψF -bimodule structure is given by

eg · (αs,f⊗eh) · el = b(d−1, d−1fd)ψ(g, h)ψ(gh, l)αr,d−1fd⊗eghl,

if sg−1 = df , g, f, l, d ∈ F , r, s ∈ S.

The next result is a direct consequence of Lemma 4.3 and (the proof of)

Proposition 5.6.

Lemma 5.11. The space of class functions CF(C(G, 1,F, ψ)) is isomorphic

to C1(G,F ). �
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