CROSSED EXTENSIONS OF THE COREPRESENTATION
CATEGORY OF FINITE SUPERGROUP ALGEBRAS

ADRIANA MEJIA CASTANO AND MARTIN MOMBELLI

ABSTRACT. We present explicit examples finite tensor categories that
are Ca-graded extensions of the corepresentation category of certain
finite-dimensional non-semisimple Hopf algebras.

Mathematics Subject Classification (2010): 18D10, 16 W30, 19D23.
Keywords: tensor category, Hopf algebra, BiGalois extensions

1. INTRODUCTION

Throughout this paper we shall work over an algebraically closed field k
of characteristic zero.

Given a finite group I' a (faithful) I'-grading on a finite tensor category
D is a decomposition D = @gerDy, where Dy are full Abelian subcategories
of D such that

o D, # 0;

® ®:Dy x Dy — Dgyp for all g,h € T.
In this case C = D, is a tensor subcategory of D. The tensor category D is
a I'-extension of C. The category D, is an invertible C-bimodule category
for any g € I". This gives rise to a group homomorphism ¢ : I' — BrPic (C),
where BrPic (C) is the so-called Brauer-Picard group of C introduced in
[8]. The Brauer-Picard group of a finite tensor category C is the group of
equivalence classes of invertible exact C-bimodule categories.

Given a finite group I' and a fusion category C, I'-extensions of C were clas-
sified in [8]. Any such extension depends on a group map c: I' — BrPic (C)
and certain cohomological data. The problem of giving concrete examples of
[-extensions of a given finite tensor category C is that, besides the cohomo-
logical obstructions, the explicit computation of the Brauer-Picard group is
needed. The computation of Brauer-Picard group is in general complicated.
Some computations of this group were done in [15], [17], [13].

A different version of I'-extensions was studied in [11]. In loc. cit. the
author studies and classifies I'-gradings D = @gerDy such that there are
equivalences Dy ~ D, as D,-module categories for any g € I'. Such ex-
tensions are called I'-crossed products and they are classified by equivalence
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classes of crossed systems of T over C. A crossed system of I" over C consists
of a collection ¥ = ((ax,£%), (Uqp, o®b), Yabe)a,b,cel Where

e (a,,&%) : C — C are monoidal autoequivalences, with monoidal struc-
ture

Eky 1 ax(XR®Y) = ax(X)®ax(Y), XY €C;

e invertible objects U,y € C;
e natural isomorphisms

O'()l(’b Db (X)®@Uqp — Ugp®(ab) X, X €C;

e isomorphisms v, : a*(Ub,C)®Ua,bc — U p@Uqp ¢
such that they satisfy certain conditions. If ¥ is a crossed system of I'
over C we define a new category C(X) = @uerC, as Abelian categories and
Co =C for all a € T'. Denote by [V, a] the object V' € C,. In [11] the author
introduces a new tensor product on the category C(X) given by

[V, al@[W, b] = [V&a.(W)&Ua,p, ab],

for any VW € C, a,b € I". The conditions of crossed system ensures that
C(X) is indeed a monoidal category.

The present paper is devoted to give explicit examples of Cs-crossed prod-
ucts, where Cj is the cyclic group of two elements, of the category Comod(H )
of finite-dimensional H-comodules, where H is a supergroup algebra. Part of
the information needed to compute crossed systems in this particular case is
the computation of tensor autoequivalences F' : Comod(H) — Comod(H),
thus we need to compute the group BiGal(H) of equivalence classes of biGa-
lois objects over H [18]. The group BiGal(H) is interesting from the Hopf
algebraic point of view. It was computed only for few examples, see [3], [5],
[19]. In this work we present a technique to compute the biGalois group for
supergroup algebras. This technique is different from the one presented by
Schauenburg in [19].

The examples of Cs-crossed products presented here are representation
categories of quasi-Hopf algebras. We do not know how to compute those
quasi-Hopf algebras explicitly. We believe that these tensor categories are
not equivalent to the representation categories of a (usual) Hopf algebra.
We will address this question in a forthcoming paper.

The paper is organized as follows. In Section 2 we give the required nota-
tions. In Section 3 we describe the Hopf algebra structure of the supergroup
algebras introduced in [1]. For any supergroup algebra we describe the pro-
jective covers of its simple objects. This description will be useful when
computing certain Frobenius-Perron dimensions. In Section 4 we classify
biGalois objects for supergroup algebras. BiGalois objects are a fundamen-
tal piece of information to compute examples of crossed systems. In Section
5 we recall the definition of crossed product tensor category as introduced
in [11] and how they are constructed from crossed systems. We also give a
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more concrete description of crossed systems in the case the tensor category
is the category of corepresentations of a finite-dimensional Hopf algebra. In
Section 6 we give explicit examples of crossed systems of Cy over a super-
group algebra and we describe the monoidal structure. We obtain eight
non-equivalent tensor categories and we compute their Frobenius-Perron di-
mensions.

2. PRELIMINARIES AND NOTATION

If T is a finite group and ¢ € Z%(I',k*) is a 2-cocycle, there is another
2-cocycle v in the same cohomology class as 1 such that

(21) ¢/(97 1) - wl(lvg) =1, w,(gvgil) =1, ¢/<ga h)il = w/(hilvgilx
for all g,h € T'. From now on, all elements in Z2(I",k*) representing some
class in H?(T',k*) will satisfy equation (2.1). For references in group coho-
mology see [4].

If H is a Hopf algebra and g € G(H) is a group-like element, we denote
ky the one dimensional vector space generated by w, with left H-comodule
given by

Aikg = Hogky, AMwg) = g@wy.
A coradically graded Hopf algebra H = @®[*,H (i) is a Hopf algebra H that
is a graded algebra and a graded coalgebra such that the coradical filtration
is given by H,, = @] H (). For references on Hopf algebra theory see [16].

If H is a coradically graded Hopf algebra and (A, \) is a left H-comodule
algebra, the Loewy series on Ais given by A, = A\ (H,®@kA),n=1,...,m,
see [14]. The associated graded algebra gr A is again a left H-comodule
algebra. If the coradical Hy is a Hopf subalgebra then Ay is a left Hp-
comodule algebra. The comodule algebra A is H-simple if it has no non-
trivial ideals I C A such that A\(/) C H®yl.

2.1. Twisting Hopf algebras. In this section we recall a well known pro-
cedure of deformation of a given Hopf algebra. The reader is refered to [16].
Let H be a Hopf algebra . A Hopf 2-cocycle for H is a convolution invertible
map o : HRH — k, such that

(2.2) o(z1), y1))o(T2)¥2), 2) = o (Y1) 2(1)) (T, Y(2)2(2))

(2.3) o(z,1) = e(2) = o(1,2),

for all z,y,z € H. There is a new Hopf algebra structure constructed over
the same coalgebra H with product described by

(24)  zpy=o(za,yn)o (ZeE)hyeE) oY), Ty € H.

This new Hopf algebra is denoted by HIl. If (A, \) is a left H-comodule
algebra, then we can define a new product in A by

(2.5) a.cb = a(a(,l), b(,l)) a(o).b(o), a,b e A.

We shall denote by A, this new algebra. With the same comodule structure,
A, is a left H?-comodule algebra.
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Let H be a pointed coradically graded Hopf algebra with coradical kG,
G a finite group. Let ¢ € Z%(G,k*) be a 2-cocycle. There exists a Hopf
2-cocycle oy, : H®pH — k such that for any homogeneous elements x,y € H

Y(a,y), ifx,y € H(0);
0, otherwise.

(2.6) oy (2, y) = {

See [12, Lemma 4.1].

2.2. Bicategories. For a review on basic notions on bicategories we re-
fer to [2]. Any monoidal category C gives rise to a bicategory C with
only one object. If C,D are strict monoidal categories, a pseudo-functor
(F,€) : C — D is a monoidal functor between the monoidal categories C and
D. If (F,¢),(G,(¢) : C — D are monoidal functors, a pseudo-natural trans-
formation between them is a pair (ng,n) : (F,&) — (G,({) where ng € D is
an object and for any X € C natural transformations

nx : F(X)®ny — no@G(X),
such that for all X,Y € C
(2.7) (id o @Cx,y )nxey = (Nx®id givy) (id pxy @0y ) (Ex,y ®id 4, ).

Given two pseudo-natural transformations (ng,n) : (F,&) — (G,({) and
(00,0) : (G,¢) — (H, x) their composition is given by

(2.8) (no®00, (id 5, @) (N@id 0y )) : (F,€) = (H, x),
and their tensor product is given by
(2.9) (F(00)@m0,¢).

where, for any X € C,
Yx : F(G(X))@F (00)®@no — F(o0)@m@G(H (X)),
is given by the composition
Ux = (id p(o0) @M1 (x)) (€ prx0) @1 o) (F(0)E ) 00 @1 )

If (no,m), (69,0) : F — G are pseudo-natural transformations, a modifica-
tion v : (no,n) = (00, 0) is a morphism v € Home (19, o) such that for all
Vel

(2.10) (v®id govy)nv = ov (id pyR7).

Given two modifications v : (n9,17) = (09,0) and 7 : (09, 0) =2 (70, 7) their
composition is given by the composition of morphisms in D.

~ is an invertible modification if there exist another modification 7 such
that y o7 =1id,, and 7oy = id 4.

We say that the pseudo-natural transformations (9, n), (0o, ) are equiv-
alent, and it is denoted by (n0,n) ~ (00, o) if there exists an invertible mod-
ification v : (n9,n) — (00,0). A pair (n9,n) is a pseudo-natural isomorphism
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if there exists another pseudo-natural transformation (o, o) such that

(m0,m)(00,0) ~ (1p,id ), (00,0)(n0,n) ~ (1p,idg).

Consequently, the object 7 is invertible in D, that is, there exists an object
Mo € D such that ny®ny ~ 1p ~ NHRno.

2.3. Hopf biGalois objects. Let H, L be finite-dimensional Hopf algebras.
An (H, L)-biGalois object [18], is an algebra A that is a left H-Galois ex-
tension and a right L-Galois extension of the base field k such that the two
comodule structures make it an (H, L)-bicomodule. Two biGalois objects
are isomorphic if there exists a bijective bicomodule morphism that is also
an algebra map. Any (H, L)-biGalois object A can be regarded as a left
H®y L°P-comodule algebra. It follows from [16, Corollary 8.3.10] that any
biGalois object is H®y LP-simple as a left H®y L°P-comodule algebra.

Denote by BiGal(H) the set of isomorphism classes of (H, H)-biGalois
objects. It is a group with product given by the cotensor product Lp.

If Ais an (H, L)-biGalois object then the functor
(2.11) Fa : Comod(L) — Comod(H), Fa(X)=AOLX,

for all X € Comod(L), has a tensor structure as follows. If X, Y € Comod(L)
then £4 y : (AOLX)®k(AOLY) — ADL(X@Y) is defined by

(2.12) ff}yy(ai®xi®bj®yj) = a;b;®@x;Qy;,

for any a;@x; € AOLX, bj®y; € AOLY. If A, B are (H, L)-biGalois objects
then there is a natural monoidal isomorphism between the tensor functors
Fa,Fp if and only if A ~ B as biGalois objects.

Assume that A is a H-biGalois object with left H-comodule structure
At A— HepA. If g € G(H) is a group-like element we can define a new
H-biGalois object A9 on the same underlying algebra A with unchanged
right comodule structure and a new left H-comodule structure given by
A A9 — HRp A9, M(a) = g_la(,l)g@)a(o) for all a € A.

Recall [10] that two H-biGalois objects A, B are equivalent, and denote it
by A ~ B if there exists an element g € G(H) such that A9 ~ B as biGalois
objects. The subgroup of BiGal(H) consisting of H-biGalois objects equiv-
alent to H is denoted by InnbiGal(H). This group is a normal subgroup of
BiGal(H). We denote OutbiGal(H) = BiGal(H)/InnbiGal(H ).

Theorem 2.1. [10, Thm. 4.5] Let A, B € BiGal(H). The following state-
ments are equivalent.

1. A~ B;

2. there exists a pseudo-natural isomorphism (ng,n) : Fa — Fp.
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Remark 2.2. Given an isomorphism f : A9 — B of bicomodule algebras,
there is an associated pseudo-natural isomorphism (n9,n7) : Fa — Fg,
given by

no = kg, 77{/ A0 Verky — k@ BORV,

n‘f/(a®v®r) =r®f(a)®v,

for all a®v®r € AOpV®kk,. Moreover, any pseudo-natural isomorphism
is of this form.

2.4. Comodule algebras over graded Hopf algebras. One of the goals
of the paper is the classification of biGalois objects over a certain family of
Hopf algebras. Since biGalois objects are in particular comodule algebras,
we first recall some tools developed in [14] to study simple comodule algebras
over coradically graded Hopf algebras.

Let H = ®]" (H (i) be a coradically graded finite-dimensional Hopf alge-
bra. We shall also assume that H is pointed; the coradical is a group algebra
Hy = kG of a finite group G.

If A is right H-simple then A is right kG-simple, [14, Prop. 4.4], thus
there exists a subgroup F C G and a 2-cocycle ¢ € Z?(F,k*) such that
Ag = ky F. The next result is [15, Lemma 5.4].

Lemma 2.3. If A is right H-simple there exists a 2-cocycle LZ € Z%(G, k)
such that v restricted to F equals ¢ and (gr A>f’$ is isomorphic to a homoge-

neous left coideal subalgebra of HY a5 a left H 3 comodule algebras. [

Recall that the Hopf 2-cocycle o5 was defined in (2.6).

3. FINITE SUPERGROUP ALGEBRAS

Let G be a finite Abelian group, u € G be an element of order 2 and
V' a finite-dimensional G-module such that v -v = —v for all v € V. The
space V has a Yetter-Drinfeld module structure over kG as follows. The
G-comodule structure 6 : V. — kG®yV is given by d(v) = u®wv, for all
v € V. The Nichols algebra of V' is the exterior algebra B(V) = A(V). The
bosonization A(V)#kG is called in [1] a finite supergroup algebra and it is
denoted by A(V,u,G). Hereafter we shall denote the element v#g simply
by vg, for allv € V, g € G.

The algebra A(V,u,G) is generated by elements v € V, g € G subject to
relations

vw4wv =0, gv=(g-v)g, forallv,weV,geaq.
The coproduct and antipode are determined for all v € V, g € G by
Av) = vl +u®v, Alg) =g®g, S)=-uw, S(g) =g"
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Let us explain the coproduct in a more explicit form. Suppose {v1, ..., v}
is a basis of V. Let t € N, and define

Lo=1{(1,...,t),(t1,...,t=1),(t=1,t,1,...,t=2),...,(2,3,...,t,1)} ¢ N°.

The coproduct of A(V,u,G) on the element vy - - - v;g of the canonical basis
equals

(3.1)
V1 g®g + u'gRUL - vgg + Z Uiy * Vi UGRV;, g+

2 t—1
Z Vig =+ Vi, U GOV, Vi g 4o - Z Vi u gy Vi, g
(41,0508 )ELY (41,008 )ELY

Lemma 3.1. The algebra map ¢ : A(V,u,G) — A(V,u,G)*? determined
by
o(v) =vu, ¢(g) =g,

is a Hopf algebra isomorphism. ([

Next, we shall compute the projective covers of simple A(V, u, G)-comodules.
For any g € G, ky is a simple A(V, u, G)-comodule. Let Py, = A(V)®ik, be
the left A(V, u, G)-comodule with coaction determined by the restriction of
the coproduct.

Theorem 3.2. Let {vy,...,vx} be a basis of V. The following assertions
hold.

1. The family {ky : g € G} is a complete set of isomorphism classes of
simple A(V,u, G)-comodules.

2. The projective cover of the comodule Kk, is Py.

3. For all g,h € G, ky®ky, ~ kgp and Py®kp, ~ Py, as AV, u,G)-
comodules.

Proof. Since A(V, u, Q) is pointed, every simple comodule is one-dimensional
and they come from group-like elements of A(V,u,G). This proves (1).

Since A(V,u,G) = @geaPy, as left A(V,u, G)-comodules, P, is a projec-
tive comodule for any g € G.

Let py : Py — kyr, be the A(V,u,G)-comodule epimorphism, given on
the elements of the canonical basis by

Wk ifx=wv...0,9,
3.2 = urg
(3:2) Py (z) { 0 elsewhere.

Let us prove that this projection is essential. Let L be any A(V,u, G)-
comodule together with a comodule morphism v : L — P, such that pg o1
is an epimorphism. Let y € L such that p; o ¥(y) = wyk,, then ¥(y) =
Z+ awv...v®g for some z € ker(py) and 0 # « € k.

Note that P, is the smallest subcomodule containing z + a vy ... v;®g.
Indeed, if P is a left subcomodule of A(V, u, G) such that z4+a v; ... v®g €
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P, then using the explicit description of the coproduct given by formula
(3.1), and the fact that z € ker(py), one can verify that any element of the
canonical basis of P, belongs to P. Since the image of 1 is a subcomodule
containing z + a vy ...v;®g, it must be all F,. Hence 7 is surjective and
the map p, is essential. We conclude that P; is the projective cover of the
comodule Kk x,.

Finally, for g,h € G, let v : k,®k;, — kg, and 8 : Py®k;, — Py, be the
maps

7(w9®wh) = Wgh, Bv@gRwy) = v&gh

for all v € V. Clearly v and 8 are comodule isomorphisms. O

The following result will be needed when computing the Frobenius-Perron
dimension of certain tensor categories.

Corollary 3.3. Assume dim(V') = 2. For any g € G we have
(Fy) = 2(kg) + 2(kug)-

Here (Py) denotes the class of Py in the Grothendieck group of the category
of finite-dimensional left A(V,u, G)-comodules.

Proof. Let {v,w} be a basis of V. Recall the projection p, : P, — k,
described in (3.2). Since in this case P, is generated as a vector space
by {vw®g, v®g, w®g,1®g}, the kernel of p, is generated as a vector space
by {v®g, w®g,1®g}. Define f : ker(py) — kyg the A(V,u,G)-comodule
epimorphism by

Jwyy  if 2 =w®yg,
fl@) = {0 elsewhere.

Let fi : ker(f) — kyg be the A(V,u, G)-comodule epimorphism given by

Jwyy if z=0v®g,
hiw) = {0 elsewhere.

We have a composition series for P, given by
P, 2 ker(py) 2 ker(f) 2 ker(f1) 20,

and satisfies

P,/ ker(pgy) ~ kg, ker(pg)/ ker(f) ~
k

k
ker(f)/ker(f1) ~ k

ug ker(f1) ~ k.
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3.1. The tensor product A(V,u, G)QkA(V,u,G)P. Let G1,G2 be finite
Abelian groups and u; € GG; be central elements of order 2. For ¢ = 1,2 let
V; be finite-dimensional G;-modules, such that u; acts in V; as —1.

Define .A(Vl, Vo, u1,us, G1, GQ) = A(Vl, U, G1)®k¢4(‘/2, U9, Gg) with the

tensor product Hopf algebra structure. For simplicity, we shall denote
B(V,u,G) = AV, V,u,u,G,G).

Observe that B(V,u,G) is a coradically graded Hopf algebra.
If we denote D = (G1 x (G2, then both vector spaces Vi, V5 are D-modules
by setting

(g7h)"U1:g'vla (gah)'UZZh'UQa (gah)GD»Uz‘GW;i:LQ-

The algebra A(V1, Va,u1,ue, G1, G2) is generated by elements Vi, Vo, D sub-
ject to relations

viwy + wivy =0, vows + wove = 0, vV = vauy,

gui = (g-v1)g, gv2=(g9-v2)g,

forall g € D, v;,w; € Vi, i = 1,2. The Hopf algebra structure is determined
for all (g1,92) € G, v; € V;,i=1,2 by

A(v)) = 11®1 + (u1, ))®@vy, A(v) = v2®1 + (1, uz)Rvs,

A(g1,92) = (91, 92)®(91, g2)-

We shall define certain families of Hopf algebras that are cocycle defor-
mations of B(V,u,G). Let (Vi, Va,u1,u2,G1,G2) be a data as above. Set
V = V1 @ V. Define H(V1, Vo, u1,uz, G1,G2) = A(V)®gkD with product
determined by

vw+wv =0, gv=(g-v)g, forany v,we V) @ Va,g € D,
and coproduct determined by
A(v) = m11®1 + (u1, )®@vy, A(ve) = v2®1 + (1, uz)®@vs,
for any v; € Vi, 1 =1,2.

Lemma 3.4. [15, Prop. 6.2] Let be H = A(Vi, Vo, u1,uz,G1,Gs2), ¥ €
Z*(D,k*) and oy : HRxH — k the Hopf 2-cocyle defined in (2.6). Denote
€= ¥((u1,1), (1,u2))9((1, uz), (ur,1)) 7"

Then

(i) if € = 1 we have H"»! ~ A(Vy, Va,u1,uz, G1, Ga);
(ii) if € = —1 then Hlowl ~ H(‘/l,VQ,'LH,'U/Q,Gl,GQ).
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4. THE CLASSIFICATION OF HOPF B1GALOIS OBJECTS OVER A(V,u, Q)

In this section we shall present a classification of BiGalois objects over
the supergroup algebras. The idea to achieve this classification for an ar-
bitrary Hopf algebra H is the following. Any biGalois object over H is an
H® HP-simple left H®y H“P-comodule algebra with trivial coinvariants.
Any such H®y HP-comodule algebra is a lifting of a 2-cocycle deformation
of a homogeneous left coideal subalgebra inside certain a twisting of the
Hopf algebra H &y HP. Since biGalois objects have dimension equal to the
dimension of H, we can then detect the biGalois objects.

Let G be a finite Abelian group, u € G be an element of order 2 and V' a
finite-dimensional G-module such that u-v = —v for all v € V.

First we classify all A(V,u, G)QkA(V,u, G)P-simple left comodule al-
gebras with trivial coinvariants. Hopf biGalois objects over A(V,u,G) are
inside this family.

4.1. Simple comodule algebras over B(V,u,G). We recall the descrip-
tion of all B(V,u,G)-simple left comodule algebras presented in [15].

For a given finite-dimensional coradically graded Hopf algebra H, the idea
to classify simple left H-comodule algebras, is roughly the following. If A is
a H-simple left comodule algebra the graded algebra gr A, with respect to
the Loewy filtration, is also H-simple. A twisting of gr A, by a certain Hopf
2-cocycle o, is isomorphic to an homogeneous coideal subalgebra inside H°J.
Then, one has to classify homogeneous coideal subalgebras inside H7). At
last, one has to compute all liftings of gr A, that is , H-comodule algebras
A such that gr A is a twisting of a coideal subalgebra inside H!.

Definition 4.1. A collection (W, W2 W3, B, F,4) is compatible with the
triple (V,u, G) if
o WL W2 CV, W3 C V@V are subspaces such that W3NnW!eWw? =
0, W3nvVe{0}=0=wW3n{0}oV;
e ' C G x G is a subgroup that leaves invariant all subspaces W?,
1=1,2,3;
o if W3 # 0 then (u,u) € F;
o denote W = W' @ W2 @ W3. Then B: W x W — k is a bilinear
form stable under the action of F', such that

B(wr, wa) = —B(wa, wr), Blwr,ws) = B(ws,wr), B(wz,ws) = —PB(ws, wa),

for all w; € W, i =1,2,3, and f3 restricted to W x W is symmetric
for any i = 1,2, 3;

e if (u,u) ¢ F then j restricted to W' x W2 and W2 x W3 is null;

o ) € H?(F,kX).

If (WY, W2 W3, 3, F,) is compatible with (V,u,G) the left B(V,u, G)-
comodule algebra IC(W, 3, F, 1) is defined as follows. The algebra IC(W, 3, F, 1))
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is generated by W and {ef : f € F'}, subject to relations
€fEh = ¢(f7 h) €fhs Efw = (fw)ef7
wiw; + wjw; = B(wi,wj)l, w; € Wi,wj S Wj,
for any (i,j) € {(1,1),(2,2),(1,3),(3,3)}, and relations

2 3
W2W3 — W3w2 = B(w%wfi) €(u,u)> for any wy € W7 wg € W=,

wiwy — wowy = f(wy, ws) €(u,u), for any wy € W wy € W2,
The left coaction § : K(W, 8, F 1) — B(V,u, G)@k/(W, B, F, 1) is defined
on the generators

5<ef) = f®€f? 5(”7 w) = Q1 + ’LU(U, u)®e(u,u) + (ua 1)@(’0, w)a

d(w2) = wa®l + (1, u)@ws2, d(w1) =wi®1+ (u, 1)@y,
for any f € Fyw; € WL, wy € W2, (v,w) € W3. This family of comodule
algebras was introduced in [15] to classify certain module categories.

Definition 4.2. If (W, W2 W3, 3, F,v) is a compatible data with (V, u, G)
such that W' = W?2 = 0 we shall denote L(W, 8, F, ) = KK(W, 3, F, ).

The following result is [15, Prop. 7.4, Thm. 7.10].

Theorem 4.3. The following assertions hold.
1. dim (W, 8, F,¢) = dim W |F|.
2. The algebra IK(W, B, F, ) is a B(V,u, G)-simple left comodule alge-
bra with trivial coinvariants.

Moreover, any B(V,u, G)-simple left B(V,u, G)-comodule algebra with trivial
coinvariants is isomorphic to one (W, B, F,1) for some compatible data
(W, 8, F, ). 0

For later use, we shall give explicitly the left and right coactions on the
algebra L(W, §,1). Any left B(V, u, G)-comodule is a A(V, u, G)-bicomodule
where the right coaction is obtained using the canonical projection

e@id : B(V,u,G) = A(V,u, G)@A(V,u,G) - A(V,u, ),
composed with the isomorphism ¢ : A(V,u,G) — A(V,u,G)P given in
Lemma 3.1.

The A(V,u, G)-bicomodule structure on L(W, [, F,1) is given by the
left and right actions A : L(W, 8, F,¢) — A(V,u, G)@uL(W, 3, F,%), p
LW, B, F, 1) — LW, B, F,¥)?kA(V,u,G) determined by

(41) )\(U, U)) =v®l + u®(va ’LU), p(’U, ’U)) = e(u,u)®w + (U, w)®1a

Meg,n) = 9%¢(g,)  pleg,r) = €g.n®/,
for all (g, f) € F, (v,w) € W.
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Lemma 4.4. If F C G x G is a subgroup such that (u,u) € F, |F| = |G/,
FNGx{l}={1} = FN{1} xG and W C V&V is a subspace stable under
the action of F such that dimW =dimV, W NV ae0=0=WnoaV;
then the comodule algebras L(W, B, F, ) are A(V,u,G)-biGalois objects.

Proof. We shall prove that the algebra L(W, 3, F,1) is a Hopf-Galois ob-
ject from the left. The proof that it is Hopf-Galois from the right is simi-
lar. The conditions on the subgroup F' assures that the comodule algebra
L(W, B, F, 1) has trivial coinvariants. We must show that the canonical map

can . [’(VVa ﬁaF3¢)®k£(W 57F7w) - A(V?qu)®k[’(VVa ﬁaFa¢)7

can(a®b) = a(_1)®a(o)b,

is an isomorphism. By Theorem 4.3 (1) the dimension of L(W,f, F,)
equals the dimension of A(V,u,G), hence it is enough to prove that can
is surjective. The map can is surjective if for any algebra generator a €
A(V,u,G) there exists an element z € L(W, S, F,y)@xL(W, 3, F,) such
that can(z) = a®1.

Since |F| = |G|, for any g € G there exists f € G such that (g, f) € F.
Then

can(e(g, p®eg-1,5-1)) = gL

Since dim W = dim V, for any v € V there exists w € V such that (v,w) €
W. Then, since (u,u) € F

can((v, w)R1 — e(y ) De ) (v, w)) = vl
([l

4.2. Hopf BiGalois objects over A(V,u,G). We shall use the description
of B(V,u,G)-simple left comodule algebras given in the previous section to
classify A(V, u, G)-Hopf BiGalois objects.

Theorem 4.5. Any A(V,u,G)-biGalois object is isomorphic to an algebra
of the form L(W, B, F,1), where

o F'C GxG is a subgroup such that FNG x {1} = {1} = FN{l} x G,
[F| =G|, (u,u) € F;

o W C VYV is a subspace stable under the action of F such that
dimW =dimV, WnNVaeio=0=WnoaV;

e B: W x W — Kk is a F-invariant symmetric bilinear form;

e and ¢ € H?(F,k) is a 2-cocycle.

Proof. Let Abe a A(V,u, G)-biGalois object. We have that A isa B(V,u,G)-
simple left B(V,u, G)-comodule algebra with trivial coinvariants. This im-
plies that there exists a compatible data (W', W2 W3, 3, F 1) such that
A~ KK(W, 3, F,%). Since the coinvariants of A are trivial, W! = W2 = 0
and W = W3. The conditions stated on F' and W must be satisfied since
the coinvariants of A are trivial and dim A = dim H. O
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Now, we shall give an alternative description of compatible data (W, 3, F, )
such that the comodule algebra L(W, 3, F, 1) is a biGalois object.

A collection (T, 3, , 1) will be also called a compatible data if:
e a: G — G is a group isomorphism such that a(u) = u;
e T:V — V is a linear automorphism such that
T(g-v)=alg) T(v), veV,geG;
e 5:V xV — kis asymmetric G-invariant bilinear form;

e Y € H*(G,k*) is a 2-cocycle.

Lemma 4.6. There is a bijective correspondence between the set of compat-
ible data (T, B, c, 1) and collections (W, B, F, 1)) such that they satisfy the
conditions of Theorem 4.5.

Proof. 1f (T, B, a, ) is a compatible data define (W, B, F, J) as follows:
W ={(T(),v):veV}, F={(alg),9):9¢€GCG}
The bilinear form B and the 2-cocycle {Z)\ are defined as

BU(T(v),0), (T(w),w)) = Blv,w),  $((al9),9), (f), ) = (g, ]),

for all v,w € V, g, f € G. Let (W, 3, F,v) be a compatible data satisfying
conditions of Theorem 4.5. If (z,g) € F, since F NG x {1} = {1}, then z
is uniquely determined by the element g. So we can denote x = a(g). Since
|F'| = |G| the function « is defined for any g € G. Also, since FN{1} x G =
{1}, the map « is injective. The fact that |F| = |G| implies that it is
bijective. Since F' is a group, « is a group homomorphism, hence it is a
group isomorphism. The definition of the linear isomorphism 7' is analogous.
Both constructions are one the inverse of the other. O

Definition 4.7. If (T,5,«,1) is a compatible data denote L(T,[,«,1))
the algebra L(W, 3, F, 1)) where the collection (W, 3, F, 1) is the associated
data to (T, 8, a, 1) under the correspondence of Lemma 4.6. If (T, 3, a, 1),
(T, ', a/,9)) are compatible data, define
If g € G define T, : V. — V the isomorphism Ty(v) = g-v for all v € V.
Then (Ty,0,id, 1) is a compatible data for all g € G.
Lemma 4.8. Let (T,5,a,v), (T",8',a/,4) be compatible data.

1. The collection (T oT',BoT' + 3,0,y is a compatible data.

2. The set of compatible data with product
(4.2) (T, B8, c,¢) o (T, B0/, ') = (T o T, o T+ f',ac0 o, 1))

is a group with identity (Id,0,id, 1).

Proof. 1. Straightforward.
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2. For any compatible data (T, 3, a, 1) the collection (T, =0Tt a1 1)
is again a compatible data and it is the inverse of (T, 3, a, ¥). O

Definition 4.9. Define the group R(V,u,G) as the quotient of the set of
compatible data (7,3, a,) with product described in (4.2) modulo the
normal subgroup of order two generated by the element (73,,0,id, 1).

The set of compatible data {(Ty,0,id, 1) : g € G} is a normal subgroup of
R(V,u,G). The quotient group R(V, u, G)/{(Ty,0,id,1) : g € G} is denoted
by O(V,u,G).

Proposition 4.10. Let (T, 3,a,%), (T',8',a’,4") be compatible data. The
following assertions hold.

1. There is an isomorphism L(T, 3, ca, ) ~ L(T', B,/ ,4") of biGalois
objects if and only

(T7 /87 a? w) = (T/7 5/7 al? wl> or (Tu OT’ /87 a’ w) = (T/7/3/7a/7w/)'
2. L(T,B,c,v) € InnbiGal(A(V,u,G)) if and only if (T,B,a,v) =

(Ty,0,id, 1) for some g € G.
3. There is an isomorphism of B(V,u,G)-comodule algebras

‘C(Ta Bv «, Qp)DA(V,u,G’)‘C(T,v 6,7 O/a W) = ‘C(T o Tlv /8 oT’ + Blv @0 O/a WPI)

Proof. 1. Let f : L(T,B,a,v) — L(T", 3,/ ,4¢") be a B(V,u,G)-comodule
algebra isomorphism. This implies that for any g € G we have f(e(,a(9))) =
Xg €(g,a(g)) for some x, € k. Whence ¢ = ¢ in H?(G,k>). Since e%um) =1
we have y, = *+1.

Denote by (W, 8,4), (W', 3,4) the collections associated to the com-
patible data (T, 3,«,v) and (17,0, a/,4'), respectively, under the corre-
spondence of Lemma 4.6. Follows straightforward that f(W) = W’. If
f(z,y) = (2, ) for (x,y) € W then, since f is a B(V,u, G)-comodule map,
the element

'@l 4 y,(uv u)®e(u,u) + (u7 1)@(%”, y/)
is equal to
@1+ Xo y(u, u)@e () + (u, D', y).
Thus f(z,y) = (x,xuy). If xu = 1 both collections (W, 5,), (W', 5, ¢')
are equal. If x, = —1 then (T, o T, B, ,v) = (T, B,/ , ¢").

2. Recall the definition of InnbiGal(H) given in Section 2.3. It follows
directly from (1) and the definition of InnbiGal(A(V, u, G)).

3. Define the algebra map

U ‘C(T © T/a Bo T + 5,7 o O/a ¢¢}/) - E(Ta B, a, w)DA(V,u,G)L(T,7 5,7 O/, 7!/)
as follows. If g € G,v € V then
T oT (v),v) = (ToT'((v),T'(v)®L + e(u®(T"(v),v),

V(€(aca’(g),9) = E(aca’(9),0’(9)) D€ (e (9).9)-
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It follows by a straightforward calculation that the image of ¥ is inside
L(T, B, 0, )OO qvu,c) LT, B,/ ,9"). The map ¥ is an injective algebra
map. Since both algebras have the same dimension, 9 is an isomorphism. [

Remark 4.11. The proof of Part (1) of Proposition 4.10 gives a description of
the possible bicomodule algebra isomorphisms between two biGGalois objects.
This fact will be used later.

Corollary 4.12. There are group isomorphisms
R(V,u,G) ~ BiGal(A(V,u,G)), 9OV, ,u,G) ~ OutbiGal(A(V, u,G)).
O

Remark 4.13. As a consequence of [10, Corollary 4.9] and Proposition 4.10
there is an exact sequence of groups

0— G/ <u>— R(V,u,G) = BrPic (Rep(A(V,u, G)).

Lemma 4.14. Let (T,5,a,%¢) be a compatible data and g € G. Then
there is an ismorphism L(T, 3, a, V)0 4vucky = ka(g) of left A(V,u,G)-
comodules.

Proof. If a®r € LOgk, then p(a) = a®g, hence

plae(ag=1).9-1) = (099)(€(a(g—1),51)B9 ") = aC(a(g—1)g-1)B1,
therefore ae(q €kl = L(T, B, a,¢)°AV%C) and a = Ce(a(

some ( € k.

97197 h) 9).9) for

O
4.3. A concrete example of biGalois extensions. Assume V is the
2-dimensional vector space generated by {vi,ve} and G = Cy =< u >
the cyclic group with two elements. Then, V is a Cs-module with action
determined by declaring u - v; = —v; for ¢ = 1, 2.

For any & € k define Tt : V' — V' the linear map

Tg(vl) = V1, Tg(’l)g) = f’Ul — V9.

By Lemma 4.6, the compatible data (T, 0,1d , 1) gives rise to a A(V, u, Cy)-

biGalois extension that we denote by Ug. From Proposition 4.10 (3) it

follows that U¢ has order two, that is, there is a bicomodule algebra isomor-
phiSHl U{‘:‘HU{ ~ H.

5. CROSSED PRODUCT TENSOR CATEGORIES

In this section C will denote a strict finite tensor category. We recall the
definition of crossed system of a finite group I' on the tensor category C
introduced in [11] and the associated I'-graded extension of C.

Definition 5.1. [11] Let I' be a finite group. A crossed system of I' over C
is a collection ¥ = ((ax, %), (Uap, 0*°), Yab.c)abcer consisting of
e Monoidal autoequivalences (a, &%) : C — C where £% y : ax(X®Y) —
a+(X)®a.(Y) is the monoidal structure for X,Y € C. We also re-
quire that a.(1) = 1;
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e Objects U,y € C and for any X € C natural isomorphisms
0% b (X)QUup — Uap®(ab) X, X €C;

e isomorphisms Yg 4. 1 @x(Up,c)®Uq pe = Uq p@Uqp,c;
such that for all a,b,c € I', X,Y € C:

(5.1) oy’ =idy,,, Lo=Idc, (Uie o) =(1,ide,) = (Ug1, oY),

(5.2) Ya, 1,6 = Vab = Yab1 = idy, ,,
. b b
(5.3) (v, ,®EKy)0X gy =

ab - . a,b a .
(0" ®1d (ap). (v)) (id a6, (x)@0F) (& x .y ax €k y)Rid 0, ),

a,bc

(54) (Vap.e®1d (abe). () (i a, (1, ) SOV ED, . ey (x) 0 (03I @1 17, ) =

= (id v, @05 )02k @i v, ) (d a.b.e. () Vo) € ()07, BV, 1)
Remark 5.2. 1. Condition (5.3) of Definition (5.1) implies that (U, 0®?)
is a pseudo-natural isomorphism in the bicategory C with only one object.
In particular the object U, is invertible in C with inverse Up.

2. Condition (5.4) implies that 74 . is an invertible modification in the
same bicategory.

Definition 5.3. A crossed system X = ((as, &%), (Ua,b,aa’b),'ya7b,c)a7b,cep is
a coherent outer I'-action on C if for all a,b,c,d € T’

(55) (7a7b70®id Uabe,d ) (ld A% (Ub,c) ®7a,bc,d) <5[(}bc»ch,da* (,Ybac’d)®id Ua,bcd) -

. b o . .
(ld Ua,b ®/}/ab7c7d) (U?]cd ®1d Uab,cd)(ld Cb*b*(Ucd)®fya:b:Cd) (gg* (Uc’d),Ubycd®ld Ua,bcd)'
In this case, we say that I" acts on the category C.

If T" acts on C via a crossed system 3, then the I'-crossed product tensor
category, introduced in [11], associated to this action is C(X), where C(X) =
@aecrCq as Abelian categories and C, = C for all a € T'. Denote by [V, a]
the object V' € C,. Morphisms from @4er[Vy, a] to @qer[W,, a] are given by
@acr|fa,a] where f, : Vo — W, is a morphism in C for all a € T

Theorem 5.4. [11, Sec. 3.3] C(X) is a tensor category with tensor product
®:C(X) x C(X) = C(X) defined by

(5.6) [V, a]@[W,b] = [V®a,(W)RU,p, ab] on objects,

(5.7) [f,a]®[g,b] = [f®a(g)®idy, ,,ab] on morphisms,

with unit object [1¢, 1], and associativity constraints given by

(5.8)  apawizd = (dveew@oy ®idu,, ) (id vew Wb, 28Vap.e)0

(id vea. w @&, 2,0,  ®id v, ,.) (1A v @&y, zgu,  ®id U, ,.)-
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The dual objects are given by
(V1) = V¥, 1] and ([1,a))* = [Uyq-1,a”").
O

The next result explains when, for two coherent outer actions X, Y’ the
tensor categories C(X), C(X') are monoidally equivalent.

Theorem 5.5. [11, Th. 4.1] Let & = ((ax, 0*), (Uap, 0™°), Yabc)apeers & =
((a',¢2), (U! , 7%°), 74!, Japcer be two coherent outer T'-actions over C. Any
monoidal equivalence F : C(X) — C(X') comes from a collection

((H’ 6)7 fv (eav ﬁa)’ Xa,b)mbel“ where:

o (H,&):C— C is a monoidal equivalence;

o f:I'—= 1T is a group isomorphism;

e foranya €T the pair (0,,8%) : Hoa, — f(a)'oH is a pseudo-natural
isomorphism such that (61, 3') = (1,id);

® Xap 2 HUgp)®04 — 0a®f(a)/('9b)®U}(a),f(b) s an invertible mor-
phism in C such that xq1 = X1, = idg, and

(5.9 pv(d g v)@Xab) = Xap®id gy Eey)av, V EC,
where
. . a),f(b :
py = (id g, ®(id f(a)’(ﬁ’b)®7'lj-fl((\3 : ))(SV@Hd U}<a>,f<b)))o

)
f<a>,f<b>)’
sv = G Doy © F@) (B © (G 1yy0) ™
qv = (i g, OB v,y (at).(v) © H(0F) © (b, (v),0,) ®idg,,)-

(By. (@1 f(ay 8,007

O

Given the collection ((H) 5)7 fa (Qa, ﬁa)a Xa,b)a,bGF as in the previous The-
orem, the monoidal equivalence F : C(X) — C(¥’) is defined by

F([V,a]) = [H(V)®0a, f(a)], [V,a] € C(2),
for any [V,a] € C(2).

Remark 5.6. In [11] the author defines crossed systems in terms of equiva-
lence classes of monoidal functors, up to monoidal isomorphisms, and equiva-
lence classes of pseudo-natural isomorphisms, up to invertible modifications.
This is done this way since it is shown that equivalence classes of crossed
product extensions of the tensor category C by the group I' are classified by
crossed systems. Since we are only interested in giving examples, our defi-
nition of crossed systems is a representative of a crossed systems according
to [11].
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5.1. Coherent outer actions for the corepresentation category of
a Hopf algebra. Let H be a finite-dimensional Hopf algebra. We shall
give an explicit description for coherent outer actions on the tensor category
Comod(H) of finite-dimensional left H-comodules in terms of Hopf algebraic
data. Let I' be a finite group.

Let us fix the following notation. If ¢ € G(H) and L is a (H, H)-biGalois
object then the cotensor product LO gk, is one-dimensional. Let ¢(L,g) € I'
be the group-like element such that LUk, ~ kyr 4) as left H-comodules.

Lemma 5.7. Assume that Y = (L, (g(a,b), f*?), Ya.b.c)ab,cel @8 a collection
where
o foranya e, L, is a (H, H)-biGalois object;
e g(a,b) € G(H) is a group-like element and f®° : (LqOp Ly)9(®) —
Loy are bicomodule algebra isomorphisms;

® Ya,b,c € kx;
such that:
(5.10) Li=H, (g9(1,a),f") =(@1,id,) = (g(a,1), f4);
(5.11) #(La,g(b,c))g(a,bc) = g(a,b)g(ab, c);
(5.12) Ya, 1,6 = Va6 = Yab1 = 1;
(5.13) (f*P@id 1) f*¢ = (id L, @) fb,

for all a,b,c € I'. Associated to such T there is a crossed system T of T
over Comod(H). Moreover, the crossed system Y is a coherent outer action
on Comod(H) if and only if v is a 3-cocycle, that is, for all a,b,c,d € T

(5.14) Yab,cVabe,d Vb,e,d = Vabye,d Vab,ed-

Proof. For any a,b € T' define the monoidal functor a, : Comod(H) —
Comod(H ), ax = LyOy— and Usp = kg p)-

Define the pseudo-natural isomorphism (kg(a’b),a“b) D ax 0 by — (ab),
which comes from the bicomodule algebra isomorphism

£ (LaOg Ly)? Y — Loy
as explained in Remark 2.2.

The existence of the isomorphisms Vapc @ LalluKkgp.e) = Kg(ab)g(av,c)
is equivalent to ¢(Lg,g(b,c))g(a,bc) = g(a,b)g(ab,c). Since both vector
spaces LoUnkg(p,0)®Kg(a,6c) and ky(q,p) @Kkg(ap,c) are one-dimensional, the map
Yabc - k — k is given by multiplication of a scalar v, € k*.

Equation (5.1) is equivalent to (5.10), (5.2) is equivalent to (5.12), and
Equation (5.4) is equivalent to (5.13). Since f® is an algebra morphism
then Equation (5.3) is satisfied. Equation (5.14) follows from (5.5). O
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Definition 5.8. Given a collection T as in the previous Lemma, define

Comod(H)(T) := Comod(H)(Y) the I'-crossed product tensor category as-
sociated to the coherent outer actionY.

The next Lemma is a direct consequence of the Theorem 5.5 applied to
C = Comod(H).

Assume that T = (Lg, (9(a,b), f4°), Yab.c)abeer and

Y = (L, (¢ (a, b),za’b),7;7b7c)a7b’c€p are collections satisfying conditions
given in Lemma 5.7. Thus, the associated objects T, Y’ are coherent outer
I-actions).

Lemma 5.9. Any monoidal equivalence F' : Comod(H)(T) — Comod(H)(Y")
comes from a collection (L, A, (h(a), h*), Tap)aper where
e L isa (H,H)-biGalois object,
e \:T'—= 1T is a group isomorphism,
e h(a) € G(H) is a group-like and h® : (L0 Ly)"® — L’)\(G)DHL is
a biGalois object isomorphism, satisfying (h(1), k') = (1,id),
o T € kX satisfies 11 =T =1,

and also the following equations are fulfilled
(5.15) &(L, g(a,b))h(ab) = h(a)p( ’)\(a), h(b))g' (A(a), A(b)),

(5.16) W (id @) = (MO Vgid ) (id g | ©h")(h@id ).

6. EXAMPLES OF C3-EXTENSIONS OF Comod(A(V,u,C5))

Let C5 be the cyclic group of 2 elements. In this section we shall give
explicit examples of tensor categories that are Cs-extensions of the tensor
category Comod(A(V,u,Cs)) with V' a 2-dimensional vector space.

6.1. Cy-extensions of Comod(H). Let H be a finite-dimensional Hopf al-
gebra. First, we explicitly describe data giving rise to Cs-extensions of
Comod(H) in the particular case the group of group-like elements of the
Hopf algebra H is a cyclic group of order 2 generated by u.

Assume that (L, g, f,7) is a collection where
e Lis a (H, H)-biGalois object;
e g € G(H) is a group-like element such that w : LOxk, ~ k, as left
H-comodules;

e f:(LOyL)Y — H is a bicomodule algebra isomorphism and

o yek*, 42 =1.
According to Lemma 5.7 from data (L, g, f,~) we obtain a crossed system of
Cy over Comod(H). Just take L, = L, L1 = H, g(u,u) =g, 1 = g(1,u) =
g(u,1) = g(1,1), fou = f, fL = fol = fL1 =id and Ya4, = 1 € k for
any a,b,c € Cy except Yy,u,u 1= 7. Let us denote this crossed system T.
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The monoidal structure of the category Comod(H )(Y), given by Theorem
5.4 explicitly reads as follows. For any V, W, Z € Comod(H) and b € Cs:
[V, @[W, b] = [V&xW, b],
[V, ul@[W, 1] = [Ver(LOgW), u],
[V, u]@[W, u] = [Ver(LOg W)k, 1],

The unit object is [k, 1] and dual objects are given by
(V1) =51, (k1) =k 1] and ([ku))* = [k

g1, U]

Finally, the associativity, on elements of the form [V, u], is given by
AWl [Zu) = V(idvero,w® fOpid z&idy, ) (id ve Loy we Lo, Loy z@w@)o

(dveroyw®Erng zk,)(id ve&w, Loy, zek, )-
The other components of the associativity are trivials. Here & = (¢5)71 i
the morphism defined in the Equation (2.12).

S

6.2. Explicit examples of Cs-extensions of Comod(A(V,u,C3)). In this
section H = A(V, u, Cy) where V' is a 2-dimensional vector space. Using the
results of previous sections, we describe families of crossed systems of Co
over Comod(A(V,u,C5)). These crossed systems come from a collection
(L,g, f,7) as presented in Section 6.1. Below, we present two such families
depending on the biGalois object L. For the first family the biGalois object
L is the one presented in Section 4.3 and for the second family the biGalois
object L is trivial.

Lemma 6.1. Let be &,y € k,g € Cy, and let f € Hom(HY, H) be a comodule
algebra isomorphism. Assume v? = 1.

1. The collection (§,g, f,7y) has associated a coherent outer Cs-action
over Comod(A(V,u,Cs)) and the corresponding Ca-crossed product
tensor category will be denoted by Ce(g, f,7).

2. The collection (g, f,7y) has associated a coherent outer Cy-action over
Comod(A(V,u,C2)) and the corresponding Ca-crossed product ten-
sor category will be denoted by D(g, f,7).

Proof. 1. Let L = Ug¢ be the (H, H)-biGalois object defined in section 4.3.
It follows from Lemma 4.14 that U:Ogk, ~ k.
2. Following the same idea, take L = H. Then HUyk, ~ k. O

We want to be more explicit in the determination of the comodule algebra
isomorphism f : H9 — H that appears in Lemma 6.1. We make use of
the proof of Proposition 4.10 (1), where such comodule algebra maps are
explicitly determined. Let (&, g, f,7) be a collection as in Lemma 6.1. There
are two options:
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elf g =1, then f: H — H. Let 6 : H — £(Id,0,id, 1) be the
canonical isomorphism h ~ (h,h) and define f := §o f o6~ L. By
(the proof of) Proposition 4.10
f:L(Idy,0,id,1) — L(Idy,0,id, 1),

satisfies that f(x,y) = (z,y) if (z,y) € {(v,v) : v € V} which
implies that f(x) = z if x € V. Moreover f(e11) = x1€11 = €11
and ?(euvu) = Xu€uu = €yu- Then f=1idg.

o If g = u, then f: H* — H. By (the proof of) Proposition 4.10 (1)
f:L(Idt,0,id,1) — L(Idv,0,id, 1),

satisfies that f(z,y) = (z,—y) if (z,y) € {(u-v,v)[v € V} which
implies that f(z) = u-z = —z if 2 € V. Moreover f(e11) = €11
and f(euu) = Xu€uu = —€uus 50 f(u) = —u. We shall denote by
v : H* — H this unique bicomodule algebra isomorphism.

Hence, we obtain four families of Ca-crossed product tensor categories

(61) Cf(lv id s 7)? Cf(uv 2 7)? D(la id ) 7)7 D(ua 2 ’Y)
Some of these tensor categories are equivalent. We shall use Lemma 5.9

to distinguish them.
Theorem 6.2. Let be £,&',7,v € k with 42 = 1 = (v')2. As tensor cate-

gories
Ce(L,id, ) % Cerlu,t,7"),  Ce(l,id,v) = Co(1,id,7),
Ce(u,t,7) = Co(u,e,v'), D(L,id,v) % D(u,t,7),
D(L,id,v) # Co(L,id, '),  D(u,t,7) Z Co(u,t,7).

Proof. Using Lemma 5.9, there exists a monoidal equivalence

Celg, f,7) = Ce (g, f1,7)
if there exists
(1) L =L(T,0,a,1) a biGalois object over H,
(2) b := h(u) € Cy and A" : L(T}TT,0,id,1) — L(TeT,0,id,1) a
biGalois isomorphism,
(3) 7:=Tyu € k¥,
satisfying

(62)  alg)=g, B(idref)=(f@id)(dy, ") @ eidy,),

where ® : L0y H — HOgL is the isomorphism given by I®h — [_1®lpe(h).
The second condition of (6.2) comes from Equation (5.16), and the first
condition from Equation (5.15):
For all a, b e 02, Ll:lhkg(a,b) >~ kag(a,b) and LZDHkh(b) ~ kh(b)? then
Equation (5.15) implies that a(g(a,b))h(ab) = h(a)h(b)¢'(a,b). For a =1
or b = 1 this equation is valid. For a = u = b, we obtain a(g) = h?¢' = ¢'.
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Since o = id, we obtain that C¢(1,id,y) 2 Ce (u,¢,7').
By Lemma 4.10(1), A" is an isomorphism if and only if

T,TTe = ToT, or T,TyTTe = TeT.

To prove that there is a monoidal equivalence Cg¢(1,id,~y) =~ Co(1,id, ')
choose h =1 and h" =id then TT, = ToT if T' is given by the matrix

(0 )

(id L®p2) = (p3@id 1) (id v, @e1) (P1@id U, ),

We only need to check that

where
e o1 : LOxU¢s — UpgOyL, coming from h* =id : L(TT¢,0,id,1) —
L(TyT,0,id , 1) up to isomorphism,
o 2: Uy Ug — H, coming fromid : £(T¢,0,id, 1) = £(id,0,id, 1),
which satisfies (p2) 7} (v) = (TeTe(v), Te(v))®1 + €4, @ (Te(v), v) and
(p2) Hegy) = €gg®eyq for v eV and g € Co,
e 3 : UgOy Uy — H coming from id : £(7¢,0,id,1) — £(id, 0,id , 1)
up to isomorphism.
Let v € V. If a = (TTe(v), Te(v))®1 + €4,u®(Te(v),v) € LOgUg then
p1(a) = (10T (v), T(v))®1 + ey u®(T'(v), v):
Let (1 : ﬁ(TTg, 0,id,1) — LUp[Ug and (o : L(ToT,0,id, 1) — Uy L be
the isomorphisms give in the Lemma 4.10(3), whose satisfy

Q(TTe(v),v) = TTe(v), Te(v))®1 + e4,u®(Te(v), v),

G(ToT (v),v) = (ToT (v), T'(v))R1 + €4 W, R(T(v), V).

By definition of 1, we have that @1 0 (3 = (o 0id L(TTe,0id 1) and this
implies the claim.

By the same argument, if b = (ToTo(v), To(v))®1 + €y u®R(To(v),v) €
Uy U then @3([)) = .

Moreover ® = a7 o ag where a1 : L — HUOyL, ay : LOygL — L and
(a1) Y (h®l) = e(h)l and (a2) (1) = ly®I;.

Let x = (T'(w),w) € L, then

(1) M p3®id 1) (id u,®@¢1) (e1®id U, ) (id L& (2) ") () " (z) =
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since

T = ey, + (T(w), w)®1
= ey u®euu®(Te(w), w) + ey u@(TeTe(w), Ti(w))R1 + (T(w), w)R1®1
= ey u®eyu®@(Te(w), w) + (ToTTe(w), TTe(w))@1®1
+ euu®@(TTe(w), T (w))®1
= (ToTTe(w), TTe(w)) @11 + €4 o (T T (w), T(w))®1
+ ey u®ey (T (w), w)
= uR(T(w),w) + T(w)®1
= Z.

In the same way, (g,9) — (g,9) for all ¢ € Cy. Which implies that
Cg(l,id,’y) ~ Co(l,id,’yl).

To prove Ce(u,t,7v) =~ Co(u,t,v'), is enough to take h = w and h" :
L(T,TTy,0,id,1) — L(ToT,0id, 1) given for x,y € V by

h'(z,y) = (z,—y), hu(eu,u) = —Cuu-
It follows from Lemma 5.9, that there is a monoidal equivalence
D(17 ld 9 7) =~ D(U, [‘7 ’YI)

if and only if there exist M = L(R, 0, «, 1) a biGalois object over H, h € Cy,
h* . L(ThR,0,id,1) — L(R,0,id,1) a biGalois object isomorphism and
7 € k*. As before, they have to satisfy that a(l) = u, but @ = id. This
proves that D(1,id,~) % D(u,,7").

Again, using Lemma 5.9, D(1,id , v) ~ Cy(1,id ,+’) as monoidal categories
if and only if there exist M = L(R, 0, a, 1) a biGalois object over H, h € Cy,
h* : L(TyR,0,id,1) — L(THR,0,id, 1) a biGalois object isomorphism and
T e k*.

By Lemma 4.10(3), h* is an isomorphism if and only if T,R = ToR or
T.T,R = ToR, but the last two equations do not have a solution for T
invertible. So D(1,id,v) 2 Co(1,id,~") and D(u,,y) 2 Co(u,t,v"). O

In conclusion, we obtain eight pairwise non-equivalent tensor categories

63 Co(1,id, 1),Co(1,id, —1),Co(u, ¢, 1),Co(u, ¢, —1),
(6.3) D(1,id,1),D(1,id,—1),D(u,¢,1),D(u, ¢, —1).

6.3. Explicit description of the monoidal structure. Using Theorem
5.4, we can explicitly describe the tensor product and the associativity con-
straint for the eight tensor categories presented above. Recall that all those
categories have the same underlying Abelian category Comod(A(V, u, C2))®
Comod(A(V,u,Cs)) where V is a 2-dimensional vector space. The associa-
tivity constraints that we describe are the non-trivial ones.
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Let V,W, Z € Comod(A(V,u,Cs)) and g € Cs.
e The tensor product, dual objects and associativity in the category
Co(1,id,+£1) are given by
[V 1)[W,g] = [VeW,g], V. ul[W, g] = [VeUodu W, ug],
[‘/7 1]* = [V*71]’ [17u]* = [kvu]’

V) Wl (2] = [F(1d veuow @epa®id 7)(id v @&w,u,0z), ul-

Here ¢ = (¢€Y0)71 is the morphism defined in the Equation (2.12).
e The tensor product, dual objects and associativity in Co(u,t,+1) are
given by

[V, 1] [VV, 1] = [V®Wv 1]’ [V, ’LL] [W7 u] = [V®UODHW®ku7 1]5
[‘/Yv 1] [VV, u] = [V®Wv u]? [V7 u] [VV, 1] = [V®UODHVVa u]v
[V7 1]* = [V*al]v [Lu]* = [ku,u],

The associativity constraint oy, wu,[z,4 18 equal to

[£(id veu,ow @(e1p2®id zgu,tk, ) (§Uinzk. ) (id vOEw,U0Z8k, ) U)-
e The tensor product, dual objects and associativity in D(1,id, £1) are
given by
[V A][W, g] = [VeW, g, [V, u][W, g] = [VOW, ug],
[V, 1]* = [V*, 1], 1, u]* = [k, ul,
A (W [Za) = [F(dvewez, ul.

e The tensor product, dual objects and associativity in D(u,¢,+1) are
given by

V. 1[W,1] = [VeWw,1], [V, u][W,u] = [VeWeky, 1],
[V, 1] [Wv u] = [V®W7 'LL], [V7 u] [W7 1] = [V®VV7 u]:
[V7 1]* = [V*71]7 [17u]* = []ku,u],

OV ), [W,[Zu] = [:l:(id Vew et®id Z®Qky s u]

6.4. Frobenius-Perron dimension of the Cy-crossed extensions. For
a review on Frobenius-Perron dimension we refer to [7]. For any object X
in a category C we denote by (X) the class of X in the Grothendieck group
of C.

For the categories presented in (6.3), the isomorphism classes of the simple
objects are

(ler, 1]),  (fer,ul)s - (lew, 1), ([eu, ul).

Using Theorem 3.2, the projective covers of these simple objects are respec-
tively

(P, 1)), ([Prul), ([P, 1)), ([Pu,ul)-
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Using Corollary 3.3 it follows from a straightforward computation that in
any of the categories listed in (6.3)

FPdim ([kg,h]) =1, FPdim ([P, h]) =4,
for any g, h € C. This implies the next result.

Theorem 6.3. If C is any of the tensor categories listed in (6.3) then
FPdimC = 16. O

The above Theorem implies, using [7, Proposition 1.48.2], that all the
tensor categories listed in (6.3) are representation categories of quasi-Hopf
algebras.
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