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Abstract We introduce and study new families of finite-dimensional Hopf algebras
with the Chevalley property that are not pointed nor semisimple arising as twistings
of quantum linear spaces. These Hopf algebras generalize the examples introduced
in Andruskiewitsch et al. (Mich Math J 49(2):277–298, 2001), Etingof and Gelaki
(Int Math Res Not 14:757–768, 2002, Math Res Lett 8:249–255, 2001).
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1 Introduction

A Drinfeld’s twist, or simply a twist, for a Hopf algebra H is an invertible element
J ∈ H⊗H satisfying a certain non-linear equation, which in some sense is dual to
the notion of a 2-cocycle. Any twist gives rise to a new Hopf algebra HJ constructed
over the same underlying algebra H such that if R is a quasitriangular structure for
H then RJ = J21 RJ−1 is a quasitriangular structure for HJ . The twisting procedure
is a very powerful tool to construct new examples of (quasitriangular) Hopf algebras
from old and well-known ones.
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422 M. Mombelli

It has been used in [9, 12] to construct simple Hopf algebras by twisting group
algebras, see also [10]. In [1] the authors introduce some families of triangular Hopf
algebras by twisting finite supergroups. The idea of the construction is roughly
the following. They begin with a finite group G with a central element of order
two u ∈ G, V a finite-dimensional representation of G where u acts as −1 and
B ∈ S2(V). The tensor product of the exterior algebra ∧(V) and the group al-
gebra kG is a braided Hopf algebra in the category of Yetter–Drinfeld modules
over Z2. The twisting of ∧(V)⊗kG by the exponential eB of the symmetric ele-
ment B gives a new braided Hopf algebra and by bosonization a (usual) Hopf
algebra.

This idea was developed further in a series of papers [6–8] culminating in the
classification of finite-dimensional triangular Hopf algebras. Also in [5] further
properties of this family have been studied.

The main goal of this paper is to generalize this construction replacing the group
Z2 by an arbitrary finite Abelian group � and V by a quantum linear space over G
such that � is in the center of G. As expected, the role of the exterior algebra is
played by the corresponding Nichols algebra B(V). This construction gives in some
cases new examples of finite-dimensional Hopf algebras.

The contents of the paper are the following. In Section 3 we briefly recall the
definition of quantum linear space over a finite group and the definition of twist over
a braided Hopf algebra. We associate to any twist over a braided Hopf algebra a twist
over the corresponding bosonization. For any quantum linear space V we construct
families of twists in B(V) using the quantum version of the exponential map.

In Section 4 for any quantum linear space V over a finite group G and a subspace
W ⊆ V, a subgroup F ⊆ G and a twist J for the group algebra kF we introduce the
definition of the Hopf algebras A(V, G, W, F, J,D) and we study the particular class
of these Hopf algebras when V = W, F = �, J = 1⊗1, that we denote by A(V, G,D).
In the non-trivial cases these finite-dimensional Hopf algebras are new. We describe
some isomorphisms of the Hopf algebras A(V, G,D) and we study the algebra
structure of A(V, G,D)∗ from which we give necessary and sufficient conditions for
the Hopf algebra A(V, G,D) to be pointed.

2 Preliminaries and Notation

Throughout the paper k will denote an algebraically closed field of characteristic 0
and all vector spaces and algebras are assumed to be over k.

If G is a group and (V, δ) is a left G-comodule we shall denote Vg = {v ∈ V :
δ(v) = g⊗v} for all g ∈ G.

If q ∈ k, n ∈ N denote (n)q = 1 + q + · · · + qn−1 and as usual the q-factorial
numbers: n!q = (1)q(2)q . . . (n)q. The quantum Gaussian coefficients are defined for
0 ≤ k ≤ n by

(
n
k

)
q

= n!q
(n − k)!q k!q .

The following technical result will be needed later.
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Lemma 2.1 Let a, i, j, N ∈ N, q ∈ k such that qN = 1, 1 < N. If 0 ≤ a, i, j < N and
i + j = N + a, then

a∑
k=0

qk(k− j)
(

j
k

)
q

(
i

a − k

)
q

= 1 (2.1)

Proof Let x, y be elements in an algebra such that yx = q xy. Equation 2.1 follows by
using the quantum binomial formula to expand (x + y)a(x + y)N and (x + y)i(x + y) j,
and then compute the corresponding coefficient of the term xa yN . 	


If x is an element in an algebra such that xN = 0 and q ∈ k, the q-exponential map
[11] is defined by

expq(x) =
N−1∑
n=0

1

(n)!q xn.

The element expq(x) is invertible, see [11, Prop. IV.2.6], and the inverse is given by

expq(x)−1 =
N−1∑
n=0

(−1)n qn(n−1)/2

(n)!q xn.

We shall need the following result.

Lemma 2.2 [13, Lemma 3.2] If q is a N-th root of 1, xy = q yx and xi yN−i = 0 for any
i = 0 . . . N then expq(x + y) = expq(x) expq(y).

3 Twists in Quantum Linear Spaces

We shall describe some families of twists over quantum linear spaces and describe
twists for some (usual) Hopf algebras constructed from braided Hopf algebras.

3.1 Quantum Linear Spaces

We shall recall the definition of quantum linear spaces introduced in [2]. Let G be a
finite group and θ ∈ N. Let g1, . . . , gθ ∈ G, χ1, . . . , χθ ∈ Ĝ. Denote qij = χ j(gi), qi =
qii, for any i, j = 1, . . . , θ . Let Ni be the order of qi which is assumed to be finite
and Ni > 1. The collection (g1, . . . , gθ , χ1, . . . , χθ ) is a datum for a quantum linear
space if

gih = hgi, χiχ j = χ jχi for all i, j, and all h ∈ G, (3.1)

qijq ji = 1 for all i �= j. (3.2)

We shall denote by � the Abelian group generated by {gi : i = 1, . . . , θ}. Let V be
the vector space with basis {x1, . . . , xθ }. With the following maps V is an object in
G
GYD:

δ(xi) = gi⊗xi, h · xi = χi(h) xi.
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424 M. Mombelli

We shall denote V = V(g1, . . . , gθ , χ1, . . . , χθ ). The associated Nichols algebra [3]
B(V) is the algebra generated by elements {x1, . . . , xθ } subject to relations

xNi
i = 0, xix j = qij x jxi if i �= j. (3.3)

B(V) is a braided Hopf algebra in G
GYD with coproduct determined by �(xi) =

xi⊗1 + 1⊗xi for all i = 1, . . . , θ . The braided Hopf algebra B(V) is called a quantum
linear space.

Using the quantum binomial formula we get that for any i, n

�(xn
i ) =

n∑
k=0

(
n
k

)
qi

xk
i ⊗xn−k

i .

There is an isomorphism B(V)∗ � B(V∗) of braided Hopf algebras. For any i =
1, . . . , θ and 0 ≤ ri < Ni define Xr1

1 . . . Xrθ

θ the element in B(V)∗ determined by

〈Xr1
1 . . . Xrθ

θ , xs1
1 . . . xsθ

θ 〉 =
{∏θ

i=1 (ri)!qi if ri = si, for all i = 1, . . . , θ

0 otherwise.

The braided Hopf algebra B(V)∗ is generated by elements X1, . . . , Xθ subject to
relations (3.3). The coproduct is determined by �(Xi) = Xi⊗1 + 1⊗Xi for all i =
1, . . . , θ .

3.2 Twists in Braided Hopf Algebras

Let H be a braided Hopf algebra in the category G
GYD. A twist for H is an invertible

element J ∈ H⊗H such that δ(J) = 1⊗J and

(�⊗id )(J)(J⊗1) = (id ⊗�)(J)(1⊗J), (ε⊗id )(J) = 1 = (id ⊗ε)(J). (3.4)

Here δ : H⊗H → kG⊗H⊗H is the coaction of H⊗H in the category G
GYD. As for

usual Hopf algebras there is a new braided Hopf algebra structure on the vector
space H with the same algebra structure and coproduct given by �J(h) = J−1�(h)J,
for all h ∈ H. This new braided Hopf algebra is denoted by HJ . See [1].

Two twists J, J̃ ∈ H are gauge equivalent if there exists an invertible element c ∈ H
such that ε(c) = 1, δ(c) = 1⊗c, g · c = c for all g ∈ G and

J̃ = �(c)J(c−1⊗c−1).

In this case the map φ : H J̃ → HJ , φ(h) = chc−1 is an isomorphism of braided Hopf
algebras.

Remark 3.1 The product of elements in H⊗H or in H⊗H⊗H, as in Eq. 3.4, is the
product in the tensor product algebra as an object in the corresponding braided
tensor category.

The following technical Lemma will be of great use later, the proof is straight-
forward.
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Families of Hopf Algebras with the Chevalley Property 425

Lemma 3.2 Let J, J′ be twists for H. Assume that

(1⊗J)(id ⊗�)(J′) = (id ⊗�)(J′)(1⊗J), (3.5)

(J⊗1)(�⊗id )(J′) = (�⊗id )(J′)(J⊗1). (3.6)

Then the product J J′ is a twist for H.

For any element J ∈ H⊗H we shall denote by H∗
(J) the vector space H∗ with

product given by

〈X ∗ Y, h〉 = 〈X, h(1)(h(2))(−1) · J1〉〈Y, (h(2))(0) J2〉, (3.7)

for all X, Y ∈ H, h ∈ H.

Lemma 3.3 The above product in H∗
(J) is associative if and only if J satisf ies

(�⊗id )(J)(J⊗1) = (id ⊗�)(J)(1⊗J).

In particular H∗
(J) is an algebra with unit ε in the category G

GYD if and only if J is a
twist for H.

Let us mention some applications of Lemma 3.7. Denote W the 1-dimensional
vector space generated by x. The space W is a Yetter–Drinfeld module over G with
structure maps given by

δ(x) = g⊗x, f · x = χ( f ) x,

where g ∈ G, χ ∈ Ĝ, and q = χ(g). Assume that q has order N > 1 and that gN = 1.
Thus B(W) = k[x]/(xN). For any ξ ∈ k denote

Jξ = 1⊗1 +
N−1∑
k=1

ξ

(N − k)!qk!q xN−k⊗xk. (3.8)

Proposition 3.4 Jξ is a twist for B(W).

Proof Clearly Jξ is invertible with inverse given by J−ξ , also (ε⊗id )(Jξ ) = 1 =
(id ⊗ε)(Jξ ). Let us prove that B(W)∗(Jξ )

with the product (3.7) is associative. The
vector space B(W)∗ has a basis consisting of elements {Xi : i = 0, . . . , N − 1}, where
〈Xi, x j〉 = δi, j (i!)q for any i, j ∈ {1, . . . , N − 1}. For any 0 ≤ i, j < N we have that

Xi ∗ X j =
{

Xi+ j if i + j < N

ξ Xa if i + j = N + a, 0 ≤ a < N.
(3.9)

Hence Xi ∗ (
Xk ∗ X j

) = (
Xi ∗ Xk

) ∗ X j for any i, j, k and the product ∗ is asso-
ciative. Let us prove that Xi ∗ X j = ξ Xa when i + j = N + a, the other case is
straightforward. By definition if h ∈ B(W) then 〈Xi ∗ X j, h〉 is equal to

〈Xi, h(1)〉〈X j, h(2)〉 +
N−1∑
k=1

ξ

(N − k)!qk!q 〈Xi, h(1)h(2)(−1) · xN−k〉〈X j, h(2)(0)xk〉.
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426 M. Mombelli

Thus it is clear that if h �= xa then 〈Xi ∗ X j, h〉 = 0. We have also that
〈Xi, (xa)(1)〉〈X j, (xa)(2)〉 = 0, then 〈Xi ∗ X j, xa〉 is equal to

=
N−1∑
k=1

a∑
l=0

(
a
l

)
q

ξ

(N − k)!qk!q 〈Xi, xa−lgl · xk〉〈X j, xlxN−k〉

=
N−1∑
k=1

a∑
l=0

(
a
l

)
q

ξ qlk

(N − k)!qk!q 〈Xi, xa−l+k〉〈X j, xN−k+l〉

=
a∑

l=0

(
a
l

)
q

ξ ql(i+l−a) i!q j!q
(N − i − l + a)!q(i + l − a)!q

= ξ a!q
a∑

l=0

ql(l− j)
(

j
l

)
q

(
i

a − l

)
q

= ξ a!q.

The last equality follows from Eq. 2.1. 	


Let V = V(g1, g2) be the 2-dimensional Yetter–Drinfeld module for some datum
of a quantum linear space. Assume that g1g2 = 1 and that N1 = N = N2, q1 = q =
q−1

2 is a N-th primitive root of unity. Then B(V) is the algebra generated by x, y
subject to relations

xN = 0 = yN, xy = q yx.

For any a ∈ k set B = a x⊗y and Ja = expq(B). It follows by a straightforward
computation that (1⊗B)(B⊗1) = (B⊗1)(1⊗B), hence the exponentials commute:
expq(1⊗B) expq(B⊗1) = expq(B⊗1) expq(1⊗B).

Proposition 3.5 Ja is a twist for B(V) in the category �
�YD.

Proof The proof goes in a similar way as the proof of [13, Thm. 3.3]. It is immediate
to verify that (ε⊗id )(Ja) = 1 = (id ⊗ε)(Ja). First note that

(�⊗id )(expq(B)) = expq((�⊗id )(B)), expq(B)⊗1 = expq(B⊗1)

and

(id ⊗�)(expq(B)) = expq((id ⊗�)(B)), 1⊗ expq(B) = expq(1⊗B).

Let us denote C = a(x⊗1⊗y), then

(�⊗id )(B) = C + 1⊗B, (id ⊗�)(B) = C + B⊗1.
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Families of Hopf Algebras with the Chevalley Property 427

It follows easily that q (B⊗1)C = C(B⊗1), (1⊗B)C = q C(1⊗B) and for any k =
0 . . . N we have that Ck(B⊗1)N−k = Ck(1⊗B)N−k = 0. Then using Lemma 2.2 we
get that

(�⊗id )(Ja)(Ja⊗1) = expq((�⊗id )(B)) expq(B⊗1)

= expq(C + (1⊗B)) expq(B⊗1)

= expq(C) expq(1⊗B) expq(B⊗1)

= expq(C) expq(B⊗1) expq(1⊗B)

= expq(C + B⊗1) expq(1⊗B)

= expq((id ⊗�)(B)) expq(1⊗B) = (id ⊗�)(Ja)(1⊗Ja).

	


3.3 A Hopf Algebra Associated to a Braided Hopf Algebra

Let � be a finite Abelian group and H ∈ �
�YD such that � is a subgroup of the

group-like elements in H and for any g ∈ �, δ(g) = 1⊗g. Here δ : H → k�⊗H is
the coaction. Inspired by [1] we shall construct a Hopf algebra H such that the tensor
categories of representations of H and H are equivalent.

Consider the bosonization H#k�. The ideal I generated by elements h#1 − 1#h for
all h ∈ � is a Hopf ideal. Define H = H#k�/I. The class of an element x⊗g ∈ H#k�

in the quotient H will be denoted by x⊗g.
If J ∈ H⊗H is a twist, define

J = (id ⊗δ)(J )#1 = J 1#J 2
(−1)⊗J 2

(0)#1. (3.10)

We shall use the notation J = J 1⊗J 2 = j1⊗ j2.

Theorem 3.6 The element J ∈ H⊗H is a twist. If J is �-invariant, that is g · J = J
for all g ∈ �, then HJ #k�/I � HJ.

Proof Clearly J is invertible with inverse J−1 = (id ⊗δ)(J −1)#1. Applying (id ⊗δ⊗δ)

to (�⊗id )(J )(J⊗1) we obtain

J 1
(1)

(
J 1

(2)(−1)J 2
(−2)

) · j1 ⊗ J 1
(2)(−1) j2(−1)⊗

⊗ J 1
(2)(0)J 2

(−1) · j2(0)⊗J 2
(−1)⊗J 2

(0).

Applying to this element (id ⊗id ⊗id ⊗�⊗id ), multiplying the fourth and second
tensorands and using the cocommutativity of k� with obtain

J 1
(1)

(
J 1

(2)(−2)J 2
(−4)

) · j1 ⊗ J 1
(2)(−1)J 2

(−3) j2(−1)⊗
⊗ J 1

(2)(0)J 2
(−2) · j2(0)⊗J 2

(−1)⊗J 2
(0). (3.11)

On the other hand, applying (id ⊗δ⊗δ) to (id ⊗�)(J )(1⊗J ) we obtain

J 1⊗J 2
(1)(−1) j1(−1)⊗J 2

(1)(0)J 2
(2)(−2) · j1(0)⊗J 2

(2)(−1) j2(−1)⊗J 2
(2)(0) j2(0).
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Again, applying to this element (id ⊗id ⊗id ⊗�⊗id ) and multiplying the fourth and
second tensorands we obtain

J 1 ⊗ J 2
(1)(−1)J 2

(2)(−2) j1(−1) j2(−1)(1)⊗J 2
(1)(0)J 2

(2)(−3) · j1(0)⊗
⊗ J 2

(2)(−1) j2(−1)(2)⊗J 2
(2)(0) j2(0).

Using the cocommutativity of k� and that δ(J ) = 1⊗J the above element is equal
to

J 1 ⊗ J 2
(1)(−1)J 2

(2)(−3)⊗J 2
(1)(0)J 2

(2)(−2) · j1(0)⊗J 2
(2)(−1) j2(−1)⊗J 2

(2)(0) j2(0),

and since the coproduct is a morphism of k�-comodules the above element is
equal to

J 1⊗J 2
(1)⊗J 2

(0)(1)J 2
(0)(2)(−2) · j1(0)⊗J 2

(0)(2)(−1) j2(−1)⊗J 2
(2)(0) j2(0), (3.12)

The element (�⊗id )(J)(J⊗1) is equal to

(�⊗id )(J 1#J 2
(−1)⊗J 2

(0)#1)(J⊗1) =
= J 1

(1)

(
J 1

(2)(−2)J 2
(−4)

) · j1#J 1
(2)(−1)J 2

(−3) j2(−1)⊗J 2
(2)(0)J 2

(−2) · j2(0)#J 2
(−1)⊗J 2

(0)#1,

and (id ⊗�)(J)(1⊗J) equals

(id ⊗�)(J 1#J 2
(−1)⊗J 2

(0)#1)(1⊗J) =
= J 1#J 2

(1)⊗J 2
(0)(1)J 2

(0)(2)(−2) · j1(0)#J 2
(0)(2)(−1) j2(−1)⊗J 2

(2)(0) j2(0)#1.

Since J is a twist Eqs. 3.11 and 3.12 are equal, hence we conclude that
(�⊗id )(J)(J⊗1) = (id ⊗�)(J)(1⊗J). It follows easily that the coproduct of
HJ #k�/I coincides with the coproduct of HJ . 	


3.4 The Exponential Map in Quantum Linear Spaces

Let G be a finite group and θ ∈ N, (g1, . . . , gθ , χ1, . . . , χθ ) be a datum for a quantum
linear space and V = V(g1, . . . , gθ , χ1, . . . , χθ ).

Let D = {aij ∈ k : 1 ≤ i, j ≤ θ, i �= j} ∪ {ξi ∈ k : 1 ≤ i ≤ θ} be a family of θ2 scalars.
We shall say that D is compatible with the quantum linear space V if

aij = 0 if gig j �= 1, ξi = 0 if gNi
i �= 1. (3.13)

Let F ⊆ G be a subset. We shall say that the family of scalars D is F-invariant if

χi(g)χ j(g) aij = aij, (3.14)

χ
Ni
i (g) ξi = ξi for all g ∈ F. (3.15)
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Families of Hopf Algebras with the Chevalley Property 429

In particular if D is compatible with V then it is �-invariant, which amounts to

aij = 0 if qikq jk �= 1 for some k = 1, . . . , θ, (3.16)

ξi = 0 if qNi
ij �= 1 for some j = 1, . . . , θ. (3.17)

If g ∈ G and D1 = {aij ∈ k : 1 ≤ i, j ≤ θ, i �= j} ∪ {ξi ∈ k : 1 ≤ i ≤ θ}, D2 = {a′
ij ∈ k :

1 ≤ i, j ≤ θ, i �= j} ∪ {ξ ′
i ∈ k : 1 ≤ i ≤ θ} are two families of scalars we will denote

D1 + D2 = {aij + a′
ij ∈ k} ∪ {ξi + ξ ′

i ∈ k : 1 ≤ i ≤ θ},

g · D1 = {χi(g)χ j(g) aij ∈ k} ∪ {χ Ni
i (g) ξi ∈ k : 1 ≤ i ≤ θ}.

We shall say that a family of scalars D is q-symmetric if aij = −qija ji for any 1 ≤ i,
j ≤ θ, i �= j. We shall denote

D̂ = {bij ∈ k : 1 ≤ i < j ≤ θ, i �= j} ∪ {ξi ∈ k : 1 ≤ i ≤ θ}
where bij = qija ji − aij. Clearly D̂ is q-symmetric.

Define Bij = aij xi⊗x j, Jξi = 1⊗1 + ∑Ni−1
k=1

ξi
(Ni−k)!qi k!qi

xNi−k
i ⊗xk

i and

JD =
θ∏

i=1

Jξi

∏
1≤i, j≤θ,i �= j

expqij
(Bij). (3.18)

Theorem 3.7 Let D be a compatible family of scalars with V. Then JD is a twist for
B(V) in the category �

�YD.

Proof It follows by Eq. 3.16 that

(1⊗Bij)(id ⊗�(Bkl)) = (id ⊗�(Bkl))(1⊗Bij),

(Bij⊗1)(�(Bkl)⊗id ) = (�(Bkl)⊗id )(Bij⊗1),

thus

(1⊗ expqij
(Bij))(id ⊗�(expqkl

(Bkl))) = (id ⊗ expqkl
(Bkl))(1⊗ expqij

(Bij)),

(expqij
(Bij)⊗1)(�(expqkl

(Bkl))⊗id ) = (�(expqkl
(Bkl))⊗id )(expqij

(Bij)⊗1).

Using Lemma 3.2 we obtain that
∏

1≤i< j≤θ expqij
(Bij) is a twist. It follows from

Eq. 3.17 that

(1⊗xNi−k
i ⊗xk

i )(id ⊗�)(x
N j−a
j ⊗xa

j) = (id ⊗�)(x
N j−a
j ⊗xa

j)(1⊗xNi−k
i ⊗xk

i ),

thus by Lemma 3.2 we conclude that
∏θ

i=1 Jξi is a twist.
It follows from Eq. 3.17 that (xNi−k

i ⊗xk
i )(xl⊗x j) = (xl⊗x j)(xNi−k

i ⊗xk
i ), thus

expqlj
(Blj) and Jξi commute. Let i, j, k = 1, . . . , θ , 1 ≤ a ≤ Nk, then (1⊗xNk−a

k ⊗xa
k)

(xi⊗1⊗x j + xi⊗x j⊗1) equals

= xi⊗xNk−a
k ⊗xa

kx j + qa
kj xi⊗xNk−a

k x j⊗xa
k

= qa
kj xi⊗xNk−a

k ⊗x jxa
k + qNk

kj xi⊗x jx
Nk−a
k ⊗xa

k.

Author's personal copy



430 M. Mombelli

On the other hand (xi⊗1⊗x j + xi⊗x j⊗1)(1⊗xNk−a
k ⊗xa

k) equals

qNk−a
jk xi⊗xNk−a

k ⊗x jxa
k + xi⊗x jx

Nk−a
k ⊗xa

k.

Using Eq. 3.17, it follows that (1⊗xNk−a
k ⊗xa

k) and (id ⊗�)(xi⊗x j) commute, hence
(1⊗Jξi) and (id ⊗�)(expqlj

(Blj)) commute. Similarly we can prove that (Jξi⊗1) and
(�⊗id )(expqlj

(Blj)) commute. Using again Lemma 3.2, it follows that JD is a twist. 	


Remark 3.8 For any 1 ≤ k, l, s, t ≤ θ we have that

expqkl
(Bkl) expqst

(Bst) = expqst
(Bst) expqkl

(Bkl),

expqkl
(Bkl)Jξ j = Jξ j expqkl

(Bkl), Jξ j Jξt = Jξt Jξ j .

Remark 3.9 It would be interesting to study the exponential map for other types of
Nichols algebras.

4 Hopf Algebras A(V, G, W, F, J, D)

Let G be a finite group and θ ∈ N, (g1, . . . , gθ , χ1, . . . , χθ ) be a datum for a quantum
linear space and V = V(g1, . . . , gθ , χ1, . . . , χθ ). As before � is the Abelian group gen-
erated by {gi : i = 1, . . . , θ}. Note that � is contained in the center of G. Using ideas
contained in [1] we shall construct Hopf algebras coming from twisting B(V)#kG.

By restriction V is an object in �
�YD. The vector space B(V)⊗kkG has a

structure of braided Hopf algebra in �
�YD as follows. The coaction δ : B(V)⊗kkG →

k�⊗kB(V)⊗kkG and the action · : �⊗kB(V)⊗kkG → B(V)⊗kkG are determined
by

δ(v⊗g) = v(−1)⊗v(0)⊗g, h · (v⊗g) = h · v⊗g,

for all v ∈ B(V), g ∈ G, h ∈ �. The product and coproduct in B(V)⊗kkG are
given by

(v⊗g)(v′⊗g′) = vg · v′⊗gg′, �(v⊗g) = v(1)⊗g⊗v(2)⊗g,

for all v, v′ ∈ B(V), g, g′ ∈ G.
Let F be a subgroup of G such that � ≤ F, let W ⊆ V be a subspace stable under

the action of F and Wg ⊆ Vg for all g ∈ F. In this case we can consider the braided
Hopf algebra B(W)⊗kF. Let D be an F-invariant family of scalars for the quantum
linear space W and let J be a twist of kF.

Lemma 4.1 The element J1
D⊗J1⊗J2

D⊗J2 is a twist for the braided Hopf algebra
B(W)⊗kF in the category �

�YD.

Proof Both elements J1
D⊗1⊗J2

D⊗1, 1⊗J1⊗1⊗J2 are twists. Note that for any g ∈ F
we have that g · JD = Jg·D , hence

(1⊗g⊗1⊗g)(J1
D⊗1⊗J2

D⊗1) = J1
g·D⊗g⊗J2

g·D⊗g.

Since D is F-invariant, it follows that Eqs. 3.5 and 3.6 are satisfied and by Lemma 3.2
J1
D⊗J1⊗J2

D⊗J2 is a twist. 	
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Abusing the notation we shall denote by JD J the twist J1
D⊗J1⊗J2

D⊗J2.

Definition 4.2 Under the above assumptions we define the braided Hopf algebra

A(V, G, W, F, J,D) = (B(V)⊗kG)JD J

in the category �
�YD. Using the bosonization procedure we construct the Hopf

algebra A(V, G, W, F, J,D)#k�. The bilateral ideal I generated by elements
1⊗h#1 − 1⊗1#h for all h ∈ � is a Hopf ideal. Thus we define the Hopf algebra
A(V, G, W, F, J,D) as the quotient A(V, G, W, F, J,D)#k�/I.

If V = W, F = G and J = 1⊗1 we shall denote the Hopf algebra
A(V, G, V, �, J,D) simply by A(V, G,D).

Remark 4.3 Note that if D = 0, that is if aij = 0 = ξi for all 1 ≤ i, j ≤ θ , then JD =
1⊗1 and A(V, G, 0) = B(V)#kG.

Corollary 4.4 A(V, G, W, F, J,D) is twist equivalent to B(V)#kG.

Proof It follows from Theorem 3.6. 	


Definition 4.5 [1] A tensor category is said to have the Chevalley property if the
tensor product of simple objects is semisimple. A Hopf algebra H has the Chevalley
property if the category of left H-modules does.

If H is a Hopf algebra with the Chevalley property and J ∈ H⊗H is a
twist then HJ has the Chevalley property. Hence the families of Hopf algebras
A(V, G, W, F, J,D) have the Chevalley property.

Example 4.6 [1] Let G be a finite group and u ∈ G be a central element of order
2. Let V be a G-module such that u · v = −v for all v ∈ V. The space V is a Yetter–
Drinfeld module over G by declaring V = Vu, thus � = Z2. Let {x1, . . . , xθ } be a basis
of V. In this case qij = −1 = qii for all 1 ≤ i, j ≤ θ and the Nichols algebra B(V) is
the exterior algebra ∧V.

Let D = {aij ∈ k : 1 ≤ i, j ≤ θ, i �= j} ∪ {ξi ∈ k : 1 ≤ i ≤ θ} be a family of scalars.
Note that D is automatically Z2-invariant. Define

B =
∑
i �= j

aij xi⊗x j +
θ∑

i=1

ξi xi⊗xi ∈ V⊗V.

Since qij = −1 then JD = eB. Our definition of A(V, G,D) coincides with the
definition given in [1], see also [5], where this algebra is denoted by A(V, G, B).
Note, however, that in loc. cit. the authors assume that the element B is symmetric,
that is B ∈ S2(V).

Let us develop a more particular example. Assume that V has a basis {x, y}. If
a ∈ k denote Ba = a x⊗y − a y⊗x. In this case the twist eBa is gauge equivalent to the
trivial twist 1⊗1. Indeed if c = ea xy then eBa = �(c)(c−1⊗c−1). Thus A(V, G, Ba) �
∧V#kG. The isomorphism is given by conjugation by c, thus one can not expect to
apply [5, Prop. 2.1] in the general situation. Also A(V, G, Ba) is super cocommutative
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but Ba is not G-invariant hence [5, Corollary 5.3] is no longer true when B is not
symmetric.

Example 4.7 Let G be a finite group with a character χ : G → k
×. Let n ∈ N and

ξ ∈ k. Let u ∈ G be a central element of order n and χ(u) = q be a n-th primitive root
of unity. Let V be the one-dimensional vector space generated by x with structure of
Yetter–Drinfeld module over G given by

δ(x) = u⊗x, g · x = χ(g) x, for all g ∈ G.

The Nichols algebra of V is isomorphic to k[x]/(xn). If Dξ = {ξ} then A(V, G,Dξ ) is
isomorphic to the algebra generated by elements {x, g : g ∈ G} subject to relations

xn = 0, gx = χ(g) xg, for all g ∈ G.

The twist in this case is Jξ = 1⊗1 + ∑n−1
k=1

ξ

(n−k)!qk!q xn−k⊗xk and the coproduct is
given by formulas

�(x) = x⊗1 + u⊗x, �(g) = g⊗g +
n−1∑
k=1

ξ(χn(g) − 1)

(n − k)!qk!q xn−kukg⊗xkg.

We shall prove later that if ξ �= 0 and χn �= 1 then A(V, G,Dξ ) is not a pointed Hopf
algebra and (unfortunately) A(V, G,Dξ ) � A(V, G,D1).

4.1 Some Isomorphisms of A(V, G,D)

In this section we shall present some isomorphisms of Hopf algebras A(V, G,D) in
a similar way as in [5, Prop. 2.1].

Remark 4.8 The coproduct of the braided Hopf algebra B(V)⊗kG is given by:

�JD (v⊗g) = J−1
D �(v⊗1)(1⊗g⊗1⊗g)JD = J−1

D Jg·D�(v⊗g),

for all g ∈ G, v ∈ B(V). This equation follows since JD�(v⊗1) = �(v⊗1)JD for all
v ∈ B(V). This implies that if D is G-invariant then A(V, G,D) � B(V)#kG. In
particular if G = � then A(V, G,D) � B(V)#kG.

Let G, G′ be finite groups, V, V ′ be quantum linear spaces over � and �′
respectively with basis {x1, . . . , xθ } and {x′

1, . . . , x′
θ } respectively. Let D,D′ be families

of scalars such that D is �-invariant and D′ is �′-invariant.

Proposition 4.9 The Hopf algebras A(V, G,D), A(V ′, G′,D′) are isomorphic pro-
vided there is a group isomorphism φ : G → G′ such that φ(�) = �′ and a isomorhism
η : V → φ∗(V ′) of Yetter–Drinfeld modules over G such that (η⊗η)(JD) = JD′ JD̃
where D̃ is G-invariant.

Proof We shall prove that the braided Hopf algebras B(V)⊗kG, B(V ′)⊗kG′ are
isomorphic. The map η can be extended to an algebra map η : B(V) → B(V ′).
Define ψ : B(V)⊗kG → B(V ′)⊗kG′ by

ψ(v⊗g) = η(v)⊗φ(g), for all v ∈ B(V), g ∈ G.
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Clearly ψ is a bijective algebra morphism. If v ∈ B(V), g ∈ G then

�JD′ (ψ(v⊗g)) = J−1
D′ Jg·D′�(ψ(v⊗g)).

On the other hand

(ψ⊗ψ)�JD (v⊗g) = (η⊗η)(J−1
D Jg·D)(ψ⊗ψ)�(v⊗g)

= J−1
D′ J−1

D̃ Jφ(g)·D′ Jφ(g)·D̃(ψ⊗ψ)�(v⊗g)

= J−1
D′ Jφ(g)·D′ J−1

D̃ JD̃(ψ⊗ψ)�(v⊗g)

= J−1
D′ Jg·D′�(ψ(v⊗g)).

The third equation follows from Remark 4.8. 	


4.2 The Algebra Structure of A(V, G,D)∗

In this section we shall describe the algebra structure of A(V, G,D)∗ following very
closely the proof given in [5]. As a consequence we shall give necessary and sufficient
conditions for the Hopf algebra A(V, G,D) to be pointed.

We shall keep the notation of the previous section. Let S ⊆ G be a set of
representative classes of G/�, that is G = ⋃

s∈S s�. For any s ∈ S define

As = {v⊗g#1 : v ∈ B(V), g ∈ s�}.
If D = {dij ∈ k : 1 ≤ i, j ≤ θ, i �= j} ∪ {ξi ∈ k : 1 ≤ i ≤ θ} is a family of scalars then

we define R(D, �) as the algebra generated by elements X1, . . . , Xθ , γ ∈ � subject to
relations

γXi = χi(γ ) Xiγ, X
Ni
i = ξi1, XiX j − qij X jXi = dij1.

The following result seems to be well-known.

Lemma 4.10 The algebra R(D, �) is basic if and only if dij = 0 = ξi for all 0 ≤ i, j ≤ θ .

The following result generalizes [5, Thm. 5.2].

Proposition 4.11 The following hold:

1. For any s ∈ S the space As is a subcoalgebra,
2. A(V, G,D) = ⊕s∈S As,
3. there is an isomorphism of algebras A∗

s � R(D̂ − s · D̂, �).

Proof

1. It follows from the definition of the coproduct of A(V, G,D) and the fact that
the twist JD ∈ B(V)⊗B(V).

2. The product in A∗
s is described as follows. If X, Y ∈ A∗

s , h ∈ As then

〈X ∗ Y, h〉 = 〈X, J−1hj1〉〈Y, J−2hj2〉, (4.1)
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where J = j1⊗ j2 = J1
D⊗1#1⊗J2

D⊗1#1, J−1⊗J−2 = J−1. A base of As is given by
{xr1

1 . . . xrθ

θ ⊗sγ #1 : 1 ≤ ri ≤ Ni, 1 ≤ i ≤ θ, γ ∈ �}. A base for the dual space A∗
s is

given by the family {Xr1
1 . . . Xrθ

θ γ : 1 ≤ ri ≤ Ni, 1 ≤ i ≤ θ, g ∈ �} where

〈Xr1
1 . . . Xrθ

θ g∗, xs1
1 . . . xsθ

θ ⊗sγ #1〉 =
{∏θ

i=1 (ri)!qi〈g∗, γ 〉 if ri = si∀i,

0 otherwise.

Here 〈g∗, gi〉 = χi(g), for all gi ∈ �. It is not difficult to verify that using the product
(4.1) the following equations hold:

g∗ ∗ f ∗ = (gf )∗, g∗ ∗ Xi = χi(g) Xig∗, Xi ∗ X j = Xi X j + ((χiχ j(s) − 1)aij)1,

Xi ∗ X Ni−1
i = (ξi − χ

Ni
i (s)ξi)1, Xl

i ∗ Xk
i = Xk+l

i for all k + l < Ni − 1,

for all g, f ∈ �, 1 ≤ i, j ≤ θ . We shall give the proof of third equality, the proofs of
the other equations are done in a completely similar way. Let g ∈ � then

〈Xi ∗ X j, 1⊗sg#1〉 = 〈Xi, J−1
D j1s·D⊗sg#1〉〈X j, J−2

D j2s·D⊗sg#1〉
= −aij〈Xi, xi⊗sg#1〉〈X j, x j⊗sg#1〉 +

+χiχ j(s)aij〈Xi, xi⊗sg#1〉〈X j, x j⊗sg#1〉
= −aij + χiχ j(s)aij.

For the second equation we are using that the coefficient of the term xi⊗x j of
expqij

(Bij)
−1 is −aij. Since 〈Xi ∗ X j, xix j⊗1#1〉 = 1 and 〈Xi ∗ X j, v⊗1#1〉 = 0 for any

v ∈ B(V) different from 1 and xix j then the result follows.
Observe that since Xi X j = qij X jXi then

Xi ∗ X j − qij X j ∗ Xi = (qija ji − aij + χiχ j(s)a ji − qijχiχ j(s)aij)1.

Whence there is a well-defined projection R(D̂ − s · D̂, �) → A∗
s and since both

algebras have the same dimension they must be isomorphic. 	


We can generalize [5, Corollary 5.3].

Corollary 4.12 The Hopf algebra A(V, G,D) is pointed if and only if D̂ is G-
invariant. In particular if D is q-symmetric then A(V, G,D) is pointed if and only
if D is G-invariant if and only if A(V, G,D) � B(V)#kG.

Proof A(V, G,D) is pointed if and only if As is pointed for all s ∈ S if and only if A∗
s

is basic for all s ∈ S if and only if R(D̂ − s · D̂, �, s) is basic for all s ∈ S if and only if
D̂ is s-invariant for all s ∈ S.

If D is q-symmetric then aij − qija ji = 2aij thus D̂ is G-invariant if and only if D
is G-invariant. If D is G-invariant then by Remark 4.8 A(V, G,D) � B(V)#kG thus
A(V, G,D) is pointed. 	


Question 4.1 If D̂ is G-invariant then A(V, G,D) � B(V)#kG ?
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As a last remark I would like to point out that the dual of the Hopf algebra
A(V, G, W, F, J,D) has coradical k

G and this family could be helpful to the study
of Hopf algebras with coradical a Hopf subalgebra that has recently began in [4].
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