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Null geodesics in Kerr space-time

The Kerr metric in [Boyer and Lindquist, 1967] coordinates is

ds2 =

(
1 − 2mr

Σ

)
dt2 +

4amr sin2(θ)

Σ
dt dφ− Σ

∆
dr 2 − Σdθ2

−
(
r 2 + a2 +

2a2mr

Σ
sin2(θ)

)
sin2(θ)dφ2;

Σ = r 2 + a2 cos(θ)2, ∆ = r 2 + a2 − 2mr .

(1)

From [Carter, 1968], the most general null geodesic congruence

`a =

 ṫ
ṙ

θ̇

φ̇

 =⇒ `a = gab`
b = E dta −

±
√

[(r2 + a2)E − aLz ]2 − K∆

∆
dra

−
(
±

√
K −

[
a E sin(θ)− Lz

sin(θ)

]2 )
dθa − Lzdφa.

(2)

where E , Lz and K (Carter Constant), are conserved quantities along
each geodesic. In what follows, we will take (E = 1).



Center of mass null system

Let us consider a surface S , defined by (t =constant and r =constant).
We are interested in the limit case, where this surface tends to a sphere

at future null infinity S −→ S∞; and we call
(
θ∗, φ̃

)
to the values of

(θ, φ) at S∞.

Then, the vectors
(
∂
∂θ∗

)b
and

(
∂
∂φ̃

)b
are tangent to S∞.

In our approach, we elect the congruence `a which is orthogonal to
S∞, it means:

lim
λ−→∞

gab`
a
( ∂
∂θ

)b
= −

(
±

√
K −

[
a sin(θ∗)− Lz

sin(θ∗)

]2 )
= 0,

lim
λ−→∞

gab`
a
( ∂
∂φ

)b
= Lz = 0.

(3)

This imposes a condition over the conserved quantities Lz and K

Lz = 0,

K = a2 sin(θ∗)2
(4)



Null coordinate u

We try to define a null function u, such that in each point of the surface
(u = constant), the null congruence `a is orthogonal to the surface

(du)a = `a. (5)

To satisfy eq (5), the exterior derivative of the one form must
vanish. But, from the asymptotic conditions Lz = 0 and K = a2 sin(θ∗)2;
one has to consider K = K (r , θ). Then, the exterior derivative is

d(`a) = ±

 1

2
√

(r2 + a2)2 − K∆

∂K

∂θ
dθ ∧ dr ± |h

1

2
√

K −
(
a sin(θ)

)2

∂K

∂r
dθ ∧ dr

 = 0;

To summarize, the differential equation for K (r , θ) is√
(r2 + a2)2 − K(r , θ)∆

∂K(r , θ)

∂r
± |h

√
K(r , θ)− a2 sin2(θ)

∂K(r , θ)

∂θ
= 0. (6)

with a boundary condition K (r =∞, θ∗) = a2 sin(θ∗)2.



Carter Constant: K and K (r , θ), no contradiction

From [Carter, 1968], we have that K is constant along each geodesic.
But we can easily probe there is no contradiction on relaxing
K = K (r , θ), by simple computing the derivative along each geodesic

dK (r , θ)

dλ
=
∂K

∂r

dr

dλ
+
∂K

∂θ

dθ

dλ

=
∂K

∂r
ṙ +

∂K

∂θ
θ̇

=
∂K

∂r
`r +

∂K

∂θ
`θ

= ± 1

Σ

[
∂K

∂r

√
(r2 + a2)2 − K (r , θ)∆±h

∂K

∂θ

√
K (r , θ)− a2 sin2(θ)

]
= 0,

(7)

Which is exactly the previous differential equation for K (r , θ).



Numerical Solution of K (r , θ)

It is convenient to define

K (r , θ) = a2 sin2(θ) + k2(r , θ), (8)

to see more clearly the asymptotic and interior behavior



Pair of Null Coordinates: u (out-going) and v (in-going)

Once we have the solution K (r , θ), we actually have a pair of null
coordinates, which in [Boyer and Lindquist, 1967] coordinates are

du = dt − drs (a,m, r , θ) , (9)

dv = dt + drs (a,m, r , θ) , (10)

with

drs =

√
(r2 + a2)2 − K (r , θ)∆

∆
dr ±h

√
K (r , θ)− a2 sin2(θ) dθ. (11)

To obtain the expressions of u and v , we have to integrate equations (9)

and (10). The details of how to make this path-independent integration,

together with the final expressions of the null coordinates, will be

presented in an up-coming article.



Kerr out-going null coordinate: (u = 0)



Kerr and Schwarzschild outgoing null coordinate: (u = 0)



ASSOCIATED 2-DIMENSIONAL SPACE-LIKE SURFACE

The intersection of both null coordinates, gives a foliation of 2-D
space-like surfaces (du = 0, dv = 0), defined by

drs =
(dv − du)

2
= 0, (12)

where rs can be interpreted as the tortoise coordinate (r∗) of Kerr.
These surfaces, can be described in a pure geometrically way, in terms of
their Gaussian and Extrinsic curvature. From [Geroch et al., 1973], we
can compute them by

KGaussian =
(
Q̄GHP + QGHP

)
,

KExtrinsic = i
(
Q̄GHP − QGHP

)
,

(13)

QGHP = σσ′ − ρρ′ −Ψ2 +��7
0

Λ +���
0

Φ11, (14)

where σ, σ′, ρ, ρ′ are the spin coefficients in the GHP formalism, and the

last two terms become zero in the Kerr case.



2D surface rs , (a = 0.8,m = 1): Extrinsic Curvature

In the limit case (a = 0), the surfaces (rs = constant) ≡ (r = constant):

KExtrinsic(a = 0,m, r , θ) = 0. (to compare) (15)



2D surface rs , (a = 0.8,m = 1): Gaussian Curvature

In the limit case (a = 0), the surfaces (rs = constant) ≡ (r = constant):

KGaussian(a = 0,m, r , θ) =
1

r 2
. (to compare) (16)



Comparation with other related work: rs vs rsH
In the PRL article [Hayward, 2004], there is another definition of a Kerr
null coordinate system, which differs from ours(

K = a2 Hayward definition
)
6=
(
K = K (r , θ) Ours definition

)

The null hypersurfaces they construct do not include the null geodesics along the

axis of symmetry. This is due to the fact that their construction does not give a 2D

smooth hypersurface at the poles. One can see that for rsH there is a discontinuity

in the derivatives at (θ = 0), while for rs it is clearly smooth.



Final Remarks

• We have presented a calculation of Kerr null coordinates which
are related to the center of mass frame at future null infinity,
sorrounding the black hole all the way up to the horizon.

• This work improves several attempts found in the literature. A
remarkable one is [Hayward, 2004].

• Our work is related with the article of
[Pretorius and Israel, 1998], which use a very different setting.

• These null coordinates gives a new insight, and we hope it is
useful in the study of Kerr solution and the Kerr stability open
problem. We plan to use them, in further works of Kerr
perturbations.
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